
ModelArts

User Guide (ModelArts Standard)

Issue 01

Date 2024-12-31

HUAWEI CLOUD COMPUTING TECHNOLOGIES CO., LTD.

Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2024. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Cloud Computing Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are the property of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei
Cloud and the customer. All or part of the products, services and features described in this document may
not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all
statements, information, and recommendations in this document are provided "AS IS" without
warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Cloud Computing Technologies Co., Ltd.
Address: Huawei Cloud Data Center Jiaoxinggong Road

Qianzhong Avenue
Gui'an New District
Gui Zhou 550029
People's Republic of China

Website: https://www.huaweicloud.com/intl/en-us/

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. i

https://www.huaweicloud.com/intl/en-us/

Contents

1 ModelArts Standard Usage... 1

2 ModelArts Standard Preparations... 5
2.1 Configuring Access Authorization for ModelArts Standard..5
2.1.1 Configuring Agency Authorization for ModelArts with One Click..5
2.1.2 Creating an IAM User and Granting ModelArts Permissions... 12
2.2 Creating and Managing a Workspace... 19
2.3 Creating an OBS Bucket for ModelArts to Store Data... 24

3 ModelArts Standard Resource Management..27
3.1 About ModelArts Standard Resource Pools... 27
3.2 Creating a Standard Dedicated Resource Pool... 29
3.3 Managing Standard Dedicated Resource Pools..39
3.3.1 Viewing Details About a Standard Dedicated Resource Pool.. 39
3.3.2 Resizing a Standard Dedicated Resource Pool.. 44
3.3.3 Upgrading the Standard Dedicated Resource Pool Driver.. 45
3.3.4 Rectifying a Faulty Node in a Standard Dedicated Resource Pool...47
3.3.5 Modifying the Job Types Supported by a Standard Dedicated Resource Pool...53
3.3.6 Migrating Standard Dedicated Resource Pools and Networks to Other Workspaces...............................55
3.3.7 Configuring the Standard Dedicated Resource Pool to Access the Internet...56
3.3.8 Using TMS Tags to Manage Resources by Group.. 58
3.3.9 Managing Free Nodes in a Standard Dedicated Resource Pool..60
3.3.10 Releasing Standard Dedicated Resource Pools and Deleting the Network..61

4 Using ExeML for Zero-Code AI Development... 63
4.1 Introduction to ExeML...63
4.2 Using ExeML for Image Classification... 64
4.2.1 Preparing Image Classification Data.. 64
4.2.2 Creating an Image Classification Project...66
4.2.3 Labeling Image Classification Data...68
4.2.4 Training an Image Classification Model.. 71
4.2.5 Deploying an Image Classification Service... 72
4.3 Using ExeML for Object Detection..74
4.3.1 Preparing Object Detection Data...74
4.3.2 Creating an Object Detection Project... 77

ModelArts
User Guide (ModelArts Standard) Contents

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ii

4.3.3 Labeling Object Detection Data... 79
4.3.4 Training an Object Detection Model...83
4.3.5 Deploying an Object Detection Service... 84
4.4 Using ExeML for Predictive Analytics... 86
4.4.1 Preparing Predictive Analysis Data..86
4.4.2 Creating a Predictive Analytics Project...89
4.4.3 Training a Predictive Analysis Model.. 91
4.4.4 Deploying a Predictive Analytics Service... 92
4.5 Using ExeML for Sound Classification... 94
4.5.1 Preparing Sound Classification Data.. 94
4.5.2 Creating a Sound Classification Project... 95
4.5.3 Labeling Sound Classification Data...97
4.5.4 Training a Sound Classification Model... 99
4.5.5 Deploying a Sound Classification Service... 100
4.6 Using ExeML for Text Classification... 102
4.6.1 Preparing Text Classification Data.. 102
4.6.2 Creating a Text Classification Project... 103
4.6.3 Labeling Text Classification Data...105
4.6.4 Training a Text Classification Model...108
4.6.5 Deploying a Text Classification Service... 109
4.7 Tips.. 111
4.7.1 How Do I Quickly Create an OBS Bucket and a Folder When Creating a Project?..................................111
4.7.2 Where Are Models Generated by ExeML Stored? What Other Operations Are Supported?................ 112

5 Using Workflows for Low-Code AI Development..114
5.1 What Is Workflow?.. 114
5.2 Managing a Workflow.. 117
5.2.1 Searching for a Workflow.. 118
5.2.2 Viewing the Running Records of a Workflow... 119
5.2.3 Managing a Workflow.. 121
5.2.4 Retrying, Stopping, or Running a Workflow Phase... 122
5.3 Workflow Development Command Reference... 123
5.3.1 Core Concepts of Workflow Development... 123
5.3.2 Configuring Workflow Parameters... 131
5.3.3 Configuring the Input and Output Paths of a Workflow.. 133
5.3.4 Creating Workflow Phases... 136
5.3.4.1 Creating a Dataset Phase... 136
5.3.4.2 Creating a Dataset Labeling Phase... 142
5.3.4.3 Creating a Dataset Import Phase...148
5.3.4.4 Creating a Dataset Release Phase... 157
5.3.4.5 Creating a Training Job Phase... 163
5.3.4.6 Creating a Model Registration Phase... 180
5.3.4.7 Creating a Service Deployment Phase... 188

ModelArts
User Guide (ModelArts Standard) Contents

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iii

5.3.5 Creating a Multi-Branch Workflow...196
5.3.5.1 Multi-Branch Workflow... 196
5.3.5.2 Creating a Condition Phase to Control Branch Execution... 196
5.3.5.3 Configuring Phase Parameters to Control Branch Execution... 203
5.3.5.4 Configuring Multi-Branch Phase Data... 208
5.3.6 Creating a Workflow.. 210
5.3.7 Publishing a Workflow.. 212
5.3.7.1 Publishing a Workflow to ModelArts..212
5.3.7.2 Publishing a Workflow to AI Gallery.. 214
5.3.8 Advanced Workflow Capabilities... 216
5.3.8.1 Using Big Data Capabilities (DLI/MRS) in a Workflow.. 216
5.3.8.2 Specifying Certain Phases to Run in a Workflow... 217

6 Development Environments... 219
6.1 Application Scenarios.. 219
6.2 Creating a Notebook Instance... 220
6.3 Using a Notebook Instance for AI Development Through JupyterLab.. 233
6.3.1 Using JupyterLab to Develop and Debug Code Online... 233
6.3.2 Common Functions of JupyterLab.. 235
6.3.3 Using Git to Clone the Code Repository in JupyterLab..246
6.3.4 Creating a Scheduled Job in JupyterLab... 252
6.3.5 Uploading Files to JupyterLab.. 256
6.3.5.1 Uploading Files from a Local Path to JupyterLab.. 256
6.3.5.2 Cloning GitHub Open-Source Repository Files to JupyterLab..263
6.3.5.3 Uploading OBS Files to JupyterLab... 264
6.3.5.4 Uploading Remote Files to JupyterLab.. 267
6.3.6 Downloading a File from JupyterLab to a Local PC..268
6.3.7 Using MindInsight Visualization Jobs in JupyterLab... 271
6.3.8 Using TensorBoard Visualization Jobs in JupyterLab.. 273
6.4 Using Notebook Instances Remotely Through PyCharm..276
6.4.1 Connecting to a Notebook Instance Through PyCharm Toolkit... 277
6.4.2 Manually Connecting to a Notebook Instance Through PyCharm..285
6.4.3 Uploading Data to a Notebook Instance Through PyCharm...291
6.5 Using Notebook Instances Remotely Through VS Code... 292
6.5.1 Connecting to a Notebook Instance Through VS Code... 292
6.5.2 Installing VS Code... 293
6.5.3 Connecting to a Notebook Instance Through VS Code Toolkit.. 294
6.5.4 Manually Connecting to a Notebook Instance Through VS Code... 303
6.5.5 Uploading and Downloading Files in VS Code... 307
6.6 Using a Notebook Instance Remotely with SSH .. 309
6.7 Managing Notebook Instances..315
6.7.1 Searching for a Notebook Instance.. 315
6.7.2 Updating a Notebook Instance.. 316

ModelArts
User Guide (ModelArts Standard) Contents

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. iv

6.7.3 Starting, Stopping, or Deleting a Notebook Instance.. 318
6.7.4 Saving a Notebook Instance... 319
6.7.5 Dynamically Expanding EVS Disk Capacity..321
6.7.6 Dynamically Mounting an OBS Parallel File System.. 323
6.7.7 Viewing Notebook Events.. 324
6.7.8 Notebook Cache Directory Alarm Reporting...329
6.8 ModelArts CLI Command Reference.. 334
6.8.1 ModelArts CLI Commands... 334
6.8.2 (Optional) Installing ma-cli Locally.. 336
6.8.3 Autocompletion for ma-cli Commands... 337
6.8.4 ma-cli Authentication.. 338
6.8.5 ma-cli image Commands for Building Images... 340
6.8.6 ma-cli ma-job Commands for Training Jobs..352
6.8.7 ma-cli dli-job Commands for Submitting DLI Spark Jobs...364
6.8.8 Using ma-cli to Copy OBS Data... 377
6.9 Using Moxing Commands in a Notebook Instance.. 378
6.9.1 MoXing Framework Functions..378
6.9.2 Using MoXing in Notebook... 380
6.9.3 Mapping Between mox.file and Local APIs and Switchover.. 382
6.9.4 Sample Code for Common Operations... 383
6.9.5 Sample Code for Advanced MoXing Usage... 388

7 Data Management..391
7.1 Introduction to Data Preparation... 391
7.2 Getting Started.. 392
7.3 Creating a Dataset... 398
7.3.1 Dataset Overview..398
7.3.2 Creating a Dataset.. 400
7.3.3 Modifying a Dataset.. 407
7.4 Importing Data.. 407
7.4.1 Introduction to Data Importing... 408
7.4.2 Importing Data from OBS.. 409
7.4.2.1 Introduction to Importing Data from OBS... 409
7.4.2.2 Importing Data from an OBS Path..412
7.4.2.3 Specifications for Importing Data from an OBS Directory..414
7.4.2.4 Importing a Manifest File... 420
7.4.2.5 Specifications for Importing a Manifest File.. 421
7.4.3 Importing Data from DLI..439
7.4.4 Importing Data from MRS... 440
7.4.5 Importing Data from DWS.. 440
7.4.6 Importing Data from Local Files.. 441
7.5 Data Analysis and Preview.. 442
7.5.1 Auto Grouping..442

ModelArts
User Guide (ModelArts Standard) Contents

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. v

7.5.2 Data Filtering..444
7.5.3 Data Feature Analysis.. 445
7.6 Labeling Data...450
7.7 Publishing Data... 451
7.7.1 Introduction to Data Publishing...451
7.7.2 Publishing a Data Version.. 451
7.7.3 Managing Data Versions.. 453
7.8 Exporting Data.. 454
7.8.1 Introduction to Exporting Data.. 454
7.8.2 Exporting Data to a New Dataset... 455
7.8.3 Exporting Data to OBS.. 455
7.9 Introduction to Data Labeling..456
7.10 Manual Labeling...458
7.10.1 Creating a Labeling Job.. 458
7.10.2 Image Labeling.. 466
7.10.2.1 Image Classification... 466
7.10.2.2 Object Detection..474
7.10.2.3 Image Segmentation..485
7.10.3 Text Labeling.. 493
7.10.3.1 Text Classification..493
7.10.3.2 Named Entity Recognition... 498
7.10.3.3 Text Triplet... 503
7.10.4 Audio Labeling... 508
7.10.4.1 Sound Classification... 508
7.10.4.2 Speech Labeling... 512
7.10.4.3 Speech Paragraph Labeling... 515
7.10.5 Video Labeling... 519
7.10.6 Viewing Labeling Jobs... 523
7.10.6.1 Viewing My Created Labeling Jobs... 523
7.10.6.2 Viewing My Participated Labeling Jobs... 524
7.11 Auto Labeling.. 524
7.11.1 Creating an Auto Labeling Job...524
7.11.2 Confirming Hard Examples... 529
7.12 Team Labeling... 531
7.12.1 Team Labeling Overview..531
7.12.2 Creating and Managing Teams..531
7.12.2.1 Managing Teams... 531
7.12.2.2 Managing Team Members... 532
7.12.3 Creating a Team Labeling Job.. 533
7.12.4 Logging In to ModelArts.. 536
7.12.5 Starting a Team Labeling Job... 537
7.12.6 Reviewing Team Labeling Results... 538

ModelArts
User Guide (ModelArts Standard) Contents

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. vi

7.12.7 Accepting Team Labeling Results..539

8 Model Training...544
8.1 Model Training Process...544
8.2 Preparing Model Training Code... 547
8.2.1 Starting a Preset Image's Boot File...547
8.2.2 Developing Code for Training Using a Preset Image.. 554
8.2.3 Developing Code for Training Using a Custom Image... 556
8.2.4 Configuring Password-free SSH Mutual Trust Between Nodes for a Training Job Created Using a
Custom Image...560
8.3 Preparing a Model Training Image...560
8.4 Creating a Debug Training Job.. 561
8.4.1 Using PyCharm Toolkit to Create and Debug a Training Job.. 562
8.5 Creating an Algorithm.. 567
8.6 Creating a Production Training Job.. 577
8.7 Distributed Model Training... 593
8.7.1 Overview.. 593
8.7.2 Creating a Single-Node Multi-Card Distributed Training Job (DataParallel)...594
8.7.3 Creating a Multiple-Node Multi-Card Distributed Training Job (DistributedDataParallel)...................595
8.7.4 Example: Creating a DDP Distributed Training Job (PyTorch + GPU)...605
8.7.5 Example: Creating a DDP Distributed Training Job (PyTorch + NPU).. 609
8.8 Incremental Model Training..611
8.9 Automatic Model Tuning (AutoSearch)..613
8.9.1 Overview.. 613
8.9.2 Creating a Training Job for Automatic Model Tuning.. 615
8.10 High Model Training Reliability...618
8.10.1 Training Job Fault Tolerance Check.. 618
8.10.2 Training Log Failure Analysis.. 623
8.10.3 Detecting Training Job Suspension... 623
8.10.4 Training Job Rescheduling... 627
8.10.5 Resumable Training... 627
8.10.6 Enabling Unconditional Auto Restart.. 629
8.11 Managing Model Training Jobs... 630
8.11.1 Viewing Training Job Details...630
8.11.2 Viewing the Resource Usage of a Training Job.. 633
8.11.3 Viewing the Model Evaluation Result... 635
8.11.4 Viewing Training Job Events..639
8.11.5 Viewing Training Job Logs... 641
8.11.6 Priority of a Training Job.. 649
8.11.7 Using Cloud Shell to Debug a Production Training Job.. 651
8.11.8 Rebuilding, Stopping, or Deleting a Training Job.. 655
8.11.9 Managing Environment Variables of a Training Container..656
8.11.10 Viewing Training Job Tags... 662

ModelArts
User Guide (ModelArts Standard) Contents

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. vii

9 Inference Deployment..663
9.1 Overview..663
9.2 Creating a Model.. 664
9.2.1 Creation Methods... 664
9.2.2 Importing a Meta Model from a Training Job.. 666
9.2.3 Importing a Meta Model from OBS... 668
9.2.4 Importing a Meta Model from a Container Image... 673
9.3 Model Creation Specifications..677
9.3.1 Model Package Structure... 678
9.3.2 Specifications for Editing a Model Configuration File..679
9.3.3 Specifications for Writing a Model Inference Code File.. 695
9.3.4 Specifications for Using a Custom Engine to Create a Model...700
9.3.5 Examples of Custom Scripts.. 703
9.4 Deploying a Model as Real-Time Inference Jobs...714
9.4.1 Deploying and Using Real-Time Inference...714
9.4.2 Deploying a Model as a Real-Time Service... 715
9.4.3 Authentication Methods for Accessing Real-time Services.. 723
9.4.3.1 Accessing a Real-Time Service Through Token-based Authentication... 723
9.4.3.2 Accessing a Real-Time Service Through AK/SK-based Authentication... 731
9.4.3.3 Accessing a Real-Time Service Through App Authentication...737
9.4.4 Accessing a Real-Time Service Through Different Channels... 748
9.4.4.1 Accessing a Real-Time Service Through a Public Network... 748
9.4.4.2 Accessing a Real-Time Service Through a VPC Channel..749
9.4.4.3 Accessing a Real-Time Service Through a VPC High-Speed Channel... 750
9.4.5 Accessing a Real-Time Service Using Different Protocols...755
9.4.5.1 Accessing a Real-Time Service Using WebSocket.. 755
9.4.5.2 Accessing a Real-Time Service Using Server-Sent Events..758
9.5 Deploying a Model as a Batch Inference Service.. 759
9.6 Managing ModelArts Models...766
9.6.1 Viewing ModelArts Model Details...766
9.6.2 Viewing ModelArts Model Events... 771
9.6.3 Managing ModelArts Model Versions... 775
9.7 Managing a Synchronous Real-Time Service..776
9.7.1 Viewing Details About a Real-Time Service...776
9.7.2 Viewing Events of a Real-Time Service... 783
9.7.3 Managing the Lifecycle of a Real-Time Service... 785
9.7.4 Modifying a Real-Time Service.. 787
9.7.5 Viewing Performance Metrics of a Real-Time Service on Cloud Eye.. 788
9.7.6 Integrating a Real-Time Service API into the Production Environment... 794
9.7.7 Configuring Auto Restart upon a Real-Time Service Fault...794
9.8 Managing Batch Inference Jobs...795
9.8.1 Viewing Details About a Batch Service... 795

ModelArts
User Guide (ModelArts Standard) Contents

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. viii

9.8.2 Viewing Events of a Batch Service.. 797
9.8.3 Managing the Lifecycle of a Batch Service.. 800
9.8.4 Modifying a Batch Service... 801

10 Image Management...803
10.1 Application Scenarios of Custom Images.. 803
10.2 Preset Images Supported by ModelArts... 805
10.2.1 ModelArts Preset Image Updates... 805
10.2.2 ModelArts Unified Images... 806
10.2.3 Preset Dedicated Images in Notebook Instances.. 813
10.2.4 Preset Dedicated Images for Training..840
10.2.5 Preset Dedicated Images for Inference... 843
10.3 Creating a Custom Image for a Notebook Instance.. 859
10.3.1 Creating a Custom Image.. 859
10.3.2 Creating a Custom Image on ECS and Using It... 861
10.3.3 Creating a Custom Image Using Dockerfile.. 868
10.3.4 Creating a Custom Image Using the Image Saving Function... 871
10.4 Creating a Custom Image for Model Training... 873
10.4.1 Creating a Custom Training Image...873
10.4.2 Creating a Custom Training Image Using a Preset Image... 874
10.4.3 Migrating Existing Images to ModelArts.. 877
10.4.4 Creating a Custom Training Image (PyTorch + Ascend)... 880
10.4.5 Creating a Custom Training Image (PyTorch + CPU/GPU).. 885
10.4.6 Creating a Custom Training Image (MPI + CPU/GPU).. 891
10.4.7 Creating a Custom Training Image (Tensorflow + GPU).. 899
10.4.8 Creating a Custom Training Image (MindSpore + Ascend)... 905
10.5 Creating a Custom Image for Inference... 922
10.5.1 Creating a Custom Image for a Model... 922
10.5.2 Creating a Custom Image in a Notebook Instance Using the Image Saving Function........................925
10.5.3 Creating a Custom Image in a Notebook Instance Using Dockerfile...934
10.5.4 Creating a Custom Image on ECS... 946

11 Resource Monitoring.. 950
11.1 Overview... 950
11.2 Viewing Monitoring Metrics on the ModelArts Console.. 951
11.3 Viewing All ModelArts Monitoring Metrics on the AOM Console.. 951
11.4 Using Grafana to View AOM Monitoring Metrics..1008
11.4.1 Installing and Configuring Grafana... 1008
11.4.1.1 Installing and Configuring Grafana on Windows.. 1008
11.4.1.2 Installing and Configuring Grafana on Linux..1009
11.4.1.3 Installing and Configuring Grafana on a Notebook Instance... 1012
11.4.2 Configuring a Grafana Data Source.. 1015
11.4.3 Configuring a Dashboard to View Metric Data... 1019

ModelArts
User Guide (ModelArts Standard) Contents

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. ix

12 Viewing Audit Logs.. 1025
12.1 ModelArts Key Operations Traced by CTS...1025
12.2 Viewing ModelArts Audit Logs..1031

ModelArts
User Guide (ModelArts Standard) Contents

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. x

1 ModelArts Standard Usage

This chapter aims to help you learn how to use ModelArts Standard and get
started with the ModelArts service quickly.

For developers who are experienced in coding, debugging, and working with AI
engines, ModelArts provides online coding environments as well as an E2E AI
development process that covers data preparation, model training, model
management, and service deployment.

This document describes how to perform AI development on the ModelArts
management console. If you use the APIs or SDKs for development, view
ModelArts SDK Reference or ModelArts API Reference.

To view the examples of AI development lifecycle, see Getting Started and Best
Practices.

Application Scenarios of ModelArts Standard

ModelArts Standard is a one-stop development platform for AI developers. It
provides a user-friendly management console with end-to-end AI development
toolchains, covering ExeML, data management, development environment, model
training, model management, and service deployment.
● ModelArts Standard ExeML helps you build AI models without coding. ExeML

automates model design, parameter tuning and training, and model
compression and deployment based on labeled data. With ExeML, you only
need to upload data and perform simple operations as prompted on the
ExeML GUI to train and deploy models. For details, see Introduction to
ExeML.

● ModelArts Standard's workflow is a low-code AI development pipeline tool,
covering data labeling, data processing, model development, training, model
evaluation, and service deployment. Workflows are executed in visualized
mode. For details, see What Is Workflow?.

● ModelArts Standard's development environment, notebook, provides a cloud-
based JupyterLab environment and local IDE plug-ins, helping you write
training and inference code and use cloud resources to debug the code. For
details, see Notebook Application Scenarios.

● ModelArts Standard's model training provides GUI-based training, debugging,
and production environments. You can use your own data and algorithms to

ModelArts
User Guide (ModelArts Standard) 1 ModelArts Standard Usage

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1

https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0002.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0002.html
https://support.huaweicloud.com/intl/en-us/qs-modelarts/modelarts_06_0006.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0014.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0014.html

train models using the compute resources provided by ModelArts Standard.
For details, see Model Training.

● ModelArts Standard's inference deployment provides a GUI-based production
environment for inference deployment. After an AI model is developed, you
can manage it and quickly deploy it as an inference service. You can perform
online inference and prediction or integrate AI inference capabilities into your
IT platform by calling APIs. For details, see Overview.

Process for Using ModelArts Standard
The AI development lifecycle on ModelArts Standard allows you to experience
end-to-end AI development, from preparing data to deploying a model as a
service. It takes developers' habits into consideration and provides a variety of
engines and scenarios for you to choose. You can use the ModelArts Standard
functions as needed in each phase during AI development. The following describes
the entire process from data preparation to service development using ModelArts.

Figure 1-1 ModelArts Standard usage process

Table 1-1 Process description

Task Subtask Description Reference

Assigning
permissio
ns

Configuring
agency
authorization for
ModelArts

ModelArts depends on
other cloud services, and
you need to configure
agency authorization to
allow ModelArts to access
these services.

Configuring
Agency
Authorization
for ModelArts
with One Click

(Optiona
l)
Creating
an OBS
bucket

Creating an OBS
bucket for
ModelArts to
store data

ModelArts does not
support data storage itself.
The input data, output
data, and cached data
generated during AI
development using
ModelArts Standard can be
stored in OBS buckets.
Therefore, you are advised
to create an OBS bucket
before using ModelArts.
You can also create an OBS
bucket later when needed.

Creating an OBS
Bucket for
ModelArts to
Store Data

ModelArts
User Guide (ModelArts Standard) 1 ModelArts Standard Usage

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 2

Task Subtask Description Reference

(Optiona
l)
Preparin
g
resources

Creating a
dedicated
ModelArts
Standard resource
pool

ModelArts Standard
supports both public and
dedicated resource pools.
Public resource pool: When
creating a training or
inference task, you can
choose the public resource
pool directly without
having to create one by
yourself. If you use the
public resource pool, skip
this step.
Dedicated resource pool:
You need to purchase and
create a dedicated resource
pool first, but the resources
are exclusively used by
yourself. This step is
mandatory if you use the
dedicated resource pool.

Creating a
Standard
Dedicated
Resource Pool

(Optiona
l)
Preparin
g data

Creating a dataset ModelArts Standard
supports data
management. You can
create datasets in
ModelArts Standard for
managing, preprocessing,
and labeling data.
If you have prepared data
for training, you can
directly upload the data to
OBS without using the
data management
function.

Creating a
Dataset
Labeling Data
Publishing a
Dataset

Developi
ng and
debuggin
g code in
the
develop
ment
environm
ent

Creating a
notebook instance

Create a notebook instance
as the development
environment for debugging
training and inference
code.
You are advised to debug
the training code in the
development environment
before creating a
production training job.

Creating a
Notebook
Instance

ModelArts
User Guide (ModelArts Standard) 1 ModelArts Standard Usage

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 3

Task Subtask Description Reference

Training
a model

Preparing
algorithms

Before creating a training
job, you need to prepare
an algorithm. You can
subscribe to an algorithm
in AI Gallery or use your
own algorithm.

Preparing
Algorithms

Creating a
training job

Create a training job, select
the available dataset
version, and use the
compiled training script.
After training is complete,
a model is generated and
stored in OBS.

Creating a
Training Job

Managin
g models

Compiling
inference code
and configuration
files

Following the model
package specifications
provided by ModelArts,
compile inference code and
configuration files for your
model, and save them to
the training output path.

Model Package
Specifications

Creating a model Import a trained model to
ModelArts to create a
model, facilitating model
deployment and
publishing.

Creating a
Model

Deployin
g models

Deploying a
model as a service

Deploy a model as a real-
time, batch, or edge
service.

● Deploying a
Model as a
Real-Time
Service

● Deploying a
Model as a
Batch Service

Accessing the
service

After the service is
deployed, access the real-
time or edge service, or
view the prediction result
of the batch service.

● Accessing a
Real-Time
Service

● Viewing the
Prediction
Result of a
Batch Service

ModelArts
User Guide (ModelArts Standard) 1 ModelArts Standard Usage

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 4

2 ModelArts Standard Preparations

2.1 Configuring Access Authorization for ModelArts
Standard

2.1.1 Configuring Agency Authorization for ModelArts with
One Click

Scenarios

ModelArts, the AI platform, must access other services when executing tasks. For
example, ModelArts must access OBS to read your data for training. In such cases,
ModelArts accesses other cloud services on behalf of you. To ensure security,
ModelArts requires your authorization before accessing any cloud services, which
is the agency process. Then, you can perform AI computing tasks on ModelArts.

ModelArts provides one-click automatic authorization. You can quickly configure
agency authorization on the Permission Management page of ModelArts. Then,
ModelArts will automatically create an agency for you and configure it in
ModelArts.

In this method, the authorization scope is specified based on the preset system
policies of dependent services to ensure sufficient permissions for using services.
The created agency has almost all permissions of dependent services. If you want
to precisely control the scope of permissions granted to an agency, use custom
authorization. For more about permissions management, see Permissions
Management.

This section introduces one-click automatic authorization. It allows you to grant
permissions to IAM users, federated users (virtual IAM users), agencies, or all users
with one click.

Constraints
● Huawei Cloud account

– Only a Huawei Cloud account can use an agency to authorize the current
account or all IAM users under the current account.

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 5

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0078.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0078.html

– Multiple IAM users or accounts can use the same agency.
– A maximum of 50 agencies can be created under an account.
– If you use ModelArts for the first time, add an agency. Generally,

common user permissions are sufficient for your requirements. You can
also customize permissions for refined permissions management.

● IAM user
– If you have obtained the authorization, you can view the authorization

information on the Permission Management page.
– If you have not been authorized, ModelArts will display a message

indicating that you have not been authorized when you access the Add
Authorization page. In this case, contact your administrator to add
authorization.

Adding Authorization
1. Log in to the ModelArts console. In the navigation pane on the left, choose

Permission Management. The Permission Management page is displayed.
2. Click Add Authorization. On the Add Authorization page that is displayed,

set parameters.

Table 2-1 Parameters

Parameter Description

Authorized User The options are IAM user, Federated user, Agency, and All users.
● IAM user: You can use a tenant account to create IAM users and assign

permissions for specific resources. Each IAM user has their own identity
credentials (password and access keys) and uses cloud resources based
on the assigned permissions. For details about IAM users, see IAM
User.

● Federated user: A federated user is also called a virtual enterprise user.
For details about federated users, see Configuring Federated Identity
Authentication.

● Agency: You can create agencies in IAM. For details about how to
create an agency, see Creating an Agency.

● All users: If you select this option, the agency permissions will be
granted to all IAM users under the account, including those created in
the future. For individual users, select All users.

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 6

https://support.huaweicloud.com/intl/en-us/productdesc-iam/iam_01_0023.html#section1
https://support.huaweicloud.com/intl/en-us/productdesc-iam/iam_01_0023.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_08_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_08_0002.html
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_06_0002.html

Parameter Description

Authorized To This parameter is not displayed when Authorized User is set to All users.
● IAM user: Select an IAM user and configure an agency for the IAM

user.

Figure 2-1 Selecting an IAM user

● Federated user: Enter the username or user ID of the target federated
user.

Figure 2-2 Entering a federated user

● Agency: Select an agency name. You can create an agency under
account A and grant the agency permissions to account B. When using
account B, you can switch the role in the upper right corner of the
console to account A and use the agency permissions of account A.

Figure 2-3 Switch Role

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 7

Parameter Description

Agency ● Use existing: If there are agencies in the list, select an available one to
authorize the selected user. Click the drop-down arrow next to an
agency name to view its permission details.

● Add agency: If there is no available agency, create one. If you use
ModelArts for the first time, select Add agency.

Add agency >
Agency Name

ModelArts automatically creates an agency name for you, but it is
editable.

Add agency >
Authorization
Method

● Role-based: A coarse-grained IAM authorization strategy to assign
permissions based on user responsibilities. Only a limited number of
service-level roles are available. When using roles to grant permissions,
assign other roles on which the permissions depend to take effect.
However, roles are not the best choice for fine-grained authorization
and secure access control.

● Policy-based: A fine-grained authorization tool that defines
permissions for operations on specific cloud resources under certain
conditions. This type of authorization is more flexible and ideal for
secure access control.

For details about roles and policies, see Basic Concepts.

Add agency >
Permissions >
Common User

You can use basic ModelArts functions, for example, accessing data and
creating and managing training jobs. Select this option generally.
Click View permissions to view common user permissions.

Add agency >
Permissions >
Custom

You can flexibly assign permissions to the created agency. Select this
option for refined permission management. You can select the required
permission from the list.

3. Select I have read and agree to the ModelArts Service Statement. Click

Create.

Viewing Authorized Permissions
You can view the configured authorizations on the Permission Management
page. Locate an authorization and click View Permissions in the Operation
column to view the permission details.

Figure 2-4 View Permissions

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 8

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0602.html

Figure 2-5 Common user permissions

Modifying the Authorization Scope
NO TE

Modifying the authorization scope will cause running jobs to fail due to agency absence.
Exercise caution when performing this operation.

1. To modify the authorization scope, click Modify permissions in IAM in the
View Permissions dialog box.

Figure 2-6 Modify permissions in IAM

2. On the Agencies page of the IAM console, locate the target agency and
modify the agency information on the Basic Information tab. Set Validity
Period as needed. The value can be Unlimited, 1 day, or Custom. If you
select Custom, you can then enter the number of days you want the agency
to stay valid for, for example, 30.

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 9

Figure 2-7 Agency information

3. On the Permissions page, click Authorize, select policies or roles, and click
Next. Select the scope for minimum authorization and click OK.
When setting the minimum authorization scope, you can select specified
projects or all resources. If you select All resources, the selected permissions
will be applied to all resources.

Deleting an Authorization

To better manage your authorization, you can delete the authorization of an IAM
user or delete the authorizations of all users in batches.

NO TE

Deleting an authorization will cause running jobs to fail due to agency absence. Exercise
caution when performing this operation.

● Deleting the authorization of a user
The authorizations configured for the IAM user of the current account are
displayed on the Permission Management page. You can locate an
authorization, click Delete in the Operation column, enter DELETE in the text
box, and click OK. After it is deleted, the user cannot use ModelArts functions.

● Deleting authorizations in batches
On the Permission Management page, click Clear Authorization above the
authorization list. Enter DELETE in the text box and click OK. After the
deletion, the account and all its IAM users cannot use ModelArts functions.

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 10

FAQs
1. How do I configure authorization when I use ModelArts for the first time?

On the Add Authorization page, set Agency to Add agency and select
Common User, which provides the permissions to use all basic ModelArts
functions. For example, you can access data, and create and manage training
jobs. Select this option generally.

2. How do I obtain access keys (AK/SK)?
You will need to obtain an access key if you are using access key
authentication to access certain functions like using real-time services. For
details, see How Do I Obtain an Access Key?

3. How do I delete an existing agency from the agency list?

Figure 2-8 Use existing

Go to the IAM console, choose Agencies in the navigation pane, and delete
the target agency.

Figure 2-9 Identity and Access Management

4. Why is a message indicating insufficient permissions displayed when I access
a page on the ModelArts console?

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 11

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0004.html

The permissions configured for the user agency are insufficient or the module
has been upgraded. The authorization information needs to be updated. In
this case, you can add authorization as prompted.

2.1.2 Creating an IAM User and Granting ModelArts
Permissions

The agency created in Configuring Agency Authorization for ModelArts with
One Click almost has all permissions of dependent services. If your Huawei Cloud
account meets your permissions requirements, you can skip this section.

ModelArts allows you to configure fine-grained permissions for refined
management of resources and permissions. This type of feature is commonly used
in scenarios with large-scale enterprise users. If you want to precisely control the
scope of permissions granted to an agency, use custom authorization.

This section describes how to configure fine-grained permissions for IAM users.

Using ModelArts requires OBS authorization. ModelArts users require OBS system
permissions.

● For details about how to grant operation permissions of ModelArts and
dependent services to a user, see Configuring Common Operations
Permissions for ModelArts Standard.

● For details about how to manage user permissions on ModelArts and
dependent services in a refined manner and how to configure custom policies,
see Creating a Custom Policy for ModelArts Standard.

Prerequisites

You have learned about the permissions that can be added to user groups for
using ModelArts and dependent services so that you can select them based on
your requirements. For details about the permissions supported by ModelArts, see
Table 2-2.

Table 2-2 Service authorizations

Target
Service

Authorization
Description

IAM Permission Mandatory

ModelA
rts

This permission allows
sub-users to use
ModelArts.
The sub-users with the
ModelArts
CommonOperations
permission can only use
resources, but cannot
create, update, or delete
any dedicated resource
pool. You are advised to
assign this permission to
sub-users.

ModelArts
CommonOperations

Yes

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 12

Target
Service

Authorization
Description

IAM Permission Mandatory

The sub-users with the
ModelArts FullAccess
permission have all access
permissions, including
creating, updating, and
deleting dedicated
resource pools. Exercise
caution when assigning
this permission.

ModelArts FullAccess No
Select either
ModelArts
FullAccess
or
ModelArts
CommonOp
erations.

OBS This permission allows
sub-users to use OBS.
ModelArts datasets,
development
environments, training
jobs, and model inference
and deployment require
OBS for forwarding data.

OBS OperateAccess Yes

SWR This permission allows
sub-users to use SWR.
ModelArts custom images
require the SWR
FullAccess permission.

SWR OperateAccess Yes

KMS This permission allows
sub-users to use remote
SSH of ModelArts
notebook.

KMS CMKFullAccess No

IEF This permission allows
sub-users to use IEF. It is
required if you use
ModelArts edge services
that depend on IEF.

Tenant Administrator No

Cloud
Eye

This permission allows
sub-users to use Cloud
Eye. Using Cloud Eye, you
can view the running
statuses of ModelArts
real-time services and
model loads, and set
monitoring alarms.

CES FullAccess No

SMN This permission allows
sub-users to use SMN.
SMN is used with Cloud
Eye.

SMN FullAccess No

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 13

Target
Service

Authorization
Description

IAM Permission Mandatory

VPC When creating a
ModelArts dedicated
resource pool, sub-users
require VPC permissions
so that they can
customize networks.

VPC FullAccess No

SFS This permission allows
sub-users to use SFS. SFS
file systems can be
mounted to ModelArts
dedicated resource pools
to serve as storage for
development
environments or training
jobs.

SFS Turbo FullAccess
SFS FullAccess

No

Configuring Common Operations Permissions for ModelArts Standard

Step 1 Create a user group.

Log in to the IAM console. Choose User Groups and click Create User Group.
Enter a user group name and click OK.

Step 2 Configure permissions for the user group.

In the user group list, locate the created user group, click Authorize in the
Operation column, and perform the following operations.

1. Assign permissions for using ModelArts. Search for ModelArts in the search
box. Select either ModelArts FullAccess or ModelArts CommonOperations.
The differences between the options are as follows:
– The sub-users with the ModelArts CommonOperations permission can

only use resources, but cannot create, update, or delete any dedicated
resource pool. You are advised to assign this permission to sub-users.

– The sub-users with the ModelArts FullAccess permission have all access
permissions, including creating, updating, and deleting dedicated resource
pools. Exercise caution when assigning this permission.

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 14

https://console-intl.huaweicloud.com/iam/?agencyId=4aed096dde5a4a12b660a12605dbc7bc®ion=ap-southeast-1&locale=en-us#/iam/users

Figure 2-10 Assigning permissions for using ModelArts

2. Configure permissions for using other dependent services. For example, to use
OBS, search for OBS and select OBS OperateAccess. ModelArts training jobs
use OBS to forward data. Therefore, the permissions for using OBS are
necessary.
For permissions of more cloud services, such as SWR, see Table 2-2.

3. Click Next and set the minimum authorization scope. Select Region-specific
projects, select the region to be authorized, and click OK.
In this example, you are allowed to use services in the CN-Hong Kong region
only.

Figure 2-11 Selecting an authorization scope

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 15

4. A message is displayed, indicating that the authorization is successful. View
the authorization information and click Finish. It takes 15 to 30 minutes for
the authorization to take effect.

Step 3 Create a sub-user. In the navigation pane on the left of the IAM console, choose
Users. In the right pane, click Create User in the upper right corner. On the
Create User page, add multiple users. Set parameters as prompted and click Next.

Step 4 Add the sub-user to the user group. On the Add User to Group page, select a user
group and click Create. The system adds the created users to the user group.

Step 5 Log in as the IAM user and verify permissions.

Log in to the console as the created user, switch to the authorized region, and
verify the permissions.

● Choose Service List > ModelArts. In the navigation pane of the ModelArts
console, choose your desired type of AI dedicated resource pools and create
one. You should not be able to create a new resource pool if the ModelArts
CommonOperations permission has taken effect.

● Choose any other service in Service List. (Assume that the current policy
contains only ModelArts CommonOperations.) If a message appears
indicating that you have insufficient permissions to access the service, the
ModelArts CommonOperations permission has taken effect.

● Choose Service List > ModelArts. In the navigation pane of the ModelArts
console, choose Asset Management > Datasets and click Create. You should
be able to access the corresponding OBS path if the OBS permission has
taken effect.

● Verify other optional permissions according to Table 2-2.

----End

Creating a Custom Policy for ModelArts Standard
In addition to the default system permissions of ModelArts, you can create custom
policies for refined user permission management, for example, managing OBS
operation permissions.

You can create custom policies using either the visual editor or JSON views on
IAM. This section describes how to use a JSON view to create a custom policy to
grant permissions required to use development environments and the minimum
permissions required by ModelArts to access OBS.

For more about other functions and dependent services, see ModelArts Standard
Role/Policy-based Authorization.

For details about how to create custom policies and related parameters, see
Creating a Custom Policy.

NO TE

A custom policy can contain actions of multiple services that are globally accessible or
accessible through region-specific projects.
ModelArts is accessible through region-specific projects, but OBS is globally accessible, so
you need to create separate policies for the two services and then apply these policies to
the users.

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 16

https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0552.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0080.html#section1
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0080.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-iam/iam_01_0605.html

1. Create a custom policy with minimum OBS permissions for ModelArts.
Log in to the IAM console, choose Permissions > Policies/Roles, and click
Create Custom Policy. Set the following parameters:
– Policy Name: Enter a policy name.
– Policy View: Select JSON.
– Policy Content: Configure the policy by referring to Example Custom

Policy with OBS Permissions for ModelArts.

Figure 2-12 Minimum OBS permissions

2. Create a custom policy for the permission to use the ModelArts development
environment, as shown in Figure 2-13. Set the following parameters:
– Policy Name: Enter a policy name.
– Policy View: Select JSON.
– Policy Content: Configure the policy by referring to Example Custom

Policy with Permissions for Using the ModelArts Development
Environment. For the actions that can be added to ModelArts custom
policies, see ModelArts API Reference > Permissions Policies and
Supported Actions.

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 17

https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0146.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0146.html

Figure 2-13 Permission to use the development environment

– To authorize the services other than ModelArts and OBS, see ModelArts
Standard Role/Policy-based Authorization.

3. After creating a user group on the IAM console, grant the custom policy
created in 1 to the user group.

4. Create a user on the IAM console and add the user to the group created in 3.
5. Log in to the console as the created user, switch to the authorized region, and

verify the permissions.
– Choose Service List > ModelArts. In the navigation pane of the

ModelArts console, choose Asset Management > Datasets. If you cannot
create a dataset, the permission granted only for using the development
environment has taken effect.

– Choose Service List > ModelArts. In the navigation pane of the
ModelArts console, choose Development & Production > Development
Workspace > Notebook and click Create Notebook. If you can access
the OBS path specified in Storage, the OBS permission has taken effect.

Example Custom Policy with OBS Permissions for ModelArts
In this example, the minimum permissions required by ModelArts to access OBS
are assigned, including the permissions for OBS buckets and objects. With these
permissions, you can access OBS from ModelArts without restrictions.

{
 "Version": "1.1",
 "Statement": [
 {
 "Action": [
 "obs:bucket:ListAllMybuckets",
 "obs:bucket:HeadBucket",

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 18

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0080.html#section1
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0080.html#section1

 "obs:bucket:ListBucket",
 "obs:bucket:GetBucketLocation",
 "obs:object:GetObject",
 "obs:object:GetObjectVersion",
 "obs:object:PutObject",
 "obs:object:DeleteObject",
 "obs:object:DeleteObjectVersion",
 "obs:object:ListMultipartUploadParts",
 "obs:object:AbortMultipartUpload",
 "obs:object:GetObjectAcl",
 "obs:object:GetObjectVersionAcl",
 "obs:bucket:PutBucketAcl",
 "obs:object:PutObjectAcl"
],
 "Effect": "Allow"
 }
]
}

Example Custom Policy with Permissions for Using the ModelArts
Development Environment

{
 "Version": "1.1",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "modelarts:notebook:list",
 "modelarts:notebook:create" ,
 "modelarts:notebook:get" ,
 "modelarts:notebook:update" ,
 "modelarts:notebook:delete" ,
 "modelarts:notebook:action" ,
 "modelarts:notebook:access"
]
 }
]
}

Related References
Here are some other permission configuration examples for your reference.

● Separately Assigning Permissions to Administrators and Developers
● Viewing All Notebook Instances of an IAM Project
● Prohibiting a User from Using a Public Resource Pool
● Granting SFS Turbo Folder Access Permissions to a Sub-User

2.2 Creating and Managing a Workspace
NO TE

The workspace is a whitelist function. If you have trial requirements, submit a service ticket
to apply for the permission.

Background
ModelArts allows you to create multiple workspaces to develop algorithms and
manage and deploy models for different service objectives. In this way, the

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 19

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0093.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0095.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0097.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0137.html

development outputs of different applications are allocated to different
workspaces for simplified management.

Workspaces can be used to implement logical resource isolation, resource quota
management, fine-grained authentication, and resource clearing. Workspaces are
presented to enterprise projects as integrated ModelArts resources.

Workspaces support the following access control modes:

● PUBLIC: publicly accessible to tenants (including both the tenant account and
all its sub-accounts)

● PRIVATE: accessible only to the creator and the tenant account

● INTERNAL: accessible to the creator, the tenant account, and specified IAM
users. When the authorization type is set to INTERNAL, specify one or more
accessible IAM users.

A default workspace is allocated to each IAM project of each account. The access
control of the default workspace is PUBLIC.

Workspace access control allows the access of only certain users. This function can
be used in the following scenarios:

● Education: A teacher allocates an INTERNAL workspace to each student and
allows the workspace to be accessed only by specified students. In this way,
students can separately perform experiments on ModelArts.

● Enterprises: An administrator creates a workspace for production tasks and
allows only O&M personnel to use the workspace, and creates a workspace
for routine debugging and allows only developers to use the workspace. In
this way, different enterprise roles can use resources only in a specified
workspace.

Prerequisites

You have whitelisted the workspace function and configured basic permissions for
using ModelArts. For details, see Assigning Basic Permissions for Using
ModelArts.

Creating a Workspace
1. Log in to the ModelArts console.

2. In the navigation pane on the left, choose Workspace.

3. Click Create workspace.

Table 2-3 Creating a workspace

Parameter Description

Workspace name Enter the name of the workspace. This parameter is
mandatory.
The value can contain 4 to 64 visible characters,
including letters, digits, hyphens (-), and underscores
(_).

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 20

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0062.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0062.html

Parameter Description

Description Enter the description of the workspace, with a
maximum of 256 characters.

Enterprise Project Select an enterprise project. This parameter is
mandatory. If no enterprise project is available, click
Create Enterprise Project to go to the Enterprise
Project Management page, create an enterprise
project, and bind it to the workspace.
Enterprise projects provide a cloud resource
management mode, in which cloud resources and
members are centrally managed by project.

Authorization Type Select the access control mode for the workspace.
● PUBLIC: publicly accessible to tenants (including

both the tenant account and all its sub-accounts)
● PRIVATE: accessible only to the creator and the

tenant account
● INTERNAL: accessible to the creator, the tenant

account, and specified sub-users When
Authorization Type is set to INTERNAL, you need
to set Authorized User and Authorized To to
specify the sub-users who can access the
workspace.
When Authorized User is set to IAM user, select
one or more IAM users in Authorized To.
If Authorized User is set to Federated user, enter
one or more usernames or IDs of federated users
in Authorized To.
When Authorized User is set to Agency, select
one or more agencies in Authorized To.

4. After setting the workspace parameters, click Create Now.

Managing Workspace Quotas
After a workspace is created, you can view and modify the quota information.

1. In the navigation pane of the ModelArts console, choose Workspace.
2. On the Workspace page, locate the target workspace, and click Quota

Management in the Operation column to go to the workspace details page.
3. In the Quota Info area, view the quota value, used quota, and last

modification time.
4. Click Modify Quota on the right of Quota Info to change the quota value.

For details about the configurations, see Table 2-4.

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 21

Table 2-4 Quota information

Quota Value Description Unit

ExeML training duration (predictive
analytics)

The value ranges
from 1 to 60000 and
is unlimited by
default.

Minute

ExeML training duration (image
classification, object detection, and
sound classification)

The value ranges
from 1 to 60000 and
is unlimited by
default.

Minute

GPU-based training job duration
(calculated based on a single Pnt1
per node)

The value ranges
from 1 to 60000 and
is unlimited by
default.

Minute

CPU-based training job duration
(calculated based on a single vCPU
per node)

The value ranges
from 1 to 60000 and
is unlimited by
default.

Minute

Visualization job duration The value ranges
from 1 to 60000 and
is unlimited by
default.

Minute

CPU-based development
environment duration (calculated
based on the number of vCPUs)

The value ranges
from 1 to 60000 and
is unlimited by
default.

Minute

GPU-based development
environment duration (calculated
based on the number of Pnt1 GPUs)

The value ranges
from 1 to 60000 and
is unlimited by
default.

Minute

CPU-based inference service
duration (calculated based on the
number of nodes)

The value ranges
from 1 to 60000 and
is unlimited by
default.

Minute

GPU-based inference service
duration (calculated based on the
number of nodes)

The value ranges
from 1 to 60000 and
is unlimited by
default.

Minute

vCPUs for CPU-based training jobs The value ranges
from 1 to 10000 and
is unlimited by
default.

vCPU

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 22

Quota Value Description Unit

Cards for GPU-based training jobs The value ranges
from 1 to 1000 and
is unlimited by
default.

Card

RAM size for training jobs The value ranges
from 1 to 100000
and is unlimited by
default.

GB

GPU-based auto labeling duration The value ranges
from 1 to 60000 and
is unlimited by
default.

Minute

5. After changing the quota values of the workspace, click Submit. If data in the

Quota Value column is refreshed, the quotas have been modified successfully.

Modifying a Workspace
After a workspace is created, you can modify its information.

1. In the navigation pane of the ModelArts console, choose Workspace.
2. On the Workspace page, locate the target workspace and click Modify in the

Operation column.
You can modify the name, description, enterprise project, and authorization
type of the workspace. For details, see Table 2-4.

3. After modifying the parameters, click Modify Now.

Deleting a Workspace
You can delete a workspace that is no longer needed. After a workspace is
deleted, all resources in the workspace are deleted by default. The default
workspace cannot be deleted.

NO TE

A deleted workspace cannot be recovered.

1. In the navigation pane of the ModelArts console, choose Workspace.
2. On the Workspace page, locate the target workspace and click Delete in the

Operation column. In the Delete Workspace dialog box, confirm the
workspace information and resources to be deleted, enter DELETE in the text
box, and click OK. The workspace status changes to Deleting. After the
resources are cleared, the workspace is deleted from the list.

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 23

2.3 Creating an OBS Bucket for ModelArts to Store
Data

ModelArts does not provide data storage. Instead, it uses Object Storage Service
(OBS) to store data, and backs up and takes snapshots for models, achieving
secure, reliable, and cost-effective storage.

All the input data, output data, and cache data during AI development can be
stored in OBS buckets for reading. Before using ModelArts, create an OBS bucket
and folders for storing data.

Figure 2-14 Interaction between ModelArts and OBS

Table 2-5 Relationship between ModelArts and OBS

Function Subtask Relationship

Standard workflow
of ModelArts
Standard ExeML

Data
labeling

The data labeled on ModelArts is stored in
OBS.

Auto
training

After a training job is complete, the
generated model is stored in OBS.

Model
deployment

ModelArts deploys models stored in OBS as
real-time services.

ModelArts Standard
AI development
lifecycle

Data
manageme
nt

● Datasets are stored in OBS.
● The dataset labeling information is

stored in OBS.
● Data can be imported from OBS.

Developme
nt
environmen
t

Data or code files in a notebook instance
can be stored in OBS.

Model
training

Datasets, algorithms, running scripts,
training outputs, and training logs used by
training jobs can be stored in OBS.

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 24

Function Subtask Relationship

Inference
deployment

After a training job is complete, the
generated model can be stored in OBS. You
can import the model from OBS when
creating a model.

Procedure for Creating an OBS Bucket
1. Log in to the OBS console and click Create Bucket in the upper right corner

of the page to create an OBS bucket.

Figure 2-15 Creating a bucket

NO TE

The created OBS bucket and ModelArts are in the same region. For example, if
ModelArts is located in the CN-Hong Kong region, select CN-Hong Kong when
creating an OBS bucket.

For details about how to obtain the region where the OBS bucket and ModelArts are
located, see Check whether the OBS bucket and ModelArts are in the same region.

Do not enable Default Encryption. ModelArts cannot read the data from encrypted
OBS buckets.

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 25

https://console-intl.huaweicloud.com/obs/?locale=en-us#/obs/manager/buckets
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2

2. In the bucket list, click the bucket name to access its details page.

Figure 2-16 Bucket list

3. In the navigation pane on the left, choose Objects. On the Objects page, click
Create Folder to create an OBS folder. For example, create a folder named
flowers in the created c-flowers OBS bucket.

Figure 2-17 Creating a folder

After creating a folder in the OBS bucket, you can upload files. For details
about how to upload files, see Upload Overview.

FAQs
● Why can't I find my created OBS bucket after I select an OBS path in

ModelArts?

● How do I check whether ModelArts and an OBS bucket are in the same
region?

● What should I do if "Error: stat:403" is reported when I perform operations on
an OBS bucket?

To resolve the preceding problems or other OBS path exceptions, see Incorrect
OBS Path on ModelArts.

ModelArts
User Guide (ModelArts Standard) 2 ModelArts Standard Preparations

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 26

https://support.huaweicloud.com/intl/en-us/usermanual-obs/en-us_topic_0045829661.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2

3 ModelArts Standard Resource
Management

3.1 About ModelArts Standard Resource Pools
This section describes the required compute resources when you use ModelArts for
AI development, including ExeML, creating a workflow, creating a notebook
instance, creating a training job, and creating an inference service. You can
purchase a standard resource pool as needed.

Figure 3-1 Using a standard resource pool for AI development

ModelArts Standard Resource Pools

When using ModelArts for AI development, you can use either of the following
resource pools:

● Dedicated resource pool: It delivers more controllable resources and cannot
be shared with other users. Create a dedicated resource pool and select it
during AI development.

● Public Resource Pool: provides large-scale public computing clusters, which
are allocated based on job parameter settings. Resources are isolated by job.
You can use ModelArts public resource pools to deliver training jobs, deploy
models, or run DevEnviron instances and will be billed on a pay-per-use basis.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 27

Differences between dedicated resource pools and public resource pools:

● Dedicated resource pools provide dedicated computing clusters and network
resources for users. The dedicated resource pools of different users are
physically isolated, while public resource pools are only logically isolated.
Compared with public resource pools, dedicated resource pools feature better
performance in isolation and security.

● When a dedicated resource pool is used for creating jobs and the resources
are sufficient, the jobs will not be queued. When a public resource pool is
used for creating jobs, there is a high probability that the jobs will be queued.

● A dedicated resource pool is accessible to your network. All running jobs in
the pool can access storage and resources in your network. For example, if
you select a dedicated resource pool with an accessible network when
creating a training job, you can access SFS data after the training job is
created.

● Dedicated resource pools allow you to customize the runtime environment of
physical nodes, for example, you can upgrade GPU or Ascend drivers. This
function is not supported by public resource pools.

Instructions of Dedicated Resource Pools
● If you are using dedicated resource pools for the first time, get started by

reading this section.

● Create a dedicated resource pool by referring to Creating a Standard
Dedicated Resource Pool.

● View the details about a created dedicated resource pool by referring to
Viewing Details About a Standard Dedicated Resource Pool.

● If the specifications of a dedicated resource pool do not meet your service
requirements, adjust the specifications by referring to Resizing a Standard
Dedicated Resource Pool.

● On the dedicated resource pool list page, you can select an accelerator card
driver and perform changes upon submission or smooth upgrade of the driver
based on service requirements. Upgrade the GPU/Ascend driver of your
dedicated resource pools by referring to Upgrading the Standard Dedicated
Resource Pool Driver.

● Rectify the faulty nodes as needed by referring to Rectifying a Faulty Node
in a Standard Dedicated Resource Pool.

● Set or change job types supported by a dedicated resource pool by referring
to Modifying the Job Types Supported by a Standard Dedicated Resource
Pool.

● Administrators can isolate permissions on resources within workspaces for
IAM users. You can move resources to the corresponding workspace by
referring to Migrating Standard Dedicated Resource Pools and Networks
to Other Workspaces.

● Manage resource pools by tag by referring to Using TMS Tags to Manage
Resources by Group.

● If a dedicated resource pool is no longer needed, delete it by referring to
Releasing Standard Dedicated Resource Pools and Deleting the Network.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 28

3.2 Creating a Standard Dedicated Resource Pool
This section describes how to create a standard dedicated resource pool.

Prerequisites
● A VPC is available.
● A subnet is available.

Step 1: Create a Network
ModelArts networks are backed by VPCs and used for interconnecting nodes in a
ModelArts resource pool. You can only configure the name and CIDR block for a
network. To ensure that there is no IP address segment in the CIDR block
overlapped with that of the VPC to be accessed, multiple CIDR blocks are available
for you to select. A VPC provides a logically isolated virtual network for your
instances. You can configure and manage the network as required. VPC provides
logically isolated, configurable, and manageable virtual networks for cloud servers,
cloud containers, and cloud databases. It helps you improve cloud service security
and simplify network deployment.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose AI Dedicated Resource Pools > Elastic Clusters.

2. Click the Network tab and click Create.
3. In the Create Network dialog box, set parameters.

– Network Name: customizable name
– CIDR Block: You can select Preset or Custom. Recommended CIDR blocks

for a custom network: 10.0.0.0/8-24, 172.16.0.0/12-24, and
192.168.0.0/16-24. The subnet mask ranges from 8 to 28.

Figure 3-2 Creating a network

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 29

NO TE

● Each user can create a maximum of 15 networks.
● Ensure there is no IP address segment in the CIDR block overlaps that of the VPC

to be accessed. The CIDR block cannot be changed after the network is created.
Possible conflict CIDR blocks are as follows:
● Your VPC CIDR block
● Container CIDR block (consistently to be 172.16.0.0/16)
● Service CIDR block (consistently to be 10.247.0.0/16)

4. Confirm the settings and click OK.

(Optional) Step 2: Interconnect with a VPC
VPC interconnection allows you to use resources across VPCs, improving resource
utilization.

1. On the Network page, click Interconnect VPC in the Operation column of
the target network.

Figure 3-3 Interconnecting the VPC

2. In the displayed dialog box, click the button on the right of Interconnect VPC,
and select an available VPC and subnet from the drop-down lists.

NO TE

The peer network to be interconnected cannot overlap with the current CIDR block.

Figure 3-4 Parameters for interconnecting a VPC with a network

– If no VPC is available, click Create VPC on the right to create a VPC.
– If no subnet is available, click Create Subnet on the right to create a

subnet.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 30

– A VPC can interconnect with at most 10 subnets. To add a subnet, click
the plus sign (+).

– To enable a dedicated resource pool to access the public network through
a VPC, create a SNAT in the VPC, as the public network address is
unknown. After the VPC is interconnected, by default, the public address
cannot be forwarded to the SNAT of your VPC. To add a default route,
submit a service ticket and contact technical support. Then, when you
interconnect with a VPC, ModelArts 0.0.0.0/0 is used as the default route.
In this case, you do not need to submit a service ticket. Add the default
route for network configuration.

Step 3: Create a Standard Dedicated Resource Pool
1. Log in to the ModelArts console. In the navigation pane on the left, choose AI

Dedicated Resource Pools > Elastic Clusters.
2. In the Standard Resource Pool tab, click Buy AI Dedicated Cluster. On the

displayed page, configure the parameters as follows.

Table 3-1 AI dedicated cluster parameters

Para
met
er

Sub-
Para
met
er

Description

Billin
g
Mod
e

- Select Yearly/Monthly or Pay-per-use.
● Yearly/Monthly is a prepaid billing mode in which your

subscription is billed based on the required duration. This
mode is more cost-effective when the usage duration is
predictable.

● Pay-per-use is a postpaid billing mode. You are charged
for how long you use each ECS. You can purchase or
delete such an ECS at any time.

Clust
er
Spec
ificat
ions

Clus
ter
Na
me

Enter a name.
Only lowercase letters, digits, and hyphens (-) are allowed.
The value must start with a lowercase letter and cannot end
with a hyphen (-).

Prod
uct
Versi
on

Select ModelArts Standard (Standard) in the ModelArts
Standard scenario.
ModelArts Lite Elastic Cluster (native API) is used in the
ModelArts Lite Cluster scenario. This parameter is displayed
only in CN Southwest-Guiyang1.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 31

Para
met
er

Sub-
Para
met
er

Description

Reso
urce
Pool
Type

You can select Physical or Logical. If there is no logical
specification, Logical is not displayed.
Elastic resources are not supported in physical resource pools,
which feature higher isolation, physical isolation, dedicated
networks, and network connectivity.
Elastic resources are supported in logical resource pools,
which feature faster creation and scaling.

Job
Type

Choose DevEnviron, Training Job, or Inference Service as
needed.

Adv
ance
d
Conf
igur
atio
n

● For cluster specifications, retain the default settings or
customize the specifications. When customizing the
specifications, you can set the cluster scale and enable HA
for controller nodes.
– Configure the cluster scale based on the service

scenario. The scale refers to the maximum number of
instances that can be managed by a resource pool.

– Once HA is enabled for controller nodes, the system
creates three control plane nodes for your cluster to
ensure reliability. If there are 1,000 or 2,000 nodes in
the cluster, HA must be enabled. If HA is disabled, only
one control plane node will be created for your cluster.
After a resource pool is created, the HA status of
controller nodes cannot be changed.

● Master node distribution: You can select random
allocation or specify an AZ. Distribute controller nodes in
different AZs for disaster recovery.
– Random allocation: The system randomly allocates

controller nodes to AZs to improve disaster recovery
capabilities. If the number of available AZs is less than
the number of nodes to be created, the nodes will be
created in the AZs with sufficient resources to
preferentially ensure cluster creation. In this case, AZ-
level DR may not be ensured.

– You can also specify an AZ for the controller nodes.

Net
work

Mod
elArt
s
net
wor
k

Specifies the network where the resource pool runs. The
network can communicate with other cloud service resource
instances on the network. The network needs to be set only
for physical resource pools.
Select a network from the drop-down list box. If no network
is available, click Create on the right to create one. For
details about how to create a network, see Step 1: Create a
Network.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 32

Para
met
er

Sub-
Para
met
er

Description

IPv6
Net
wor
k

Whether to enable IPv6 networks. If enabled, you must
enable IPv6 for the network bound to the resource pool.
Once enabled, this function cannot be disabled. For details
about how to enable an IPv6 network, see Step 1: Create a
Network.

Defa
ult
Setti
ng

CPU
Arch
itect
ure

The CPU architecture refers to the command set and design
specifications of the CPU. x86 and Arm64 are supported. Set
these parameters as required.

Insta
nce
Spec
ifica
tions
Type

Choose CPU, GPU, or Ascend processors as needed.

Spec
ifica
tions

Select the required specifications from the drop-down list.
Due to system loss, the available resources are fewer than
specified. After a dedicated resource pool is created, view the
available resources in the Nodes tab on the details page.
Contact your account manager to request resource
specifications (such as Ascend) in advance. They will enable
the specifications within one to three working days. If there is
no account manager, submit a service ticket.

AZ You can select Automatically allocated or Specifies AZ. An
AZ is a physical region where resources use independent
power supplies and networks. AZs are physically isolated but
interconnected over an intranet.
● Automatically allocated: AZs are automatically allocated.
● Specifies AZ: Specify AZs for resource pool nodes. To

ensure system disaster recovery, deploy all nodes in the
same AZ. You can set the number of instances in an AZ.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 33

Para
met
er

Sub-
Para
met
er

Description

Insta
nces

Select the number of instances in a dedicated resource pool.
More instances mean higher computing performance.
If AZ Allocation is set to Manual, you do not need to
configure Instances.
NOTE

It is a good practice to create no more than 30 instances at a time.
Otherwise, the creation may fail due to traffic limiting.

For certain specifications, you can purchase instances by rack.
The instances you purchase is the number of racks multiplied
by rack(6 node). Purchasing a full rack allows you to isolate
tasks physically, preventing communication conflicts and
maintaining linear computing performance as task scale
increases. All instances in a rack must be created or deleted
together.

Adv
ance
d
Nod
e
Conf
igur
atio
n

After Advanced Node Settings is enabled, you can set the
operating system of the instance.

Stor
age

Some flavors support the Storage Configuration switch,
which is disabled by default.

Syst
em
Disk

After enabling Storage Configuration, you can view the
default system disk type, size, and quantity of each instance.
Some specifications do not contain system disks. You can set
the type and size of system disks when creating a dedicated
resource pool.

Cont
aine
r
Disk

After Storage Configuration is enabled, you can view the
type, size, and quantity of container disks of each instance.
The container disk type can only be local disk or EVS disk and
cannot be changed.
Some specifications do not contain container disks. You can
set the type and size of container disks when creating a
dedicated resource pool. Only EVS disks, including common
SSO, high I/O, and ultra-high I/O disks, are supported.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 34

Para
met
er

Sub-
Para
met
er

Description

Add
Cont
aine
r
Data
Disk

For some specifications, you can mount additional container
disks to each instance in the dedicated resource pool. To do
so, click the plus sign (+) before Add Container Disk. The
attached disks are EVS disks, which will be charged
independently.
You can set the type, size, and number of disks to be
mounted. The actual values are displayed on the console.

Cont
aine
r
Disk
Adv
ance
d
Conf
igur
atio
n -
Disk
Spac
e

Container space: The data disk space is divided into two parts
by default. One part is used to store the Docker/containerd
working directories, container image data, and image
metadata. The other is reserved for kubelet and emptyDir
volumes. You can set the Specify disk space parameter to
set the ratio of the sizes of the two partitions. The available
container engine space affects image pulls and container
startup and running.
If the container disk is a local disk, Specify Disk Space is not
supported.

Cont
aine
r
Disk
Adv
ance
d
Conf
igur
atio
n -
Cont
aine
r
Engi
ne
Spac
e
Size

This parameter specifies the size of the space allocated to the
pod container. Only integers are supported. The default and
minimum values are 50 GiB. The maximum value depends on
the specifications, and can be found in the console prompt.
Customizing the container engine space does not increase
costs.
By specifying this parameter, you can limit the disk size used
by a single pod job.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 35

Para
met
er

Sub-
Para
met
er

Description

Cont
aine
r
Disk
Adv
ance
d
Setti
ngs
-
Writ
e
Mod
e

Some flavors allow you to set the disk write mode, which can
be Linear or Stripe.
● Linear: A linear logical volume integrates one or more

physical volumes. Data is written to the next physical
volume when the previous one is used up.

● Striped: A striped logical volume stripes data into blocks
of the same size and stores them in multiple physical
volumes in sequence. This allows data to be concurrently
read and written. A storage pool consisting of striped
volumes cannot be scaled-out.

Crea
ting
a
Flav
or

Add multiple specifications as needed. Restrictions:
● Each flavor must be unique.
● The CPU architectures of multiple specifications must be

the same, which can be either x86 or Arm.
● When selecting multiple GPU or NPU specifications,

distributed training speed is impacted because different
specifications' parameter network planes are not
connected. For distributed training, you are advised to
choose only one GPU or NPU specification.

● You can add up to 10 specifications to a resource pool.

Reso
urce
sche
dulin
g
and
alloc
atio
n

Cust
om
Driv
er

Disabled by default. Some GPU and Ascend resource pools
allow custom driver installation. The driver is automatically
installed in the cluster by default. Enable this function if you
need to specify the driver version.

GPU
/
Asce
nd
Driv
er

This parameter is displayed if Custom Driver is enabled. You
can select a GPU or Ascend driver. The value depends on the
driver you choose.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 36

Para
met
er

Sub-
Para
met
er

Description

Enab
ling
HA
redu
ndan
cy

- ● Enable HA redundancy: Whether to enable HA
redundancy for the resource pool. By default, HA
redundancy is enabled for supernodes.

● Redundant node distribution policy: indicates the
distribution policy of redundant nodes. Supernodes
support only step-based even distribution. The same
number of redundant nodes are reserved in each
supernode.

● Number of redundant instances: number of HA redundant
instances set for this flavor. The redundancy coefficient
refers to a quantity of redundant nodes reserved in each
supernode when the redundant node distribution policy is
step-based even distribution.

NOTE
Currently, only the Snt9C flavor supports this function.

Adva
nced
Opti
ons

(Opt
iona
l)
Clus
ter
Desc
ripti
on

Enter the cluster description for easy query.

Tags Click Add Tag to configure tags for the standard resource
pool so that resources can be managed by tag. The tag
information can be predefined in Tag Management Service
(TMS) or customized. You can also set tag information in the
Tags tab of the details page after the standard resource pool
is created.
NOTE
Predefined TMS tags are available to all service resources that
support tags. Customized tags are available only to the service
resources of the user who has created the tags.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 37

Para
met
er

Sub-
Para
met
er

Description

CID
R
Bloc
k

You can select Default or Custom.
● Default: The system randomly allocates an available CIDR

block to you, which cannot be modified after the resource
pool is created. For commercial use, customize your CIDR
block.

● Custom: You need to customize Kubernetes container and
Kubernetes service CIDR blocks.
– K8S Container Network: used by the container in a

cluster, which determines how many containers there
can be in a cluster. The value cannot be changed after
the resource pool is created.

– Kubernetes Service CIDR Block: CIDR block for
services used by containers in the same cluster to
access each other. The value determines the maximum
number of Services you can create. The value cannot be
changed after the resource pool is created.

Requ
ired
Dura
tion

- Select the time length for which you want to use the
resource pool. This parameter is mandatory only when the
Yearly/Monthly billing mode is selected.

Auto
-
rene
wal

Specifies whether to enable auto-renewal. This parameter is
mandatory only when the Yearly/Monthly billing mode is
selected.
● Monthly subscriptions renew each month.
● Yearly subscriptions renew each year.

3. Click Buy Now .

– After a resource pool is created, its status changes to Running. Only
when the number of available nodes is greater than 0, tasks can be
delivered to this resource pool.

– Hover over Creating to view the details about the creation process. Click
View Details to go the operation record page.

– You can view the task records of the resource pool by clicking Records in
the upper left corner of the resource pool list.

FAQs

What if I choose a flavor for a dedicated resource pool, but get an error
message saying no resource is available?

The flavors of dedicated resources change based on real-time availability.
Sometimes, you might choose a flavor on the purchase page, but it is sold out
before you pay and create the resource pool. This causes the resource pool
creation to fail.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 38

You can try a different flavor on the creation page and create the resource pool
again.

Q: Why cannot I use all the CPU resources on a node in a resource pool?

Resource pool nodes have systems and plug-ins installed on them. These take up
some CPU resources. For example, if a node has 8 vCPUs, but some of them are
used by system components, the available resources will be fewer than 8 vCPUs.

You can check the available CPU resources by clicking the Nodes tab on the
resource pool details page, before you start a task.

3.3 Managing Standard Dedicated Resource Pools

3.3.1 Viewing Details About a Standard Dedicated Resource
Pool

Resource Pool Details Page
● Log in to the ModelArts console. In the navigation pane on the left, choose AI

Dedicated Resource Pools > Elastic Clusters.
● You can search for the resource pools by name, ID, resource pool status, node

status, resource pool type, and creation time.
● In the resource pool list, click a resource pool to go to its details page and

view its information.

– If there are multiple ModelArts Standard resource pools, click in the
upper left corner of the details page of one resource pool to switch
between resource pools.

– For a pay-per-use standard resource pool: On the details page, click More
in the upper right corner to scale in/out, delete a resource pool, change
the billing mode to yearly/monthly, and perform other operations.
Operations that can be performed vary depending on resource pools.

– For a yearly/monthly standard resource pool: On the details page, click
More in the upper right corner to perform operations such as scale-out,
unsubscription, renewal, auto-renewal enabling or modification, driver
upgrade, and job type setting. Operations that can be performed vary
depending on resource pools.

– In the Network area of Basic Information, you can click the number of
resource pools associated to view associated resource pools. You can view
the number of available IP addresses on the network.

– In the extended information area, you can view the monitoring
information, jobs, nodes, specifications, tags, and events. For details, see
the following section.

Viewing Jobs in a Resource Pool

On the resource pool details page, click Jobs. You can view all jobs running in the
resource pool. If a job is queuing, you can view its queuing position.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 39

NO TE

Only training jobs can be viewed.

Viewing Resource Pool Events
On the resource pool details page, click Events. You can view all events of the
resource pool. The cause of an event is PoolStatusChange or
PoolResourcesStatusChange.

In the event list, click on the right of Event Type to filter events.

● When a resource pool starts to be created or becomes abnormal, the resource
pool status changes and the change will be recorded as an event.

● When the number of nodes that are available or abnormal or in the process
of being created or deleted changes, the resource pool node status changes
and the change will be recorded as an event.

Figure 3-5 Events

Viewing Resource Pool Nodes
On the resource pool details page, click Nodes. You can view all nodes in the
resource pool and the resource usage of each node. Hover the cursor over the
node to obtain the node name and resource ID. You can use the resource ID to
obtain the bills or query the billing information of yearly/monthly resources in the
Billing Center.

Some resources are reserved for cluster components. Therefore, CPUs (Available/
Total) does not indicate the number of physical resources on the node. It only
displays the number of resources that can be used by services. CPU cores are
metered in milicores, and 1,000 milicores equal 1 physical core.

You can delete, unsubscribe from, reset, or restart nodes in batches, or enable or
disable HA redundancy for nodes in batches, as shown in the following figure. For
details, see Rectifying a Faulty Node in a Standard Dedicated Resource Pool.
You can add, edit, and delete resource tags for nodes in batches. You can renew
yearly/monthly nodes and enable or modify auto-renewal for them in batches..

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 40

Figure 3-6 Performing operations on nodes in batches

To delete, replace, rectify, reset, restart, authorize, run the job list, enable HA
redundancy, and disable HA redundancy for a single node, locate the target node
in the list and click the button in the Operation column. For details, see
Rectifying a Faulty Node in a Standard Dedicated Resource Pool. You can also
edit resource tags.

Figure 3-7 Operations on a single node

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 41

In the node search box, you can search for nodes by node name, node status, HA
redundancy, batch, driver version, driver status, IP address, and resource tag.

You can export the node information of a standard resource pool to an Excel file.
Select the node names, click Export > Export All Data to XLSX or Export >

Export Part Data to XLSX above the node list, and click in the browser to
view the exported Excel files.

On the node list page, click to customize the information displayed in the
node list.

Viewing Resource Pool Specifications

On the resource pool details page, click Specifications. You can view the resource
specifications used by the resource pool and the number of resources
corresponding to the specifications, and adjust the container engine space.

Figure 3-8 Viewing resource pool specifications

Viewing Resource Pool Monitoring Information

On the resource pool details page, click Monitoring. The resource usage including
used CPUs, memory usage, and available disk capacity of the resource pool is
displayed. If AI accelerators are used in the resource pool, the GPU and NPU
monitoring information is also displayed.

Figure 3-9 Viewing monitoring metrics

Table 3-2 Monitoring metrics

Parameter Description Unit Value Range

CPU usage CPU usage of a measured
object

% 0%–100%

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 42

Parameter Description Unit Value Range

Memory usage Percentage of the used
physical memory to the
total physical memory

% 0%–100%

Used GPUs Percentage of the used
GPU memory to the total
GPU memory

% 0%–100%

Used GPU
memory

Percentage of the used
GPU memory to the total
GPU memory

% 0%–100%

Used NPUs Percentage of the used
NPU memory to the total
NPU memory

% 0%–100%

Used NPU
Memory

Percentage of the used
GPU memory to the total
GPU memory

% 0%–100%

Available Disk
Capacity (GB)

Available disk capacity of
a measured object

MB ≥0

Disk Capacity
(GB)

Total disk capacity of a
monitored object

MB ≥0

Disk Usage Disk usage of the
monitored object

% 0%–100%

GPU/NPU
Fragments

Fragments are generated
during resource
scheduling. As a result,
some cards are idle but
cannot be used by multi-
card tasks. For tasks with
different numbers of cards,
fragments vary according
to the distribution of
occupied cards and vary
with time. The table lists
only the status at the
current time.

/ /

Resource pool tag management
You can add tags to a resource pool for quick search.

On the resource pool details page, click Tags. You can view, search for, add,
modify, and delete tags of a resource pool.

NO TE

You can add up to 20 tags.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 43

Checking the Disk Specifications of a Resource Pool
On the resource pool details page, choose More > Scaling in the upper right
corner. On the displayed page, you can view the disk type, size, quantity, write
mode, container engine space, and mount path of the system disk, container disk,
and data disk.

3.3.2 Resizing a Standard Dedicated Resource Pool

Description
The demand for resources in a dedicated resource pool may change due to the
changes of AI development services. In this case, you can resize your dedicated
resource pools in ModelArts Standard.

● You can add instances for existing flavors in the resource pool.
● You can delete instances for existing flavors in the resource pool.

NO TE

Before scaling in a resource pool, ensure that there are no services running in the pool.
Alternatively, go to the resource pool details page, delete the nodes where no services are
running to scale in the pool.

Constraints
● Only dedicated resource pools in the Running status can be resized.
● When scaling in a dedicated resource pool, the number of flavors or nodes of

a flavor cannot be decreased to 0.

Resizing a Dedicated Resource Pool
You can resize a resource pool in any of the following ways:

● Increase or decrease the total number of instances in existing specifications.
● Resizing the container engine space

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose AI Dedicated Resource Pools > Elastic Clusters.

NO TE

A resource pool is suspended when it is migrated from the old version to the new
version. You cannot adjust the capacity of such a resource pool or unsubscribe from it.

2. For a yearly/monthly resource pool, only Scale Out is displayed. To scale in
the resource pool, go to the details page and unsubscribe from the resources.
For a yearly/monthly resource pool, only Scale Out is displayed. To scale in
the resource pool, go to the details page and unsubscribe from the resources.

3. On the dedicated resource pool scaling page, set Target Instances as needed.
Scale-out is the process of increasing the number of target instances, while
scale-in is the process of decreasing the number of target instances.
When you purchase a resource pool, the nodes for certain specifications can
be purchased by rack. When you resize the resource pool, the instances are
also added or deleted by rack. You can choose to purchase nodes by rack

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 44

when creating a resource pool, which cannot be modified when resizing a
resource pool. You can configure the rack quantity to change the number of
target instances.

NO TE

When you add instances, you can specify the billing mode that is not the mode for
charging resource pools. For example, you can create pay-per-use nodes in a yearly/
monthly resource pool. If the billing mode is not specified, it will be the mode for
charging resource pools.

4. In the Resource Configurations area, set AZ to Automatically allocated or
Specifies AZ.
– After the scaling, nodes are randomly allocated to AZs.
– If you select Specifies AZ, you can allocate nodes to different AZs.

Figure 3-10 Configuring resources on a single node

5. Resizing the container engine space
When scaling out a resource pool, you can set the container engine space size
of the created node. This operation will cause inconsistence of dockerBaseSize
of nodes in the resource pool. Some tasks may run differently on different
nodes. Exercise caution when performing this operation. The container engine
space size cannot be changed for existing nodes.

6. Modify the OS. Select an OS version from the OS drop-down list.
7. Configure the node billing mode. When adding nodes, you can enable Node

Billing Mode to set the billing mode and required duration for the new
nodes, and enable the auto-renewal function. For example, you can create
pay-per-use nodes in a yearly/monthly resource pool. If the billing mode is not
specified, it will be the mode for charging resource pools.

8. Click Submit and then OK.

3.3.3 Upgrading the Standard Dedicated Resource Pool Driver

Description
If GPUs or Ascend resources are used in a dedicated resource pool, you may need
to customize GPU or Ascend drivers. ModelArts allows you to upgrade GPU or
Ascend drivers of your dedicated resource pools.

There are two driver upgrade modes: secure upgrade and forcible upgrade.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 45

NO TE

● Secure upgrade: Running services are not affected. After the upgrade starts, the nodes
are isolated (new jobs cannot be delivered). After the existing jobs on the nodes are
complete, the upgrade is performed. The secure upgrade may take a long time because
the jobs must be completed first.

● Forcible upgrade: The drivers are directly upgraded, regardless of whether there are
running jobs.

Constraints
● The target dedicated resource pool must be running, and the resource pool

contains GPU or Ascend resources.

● For a logical resource pool, the driver can be upgraded only after node
binding is enabled. To enable node binding, submit a service ticket to contact
Huawei engineers.

Upgrading the Driver
1. Log in to the ModelArts console. In the navigation pane on the left, choose AI

Dedicated Resource Pools > Elastic Clusters.

2. Locate the target resource pool in the list and choose > Upgrade Driver
in the Operation column.

3. In the displayed dialog box, you can view the driver type, number of
instances, current version, target version, upgrade mode, upgrade scope, and
rolling switch of the dedicated resource pool.

– Target Version: Select a target driver version from the drop-down list.
The driver of the added nodes may not be that of the existing nodes.
Select the current driver version for Target Version. After the upgrade, all
nodes will be upgraded to the same version

– Upgrade mode: You can select secure upgrade or forcible upgrade.

▪ Secure upgrade: Perform the upgrade when no job is running on the
node. The upgrade may take a long time.

▪ Forcible upgrade: Ignore the running jobs and perform the upgrade
directly. This may cause the running jobs to fail.

– Rolling Mode: Once enabled, you can upgrade the driver in rolling mode.
Currently, By node percentage and By instance quantity are supported.

▪ By node percentage: The number of instance to be upgraded is the
percentage multiplied by the total number of instances in the
resource pool.

▪ By instance quantity: The number of instances to be upgraded is
the value of this parameter.

For different upgrade modes, the policies for upgrading nodes are
different.

▪ If Secure upgrade is selected, the instances without services are
upgraded.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 46

▪ If Forcible upgrade is selected, random instances are upgraded.

NO TE

● To check whether a node has any service, go to the resource pool details
page. In the Nodes tab, check whether all GPUs and Ascend chips are
available. If yes, the node has no services.

● During the rolling upgrade, the nodes with abnormal drivers do not affect the
upgrade and will also be upgraded.

Figure 3-11 Upgrading a driver

4. Click OK to start the driver upgrade.

3.3.4 Rectifying a Faulty Node in a Standard Dedicated
Resource Pool

This section describes how to rectify the faulty nodes. Currently, you can
replacereset, and restart a node, as well as configuring an HA redundant node.
During fault locating and performance diagnosis, certain O&M operations need to
be authorized by users.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 47

Handling Faulty Nodes
● Replacing a node: The node name will be changed and the original node will

be deleted. On the resource pool details page, click the Nodes tab, you can
replace a single node. To do so, locate the target node in the list and click
Replace in the Operation column. No fee is charged for this operation.
Check the node replacement records on the Records page. Running indicates
that the node is being replaced. After the replacement, you can check the new
node in the node list.
The replacement can last no longer than 24 hours. If no suitable resource is
found after the replacement times out, the status changes to Failed. Hover

over to check the failure cause.

NO TE

● The number of replacements per day cannot exceed 20% of the total nodes in the
resource pool. The number of nodes to be replaced cannot exceed 5% of the total
nodes in the resource pool.

● Ensure that there are idle node resources. Otherwise, the replacement may fail.
● If there are any nodes in the Resetting state in the operation records, nodes in the

resource pool cannot be replaced.

● HA redundant node
An HA redundant node is the backup node in the dedicated resource pool. It
can automatically replace a faulty common node to improve the Service Level
Agreement (SLA) of the resource pool and prevent service loss. You can set
the number of HA nodes based your requirements.

NO TICE

HA redundant nodes cannot be used for service running, which will affect the
number of actual available nodes in the resource pool. When a resource pool
delivers a task, select the number of actual available nodes with caution. If
the HA redundant nodes are included, the task will keep waiting.

The running mechanism of HA redundant nodes are as follows:
– HA redundant nodes are isolated and cannot be scheduled by default.

Workloads cannot be scheduled to the nodes.
– HA redundant nodes function as standby nodes and work with node fault

detection to ensure that the faulty nodes are automatically replaced by
normal nodes in a resource pool. The replacement normally takes only a
few minutes. After the replacement, the original HA redundant nodes will
be de-isolated and become normal nodes, and the faulty nodes will be
labeled as HA redundant nodes. Rectify the fault for future automatic
switchover. After the faulty nodes are rectified, they become the new HA
redundant nodes.

HA redundant nodes can free you from paying attention to node status and
reduce O&M costs. However, you need to purchase backup nodes as HA
redundant nodes. The resource costs are higher.
Setting HA nodes: You can set multiple HA redundant nodes in batches for a
resource pool or set a single node as an HA redundant node.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 48

– Setting multiple HA redundant nodes in batches for a resource pool

▪ Method 1: Set when purchasing the license (supported only by
Snt9C).
Parameter description:

○ Enable HA redundancy: Whether to enable HA redundancy for
the resource pool. By default, HA redundancy is enabled for
supernodes.

○ Redundant node distribution policy: indicates the distribution
policy of redundant nodes. Supernodes support only step-based
even distribution. The same number of redundant nodes are
reserved in each supernode.

○ Number of redundant instances: number of HA redundant
instances set for this flavor. The redundancy coefficient refers to
a quantity of redundant nodes reserved in each supernode when
the redundant node distribution policy is step-based even
distribution.

▪ Method 2: Set on the resource pool details page.

Figure 3-12 Setting in the Specifications tab

▪ Method 3: Set on the Scaling page.

– Configure a single node as HA redundant node.

▪ Enabling HA redundancy
Select a node without any service as the HA redundant node. On the
resource pool details page, click the Nodes tab, locate the target
node, and click More > Enable HA Redundancy in the Operation
column.
If you need to enable HA redundancy for nodes in batches, select the
target nodes, and click Enable HA Redundancy above the list.

Figure 3-13 Enabling HA redundancy

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 49

Figure 3-14 HA redundant node

NO TE

● 5% of the total nodes in a resource pool should be HA redundant nodes.
For example, there are 20 nodes in a resource pool, then there should be
one HA redundant node.

● To check whether a node has any service, go to the resource pool details
page. In the Nodes tab, check whether all GPUs and Ascend chips are
available. If yes, the node has no services.

▪ Disabling HA redundancy
On the resource pool details page, click the Nodes tab. Locate the
target node and click More > Disable HA Redundancy in the
Operation column.
Once disabled, the nodes will be de-isolated and no longer used as
standby nodes. Workloads can be scheduled to the nodes properly.
If you need to disable HA redundancy for nodes in batches, select the
target nodes, and click Disable HA Redundancy above the list.

Figure 3-15 Disabling HA redundancy

Figure 3-16 Non-HA redundancy

● Resetting a node: Perform this operation to upgrade the OS of the node. If an
error occurs during node configuration update, reset the node to rectify the
fault.
In the Nodes tab, locate the node you want to reset. Click Reset in the
Operation column to reset a node. You can also select multiple nodes, and
click Reset to reset multiple nodes.
Configure the parameters described in the table below.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 50

Table 3-3 Parameters

Parameter Description

Operating
system

Select an OS from the drop-down list box.

Configurati
on Mode

Select a configuration mode for resetting the node.
● By node percentage: the maximum ratio of nodes that

can be reset if there are multiple nodes in the reset task
● By node quantity: the maximum number of nodes that

can be reset if there are multiple nodes in the reset task

Check the node reset records on the Records page. If the node is being reset,
its status is Resetting. After the reset is complete, the node status changes to
Available. Resetting a node will not be charged.

Figure 3-17 Resetting a node

NO TE

● Resetting a node will affect running services.

● Only nodes in the Available state can be reset.

● A single node can be in only one reset task at a time. Multiple reset tasks cannot
be delivered to the same node at a time.

● If there are any nodes in the Replacing state in the operation records, nodes in the
resource pool cannot be reset.

● When the driver of a resource pool is being upgraded, nodes in this resource pool
cannot be reset.

● For GPU and NPU specifications, after the node is reset, the driver of the node may
be upgraded. Wait patiently.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 51

Figure 3-18 Operation records

● Restarting a node
On the resource pool details page, click the Nodes tab, you can restart a
node. and click More > Reboot in the Operation column. You can also select
multiple nodes and click Reboot above the list to reboot multiple nodes.
When delivering a node restart task, select the corresponding nodes.
Restarting a node will affect running services. Exercise caution.
Check the node operation records in the Records dialog box. If the node is
being restarted, its status is Rebooting. After it is restarted, the status
changes to Available. Restarting a node will not be charged.

Figure 3-19 Restarting a node

Figure 3-20 Operation records

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 52

NO TE

● Restarting a node will affect running services.
● Only nodes in the Available or Unavailable state can be restarted.
● A single node can be in only one restart task at a time. Multiple restart tasks

cannot be delivered to the same node at a time.
● If the node is being replaced, reset, or deleted, it cannot be restarted.
● When the driver of a resource pool is being upgraded, nodes in this resource pool

cannot be restarted.
● After the node is restarted, it will be unavailable for a short time. The service is

being started and the health status is being checked. Wait patiently.

● Deleting or unsubscribing from a node
– Click Delete in the Operation column for a pay-per-use resource pool.

To delete nodes in batches, select the check boxes next to the node
names, and click Delete.

– For a yearly/monthly resource pool whose resources are not expired, click
Unsubscribe in the Operation column.

– For a yearly/monthly resource pool whose resources are expired (in the
grace period), click Release in the Operation column.

If the delete button is available for a yearly/monthly node, click the button to
delete the node.

NO TE

● Before deleting, unsubscribing from, or releasing a node, ensure that there are no
running jobs on this node. Otherwise, the jobs will be interrupted.

● Delete, unsubscribe from, or release abnormal nodes in a resource pool and add
new ones for substitution.

● If there is only one node, it cannot be deleted, unsubscribed from, or released.

Authorizing Technical Support to Locate Faults
During fault locating and performance diagnosis performed by Huawei technical
support, you need to authorize certain O&M operations. To do so, go to the
resource pool details page, click the Nodes tab, locate the target node, and click
More > Authorize in the Operation column. In the displayed dialog box, click OK.

NO TE

Normally, the Authorize button is unavailable. It will become available after the Huawei
technical support applies for O&M.
After the O&M, Huawei technical support will disable the authorization. No further
operations are required.

3.3.5 Modifying the Job Types Supported by a Standard
Dedicated Resource Pool

Description
ModelArts supports many types of jobs. Some of them can run in dedicated
resource pools, including training jobs, inference services, and notebook
development environments.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 53

You can change job types supported by a dedicated resource pool. Available
options for Job Type are Training Job, Inference Service, and DevEnviron.

Only selected types of jobs can be delivered to the corresponding dedicated
resource pool.

CA UTION

To support different job types, different operations are performed in the backend,
such as installing plug-ins and setting the network environment. Some operations
use resources in the resource pool. As a result, available resources for you
decrease. Therefore, select only the job types you need to avoid resource waste.

Constraints

The target dedicated resource pool must be running.

Procedure
1. Log in to the ModelArts console. In the navigation pane on the left, choose AI

Dedicated Resource Pools > Elastic Clusters.

2. Locate the target resource pool in the list and choose > Set Job Type in
the Operation column.

3. In the Set Job Type dialog box, select job types.

Figure 3-21 Setting the job type

4. Click OK.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 54

3.3.6 Migrating Standard Dedicated Resource Pools and
Networks to Other Workspaces

Background

The workspace of a dedicated resource pool is associated with an enterprise
project, which involves bill collection. ModelArts provides workspaces to isolate
resource operation permissions of different IAM users. Workspace migration
includes resource pool migration and network migration. For details, see the
following sections.

Migrating the Workspace for a Resource Pool
1. Log in to the ModelArts console. In the navigation pane on the left, choose AI

Dedicated Resource Pools > Elastic Clusters.

2. Locate the target resource pool in the list and choose > Migrate
Workspace.

3. In the displayed Migrate Dedicated Resource Pool dialog box, select the
target workspace and click OK.

Figure 3-22 Migrating the Workspace

NO TE

IAM users can only migrate resource pools in their own workspaces.

Migrating the Workspace for a Network
1. Log in to the ModelArts console. In the navigation pane on the left, choose AI

Dedicated Resource Pools > Elastic Clusters. Then, click the Network tab.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 55

2. In the network list, choose More > Migrate Workspace in the Operation
column of the target network.

3. In the displayed dialog box, select the target workspace and click OK.

Figure 3-23 Migrating the workspace

NO TE

IAM users can only migrate networks in their own workspaces.

3.3.7 Configuring the Standard Dedicated Resource Pool to
Access the Internet

Description
When you use a dedicated resource pool to create a job, for example, a training
job, you can interconnect with VPC for the dedicated resource pool to access the
Internet. In this case, the dedicated resource pool and the ECS with bound EIP are
in the same VPC.

Prerequisites
● You have obtained the ECS where the SNAT function is to be deployed.
● The ECS where the SNAT function is to be deployed runs the Linux OS.
● The ECS where the SNAT function is to be deployed has only one network

interface card (NIC) configured.

Step 1: Interconnect with the VPC
VPC interconnection allows you to use resources across VPCs, improving resource
utilization.

1. Log in to the ModelArts console. In the navigation pane on the left, choose AI
Dedicated Resource Pools > Elastic Clusters. Click the Network tab, locate
the target network in the list and click Connect VPC in the Operation
column.

Figure 3-24 Interconnect VPC

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 56

2. In the displayed dialog box, click the button on the right of Interconnect VPC,
and select an available VPC and subnet from the drop-down lists.

NO TE

The peer network to be interconnected cannot overlap with the current CIDR block.

Figure 3-25 Parameters for interconnecting a VPC with a network

– If no VPC is available, click Create VPC on the right to create a VPC.

– If no subnet is available, click Create Subnet on the right to create a
subnet.

– A VPC can interconnect with at most 10 subnets. To add a subnet, click
the plus sign (+).

– To enable a dedicated resource pool to access the public network through
a VPC, create a SNAT in the VPC, as the public network address is
unknown. After the VPC is interconnected, by default, the public address
cannot be forwarded to the SNAT of your VPC. Submit a service ticket
and contact technical support to add a default route. Then, when you
interconnect with a VPC, ModelArts 0.0.0.0/0 is used as the default route.
In this case, you do not need to submit a service ticket. Add the default
route for network configuration.

Step 2: Configure SNAT

Configure and verify SNAT by referring to Using a Public NAT Gateway to
Enable Servers to Share One or More EIPs to Access the Internet.

(Optional) Checking the Number of Available IP Addresses

Log in to the ModelArts console. In the navigation pane on the left, choose AI
Dedicated Resource Pools > Elastic Clusters. Click the Network tab, locate the
target network in the list and choose More > View Available IP Addresses in the
Operation column.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 57

https://support.huaweicloud.com/intl/en-us/qs-natgateway/nat_qs_0001.html
https://support.huaweicloud.com/intl/en-us/qs-natgateway/nat_qs_0001.html

Figure 3-26 Viewing available IP addresses

On the resource pool details page, you can view the number of available IP
addresses bound to the network.

Figure 3-27 Viewing available IP addresses

3.3.8 Using TMS Tags to Manage Resources by Group
ModelArts can work with Tag Management Service (TMS). When creating
resource-consuming tasks in ModelArts, configure tags for these tasks so that
ModelArts can use tags to manage resources by group.

ModelArts allows you to configure tags when you create training jobs, notebook
instances, real-time inference services, or standard dedicated resource pools.

Operation Process
1. Step 1 Create Predefined Tags on TMS

2. Step 2 Add a Tag to a ModelArts Task

3. Step 3 Obtain ModelArts Resource Usage by Resource Type in TMS

Step 1 Create Predefined Tags on TMS

Log in to the TMS console and create tags on the Predefined Tags page. The
created tags are global and can be used in all Huawei Cloud regions.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 58

Step 2 Add a Tag to a ModelArts Task

When creating a notebook instance, training job, or real-time inference services in
ModelArts, configure a tag for the task.

● Add a tag to a ModelArts notebook instance.
Add a tag when you create a notebook instance. Alternatively, after creating a
notebook instance, add a tag on the Tags tab on the instance details page.

● Add a tag to a ModelArts training job.
Add a tag when you create a training job. Alternatively, after creating a
training job, add a tag on the Tags tab on the job details page.

● Add a tag to a ModelArts real-time service.
Add a tag when you create a real-time service. Alternatively, after creating a
real-time service, add a tag on the Tags tab on the service details page.

● Add a tag to a ModelArts dedicated resource pool.
Add a tag when you create a standard dedicated resource pool. Alternatively,
after creating a dedicated resource pool, add a tag in the Tags tab on the
resource pool details page.

Figure 3-28 Adding a Label

NO TE

When adding a tag to a ModelArts task, you can create new tags by specifying the keys and
values of the new tags. The created tags are available for only the current project.

Step 3 Obtain ModelArts Resource Usage by Resource Type in TMS

Log in to the TMS console. On the Resources Tag page, view resource tasks in
specified regions based on resource types and tags.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 59

● Region: For details about Huawei Cloud regions, see Region and AZ.

● Resource Type: Table 3-4 lists the resource types that can be viewed on
ModelArts.

● Resource Tag: If no tag is specified, all resources are displayed, regardless of
whether the resources are configured with tags. One or multiple tags can be
selected to obtain resource usage.

Table 3-4 Resource types that can be viewed on ModelArts

Resource Type Description

ModelArts-Notebook Notebook instances in ModelArts
DevEnviron

ModelArts-TrainingJob ModelArts training jobs

ModelArts-RealtimeService ModelArts real-time inference services

ModelArts-ResourcePool ModelArts dedicated resource pools

NO TE

If your organization has configured tag policies for ModelArts, add tags to resources based
on the policies. If a tag does not comply with the tag policies, resource creation may fail.
Contact your organization administrator to learn more about tag policies.

3.3.9 Managing Free Nodes in a Standard Dedicated Resource
Pool

Nodes that are not managed by the resource pool are considered as free nodes. To
view the information about free nodes, log in to the ModelArts management
console, choose AI Dedicated Resource Pools > Elastic Clusters, and click the
Nodes tab.

You can renew, unsubscribe from, enable or modify auto-renewal, add or edit
resource tags, delete resource tags, and search for free nodes.

Renewing, Enabling Auto-renewal, and Modifying Auto-renewal

For yearly/monthly nodes, you can renew, enable auto-renewal, and modify auto-
renewal in the Nodes tab. You can also perform batch operations on multiple
nodes.

Adding, Editing, and Deleting Resource Tags

Use resource tags for easy billing management.

Select a node name and click Add/Edit Resource Label or Delete Resource Label
above the node list to add or delete resource labels for a single node or multiple
nodes in batches.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 60

https://support.huaweicloud.com/intl/en-us/usermanual-iaas/en-us_topic_0184026189.html

Searching for a Node
In the search box on the node management page, you can search for nodes by
node name, IP address, or resource tag.

Setting Displayed Node Information

On the node page, click in the upper right corner to customize the
information displayed in the node list.

Deleting, Unsubscribing from, or Releasing a Node
For details, see Releasing a Free Node.

3.3.10 Releasing Standard Dedicated Resource Pools and
Deleting the Network

Deleting a Resource Pool
If a dedicated resource pool is no longer needed for AI service development, you
can delete the resource pool to release resources.

NO TE

After a dedicated resource pool is deleted, the development environments, training jobs,
and inference services that depend on the resource pool are unavailable. A dedicated
resource pool cannot be restored after being deleted.

1. Log in to the ModelArts console. In the navigation pane on the left, choose AI
Dedicated Resource Pools > Elastic Clusters.

2. Locate the the target resource pool in the list and choose > Delete in the
Operation column.

3. In the Delete Dedicated Resource Pool dialog box, enter DELETE in the text
box and click OK.
You can switch between tabs on the details page to view the training jobs and
notebook instances created using the resource pool, and inference services
deployed in the resource pool.

Figure 3-29 Deleting a resource pool

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 61

Releasing a Free Node
Nodes that are not managed by the resource pool are considered as free nodes. To
view the information about free nodes, log in to the ModelArts management
console, choose AI Dedicated Resource Pools > Elastic Clusters, and click the
Nodes tab.

Release the free nodes resources according to the following content:

● For a yearly/monthly node whose resources are not expired, click Unsubscribe
in the Operation column. You can unsubscribe from node in batches.

● For a yearly/monthly node whose resources are expired (in the grace period),
click Release in the Operation column. Nodes in the grace period cannot be
released in batches.

NO TE

Unsubscription and release operations cannot be undone. Exercise caution when performing
this operation.

Deleting a Network
If a network is no longer needed for AI service development, you can delete the
network.

NO TE

By deleting a network, the resource pool that uses the network will become unavailable.
Exercise caution when performing this operation.

1. Go to the Network tab, locate the target network in the list, and choose
More > Delete in the Operation column.

2. Confirm the information and click OK.

ModelArts
User Guide (ModelArts Standard) 3 ModelArts Standard Resource Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 62

4 Using ExeML for Zero-Code AI
Development

4.1 Introduction to ExeML

ExeML Functions
ModelArts ExeML is a customized code-free model development tool that helps
you start codeless AI application development with high flexibility. ExeML
automates model design, parameter tuning and training, and model compression
and deployment based on the labeled data. With ExeML, you only need to upload
data and perform simple operations as prompted on the ExeML GUI to train and
deploy models.

You can use ExeML to quickly build models for image classification, object
detection, predictive analytics, sound classification, and text classification. ExeML is
widely used in industrial, retail, and security sectors.

● Image classification: identifies a class of objects in images.
● Object detection: identifies the position and class of each object in an image.
● Predictive analytics: classifies or predicts structured data.
● Sound classification: classifies and identifies different sounds.
● Text classification: identifies the category of a piece of text.

ExeML Process
With ModelArts ExeML, you can develop AI models without coding. You only need
to upload data, create a project, label the data, train a model, and deploy the
trained model. For details, see Figure 4-1. In the new-version ExeML, this process
can be conducted by a workflow. You can develop a DAG through a workflow.
DAG execution is to use a task execution template to perform data labeling,
dataset publishing, model training, model registration, and service deployment in
sequence.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 63

Figure 4-1 ExeML process

ExeML Projects
● Image Classification

An image classification project aims to classify images. You only need to add
images and label them. Then, an image classification model can be quickly
generated for automatically classifying offerings, vehicle types, and defective
goods. For example, in the quality check scenario, you can upload a product
image, label the image as qualified or unqualified, and train and deploy a
model to inspect product quality.

● Object Detection
An object detection project aims to identify the class and location of objects
in images. You only need to add images and label objects in the images with
proper bounding boxes. The labeled images will be used as a training set for
building a model to identify multiple objects or provide the number of objects
in a single image. Object detection can also be used to inspect employees'
dress code and perform unattended inspection of article placement.

● Predictive Analytics
A predictive analytics project is an automated model training application for
structured data, which can classify or predict structured data. Predictive
analytics can be used for user profile analysis and targeted marketing, as well
as predictive maintenance of manufacturing equipment based on real-time
data to identify equipment faults.

● Sound Classification
A sound classification project identifies whether a certain sound is contained
in an audio file. Sound classification can be used to monitor abnormal sounds
in production or security scenarios.

● Text Classification
A text classification project identifies the class of a piece of text. It can be
used in emotion analysis or news classification.

4.2 Using ExeML for Image Classification

4.2.1 Preparing Image Classification Data
Before using ModelArts ExeML to build a model, upload data to an OBS bucket.
The OBS bucket and ModelArts must be in the same region.

Requirements on Datasets
● Check that all images are undamaged and in a compatible format. The

supported formats are JPG, JPEG, BMP, and PNG.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 64

● Do not store data of different projects in the same dataset.

● Collect at least two classes of images with a similar number of images in each
class. Make sure each class has a minimum of 20 images.

● To ensure the prediction accuracy of models, the training samples must be
similar to the real-world use cases.

● To ensure the generalization capability of models, datasets should cover all
possible scenarios.

Uploading Data to OBS

In this section, the OBS console is used to upload data.

Upload files to OBS according to the following specifications:

● The name of files cannot contain plus signs (+), spaces, or tabs.

● If you do not need to upload training data in advance, create an empty folder
to store files generated in the future, for example, /bucketName/data-cat.

● If you need to upload images to be labeled in advance, create an empty
folder and save the images in the folder. An example of the image directory
structure is /bucketName/data-cat/cat.jpg.

● If you want to upload labeled images to the OBS bucket, upload them
according to the following specifications:

– The dataset for image classification requires storing labeled objects and
their label files (in one-to-one relationship with the labeled objects) in
the same directory. For example, if the name of the labeled object is
10.jpg, the name of the label file must be 10.txt.

Example of data files:
├─<dataset-import-path>
 │ 10.jpg
 │ 10.txt
 │ 11.jpg
 │ 11.txt
 │ 12.jpg
 │ 12.txt

– Only images in JPG, JPEG, PNG, and BMP formats are supported. When
uploading images on the OBS console, ensure that the size of an image
does not exceed 5 MB and the total size of images to be uploaded in one
attempt does not exceed 8 MB. If the data volume is large, use OBS
Browser+ to upload images.

– A label name can contain a maximum of 32 characters, including letters,
digits, hyphens (-), and underscores (_).

– The specifications of image classification label files (.txt) are as follows:

Each row contains only one label.
flower
book
...

Procedure for uploading data to OBS:

Perform the following operations to upload data to OBS for model training and
building.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 65

1. Log in to the OBS console and create a bucket in the same region as
ModelArts. If an available bucket exists, ensure that the OBS bucket and
ModelArts are in the same region.

2. Upload the local data to the OBS bucket. If you have a large amount of
data, use OBS Browser+ to upload data or folders. The uploaded data must
meet the dataset requirements of the ExeML project.

NO TE

Upload data from unencrypted buckets. Otherwise, training will fail because data cannot be
decrypted.

Creating a Dataset

After data is prepared, create a dataset of the type supported by the project. For
details, see Creating a Dataset.

4.2.2 Creating an Image Classification Project
ModelArts ExeML supports sound classification, text classification, image
classification, predictive analytics, and object detection projects. You can create
any of them based on your needs. Perform the following operations to create an
ExeML project.

Procedure
1. Log in to the ModelArts console. In the navigation pane, choose

Development Workspace > ExeML.
2. Click Create Project in the box of your desired project. The page for creating

an ExeML project is displayed.
3. On the project creation page, set parameters by referring to Table 4-1.

Table 4-1 Parameters

Parameter Description

Name Name of an ExeML project
● Enter a maximum of 64 characters. Only digits, letters,

underscores (_), and hyphens (-) are allowed. This
parameter is mandatory.

● Start with a letter.
● The name must be unique.

Description Brief description of a project

Datasets You can select a dataset or click Create Dataset to create
one.
● Existing dataset: Select a dataset from the drop-down list

box. Only datasets of the same type are displayed.
● Creating a dataset: Click Create Dataset to create a

dataset. For details, see Creating a Dataset.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 66

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0307.html

Parameter Description

Output Path Select an OBS path for storing ExeML data.
NOTE

The output path stores all data generated in the ExeML project.

Training
Flavor

Select a training flavor for this ExeML project. You will be
billed based on different flavors.
NOTE

● You can choose the package that you have bought. In the
configuration fee area, you will see your remaining package
quota and how much you will pay for any extra usage.

4. Click Create Project. Then, the ExeML workflow is displayed.
5. Wait until the workflow of the image classification project executes the

following phases in sequence:

a. Label Data: Check data labeling.
b. Publish Dataset Version: Publish a version for the labeled dataset.
c. Check Data: Check whether any exception occurs in your dataset.
d. Classify Images: Train the dataset of the published version to generate a

model.
e. Register Model: Register the trained model with model management.
f. Deploy Service: Deploy the generated model as a real-time service.

Quickly Searching for a Project
On the ExeML overview page, you can use the search box to quickly search for and
filter workflows based on the ExeML type (or project name).

1. Log in to the ModelArts console. In the navigation pane, choose
Development Workspace > ExeML.

2. In the search box above the ExeML project list, filter the desired workflows
based on the required property, such as name, status, project type, current
phase, and tag.

3. To adjust the basic settings of ExeML and select the columns you want to see,

click on the right of the search box.
Table Text Wrapping: This function is disabled by default. If you enable this
function, excess text will move down to the next line; otherwise, the text will
be truncated.
Operation Column: This function is disabled by default. If you enable this
function, the Operation column is always fixed at the rightmost position of
the table.
Custom Columns: By default, all items are selected. You can select columns
you want to see.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 67

Figure 4-2 Customizing table columns

4. Click OK. Then, the columns will be displayed based on the settings.

5. To arrange ExeML projects by a specific property, click in the table
header.

4.2.3 Labeling Image Classification Data
Model training requires a large number of labeled images. Therefore, before
model training, add labels to the images that are not labeled. ModelArts allows
you to add labels in batches by one click. You can also modify or delete labels that
have been added to images.

NO TE

The number of labeled images in the dataset must be no fewer than 100. Otherwise,
checking the dataset will fail, affecting your model training.

After the project is created, you will be directed to the ExeML page and the project
starts to run. Click the data labeling phase. After the status changes to Awaiting
operation, confirm the data labeling status in the dataset. You can also modify
labels, add data, or delete data in the dataset.

Figure 4-3 Data labeling status

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 68

Labeling Images
1. On the labeling phase of the new-version ExeML, click Instance Details. The

data labeling page is displayed.

Figure 4-4 Clicking Instance Details

2. Select the images to be labeled in sequence, or tick Select Images on
Current Page to select all images on the page, and then add labels to the
images in the right pane.

3. After selecting an image, input a label in the Label text box, or select an
existing label from the drop-down list. Click OK. The selected image is
labeled. For example, you can select multiple images containing tulips and
add label tulips to them. Then select other unlabeled images and label them
as sunflowers and roses. After the labeling is complete, the images are saved
on the Labeled tab page.

a. Only one label can be added to an image.
b. A label consists of letters, digits, hyphens (-), and underscores (_).

4. After all the images are labeled, view them on the Labeled tab page or view
All Labels in the right pane to check the name and quantity of the labels.

Synchronizing or Adding Images
In the labeling phase, click Instance Details to go to the data labeling page. Then,
add images from your local PC or synchronize images from OBS.

Figure 4-5 Adding local images

Figure 4-6 Synchronizing OBS images

● Add data: You can click Add data to quickly add images on a local PC to
ModelArts. These images will be automatically synchronized to the OBS path
specified during project creation.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 69

● Synchronize New Data: You can upload images to the OBS directory
specified during project creation and click Synchronize New Data to quickly
add the images in the OBS directory to ModelArts.

● Delete Image: You can delete images one by one, or tick Select Current
Page to delete all images on the page.

NO TE

The deleted images cannot be recovered. Exercise caution when performing this
operation.

Modifying Labeled Data

After labeling data, you can modify the labeled data on the Labeled tab page.

● Modifying based on images

On the data labeling page, click the Labeled tab, and select one or more
images to be modified from the image list. Modify the image information in
the label information area on the right.

– Adding a label: In the Label text box, select an existing label or enter a

new label name, and then click .

– Modifying a label: In the Labels of Selected Images area, click the
editing icon in the Operation column, enter the correct label name in the
text box, and click the check mark icon to complete the modification.

Figure 4-7 Modifying a label

– Deleting a label: In the Labels of Selected Images area, click in the
Operation column to delete the label.

● Modifying based on labels

On the labeling overview page, click Label Management. Information about
all labels is displayed.

Figure 4-8 Information about all labels

– Modifying a label: In the Operation column of the target label, click
Modify, enter the new label, and click OK.

– Deleting a label: In the Operation column of the target label, click
Delete, and click OK.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 70

NO TE

Deleted tags cannot be restored.

Resuming Workflow Execution
After confirming data labeling, go back to the ExeML page. Click Next. Then, the
workflow continues to run in sequence until all phases are executed.

Figure 4-9 Resuming the workflow execution

4.2.4 Training an Image Classification Model
After labeling the images, perform model training to obtain the required image
classification model. Ensure that the labeled images meet the requirements
specified in Prerequisites. Otherwise, checking the dataset will fail.

Prerequisites
1. The number of labeled images in your dataset is greater than or equal to 100.
2. At least two classes of samples are required for training, and each class with

at least 5 samples.

Procedure
1. Ensure all your dataset has been labeled. For details, see Labeling Image

Classification Data.
2. In the data labeling phase of the new-version ExeML, click Next and wait

until the workflow enters the training phase.
3. Wait until the training is complete. No manual operation is required. If you

close or exit the page, the system continues training until it is complete.
4. On the image classification phase, wait until the training status changes from

Running to Completed.

5. After the training, click on the image classification phase to view metric
information. For details about the evaluation result parameters, see Table
4-2.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 71

Table 4-2 Evaluation result parameters

Parameter Descriptio
n

Description

Recall Recall Fraction of correctly predicted samples
over all samples predicted as a class. It
shows the ability of a model to
distinguish positive samples.

Precision Precision Fraction of correctly predicted samples
over all samples predicted as a class. It
shows the ability of a model to
distinguish negative samples.

Accuracy Accuracy Fraction of correctly predicted samples
over all samples. It shows the general
ability of a model to recognize samples.

F1 Score F1 score Harmonic average of the precision and
recall of a model. It is used to evaluate
the quality of a model. A high F1 score
indicates a good model.

NO TE

An ExeML project supports multiple rounds of training, and each round generates an AI
application version. For example, the first training version is 0.0.1, and the next version is
0.0.2. The trained models can be managed by training version. After the trained model
meets your requirements, deploy the model as a service.

4.2.5 Deploying an Image Classification Service

Model Deployment
You can deploy a model as a real-time service that provides a real-time test UI
and monitoring capabilities. After model training is complete, you can deploy a
version with the ideal accuracy and in the Successful status as a service. The
procedure is as follows:

1. On the phase execution page, after the service deployment status changes to
Awaiting input, double-click Deploy Service. On the configuration details
page, configure resource parameters.

2. On the service deployment page, select the resource specifications used for
model deployment.
– AI Application Source: defaults to the generated AI application.
– AI Application and Version: The current AI application version is

automatically selected, which is changeable.
– Resource Pool: defaults to public resource pools.
– Traffic Ratio: defaults to 100 and supports a value range of 0 to 100.
– Specifications: Select available specifications based on the list displayed

on the console. The specifications in gray cannot be used in the current

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 72

environment. If there are no specifications after you select a public
resource pool, no public resource pool is available in the current
environment. In this case, use a dedicated resource pool or contact the
administrator to create a public resource pool.

– Compute Nodes: an integer ranging from 1 to 5. The default value is 1.
– Auto Stop: enables a service to automatically stop at a specified time. If

this function is not enabled, the real-time service continuously runs and
fees are incurred accordingly. Auto stop is enabled by default and its
default value is 1 hour later.
The auto stop options are 1 hour later, 2 hours later, 4 hours later, 6
hours later, and Custom. If you select Custom, enter any integer from 1
to 24 in the text box on the right.

NO TE

You can choose the package that you have bought when you select
specifications. On the configuration fee tab, you can view your remaining
package quota and how much you will pay for any extra usage.

3. After configuring resources, click Next. Wait until the status changes to
Executed. The AI application has been deployed as a real-time service.

Testing a Service
After the service is deployed, click Instance Details to go to the real-time service
details page. Click the Prediction tab to test the service.

Figure 4-10 Testing the service

The following describes the procedure for performing a service test after the
image classification model is deployed as a service on the ExeML page.

1. After the model is deployed, click Instance Details in the service deployment
phase to go to the service page. On the Prediction tab page, click Upload
and select a local image for test.

2. Click Prediction to conduct the test. After the prediction is complete, label
sunflowers and its detection score are displayed in the prediction result area
on the right. If the model accuracy does not meet your expectation, add
images on the Label Data tab page, label the images, and train and deploy
the model again. Table 4-3 describes the parameters in the prediction result.
If you are satisfied with the model prediction result, you can call the API to
access the real-time service as prompted.
Only JPG, JPEG, BMP, and PNG images are supported.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 73

Figure 4-11 Prediction result

Table 4-3 Parameters in the prediction result

Parameter Description

predicted_label Image prediction label

scores Prediction confidence of top 5 labels

NO TE

● A running real-time service continuously consumes resources. If you do not need to
use the real-time service, stop the service to stop billing. To do so, click Stop in the
More drop-down list in the Operation column. If you want to use the service
again, click Start.

● If you enable auto stop, the service automatically stops at the specified time and
no fees will be generated then.

4.3 Using ExeML for Object Detection

4.3.1 Preparing Object Detection Data
Before using ModelArts ExeML to build a model, upload data to an OBS bucket.
The OBS bucket and ModelArts must be in the same region.

Requirements on Datasets
● Ensure that no damaged image exists. The supported image formats include

JPG, JPEG, BMP, and PNG.

● Do not store data of different projects in the same dataset.

● To ensure the prediction accuracy of models, the training samples must be
similar to the actual application scenarios.

● To ensure the generalization capability of models, datasets should cover all
possible scenarios.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 74

● In an object detection dataset, if the coordinates of the bounding box exceed
the boundaries of an image, the image cannot be identified as a labeled
image.

Uploading Data to OBS
In this section, the OBS console is used to upload data.

Upload files to OBS according to the following specifications:
● The name of files in a dataset cannot contain Chinese characters, plus signs

(+), spaces, or tabs.
● If you do not need to upload training data in advance, create an empty folder

to store files generated in the future. for example, /bucketName/data-cat.
● If you need to upload images to be labeled in advance, create an empty

folder and save the images in the folder. An example of the image directory
structure is /bucketName/data-cat/cat.jpg.

● If you want to upload labeled images to the OBS bucket, upload them
according to the following specifications:
– The dataset for object detection requires storing labeled objects and their

label files (in one-to-one relationship with the labeled objects) in the
same directory. For example, if the name of the labeled object is
IMG_20180919_114745.jpg, the name of the label file must be
IMG_20180919_114745.xml.
The label files for object detection must be in PASCAL VOC format. For
details about the format, see Table 4-4.
Example of data files:
├─<dataset-import-path>
 │ IMG_20180919_114732.jpg
 │ IMG_20180919_114732.xml
 │ IMG_20180919_114745.jpg
 │ IMG_20180919_114745.xml
 │ IMG_20180919_114945.jpg
 │ IMG_20180919_114945.xml

– Images in JPG, JPEG, PNG, and BMP formats are supported. When
uploading images on the OBS console, ensure that image is no larger
than 5 MB and the total size of images to be uploaded in one attempt
does not exceed 8 MB. If the data volume is large, use OBS Browser+ to
upload images.

– A label name can contain a maximum of 32 characters, including Chinese
characters, letters, digits, hyphens (-), and underscores (_).

Table 4-4 PASCAL VOC format description

Field Mand
atory

Description

folder Yes Directory where the data source is located

filename Yes Name of the file to be labeled

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 75

Field Mand
atory

Description

size Yes Image pixel
● width: image width. This parameter is

mandatory.
● height: image height. This parameter is

mandatory.
● depth: number of image channels. This

parameter is mandatory.

segmented Yes Segmented or not

object Yes Object detection information. Multiple object{}
functions are generated for multiple objects.
● name: class of the labeled object. This

parameter is mandatory.
● pose: shooting angle of the labeled object.

This parameter is mandatory.
● truncated: whether the labeled object is

truncated (0 indicates that the object is not
truncated). This parameter is mandatory.

● occluded: whether the labeled object is
occluded (0 indicates that the object is not
occluded). This parameter is mandatory.

● difficult: whether the labeled object is
difficult to identify (0 indicates that the
object is easy to identify). This parameter is
mandatory.

● confidence: confidence score of the labeled
object. The value ranges from 0 to 1. This
parameter is optional.

● bndbox: bounding box type. This parameter
is mandatory. For details about the possible
values, see Table 4-5.

Table 4-5 Description of bounding box types

type Shape Labeling Information

bndbox Rectangle Coordinates of the upper left and
lower right points
<xmin>100<xmin>
<ymin>100<ymin>
<xmax>200<xmax>
<ymax>200<ymax>

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 76

Example of the label file in KITTI format:
<annotation>
 <folder>test_data</folder>
 <filename>260730932.jpg</filename>
 <size>
 <width>767</width>
 <height>959</height>
 <depth>3</depth>
 </size>
 <segmented>0</segmented>
 <object>
 <name>bag</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <bndbox>
 <xmin>108</xmin>
 <ymin>101</ymin>
 <xmax>251</xmax>
 <ymax>238</ymax>
 </bndbox>
 </object>
</annotation>

Procedure for uploading data to OBS:

Perform the following operations to import data to the dataset for model training
and building.

1. Log in to OBS Console and create a bucket in the same region as ModelArts.
If an available bucket exists, ensure that the OBS bucket and ModelArts are in
the same region.

2. Upload the local data to the OBS bucket. If you have a large amount of
data, use OBS Browser+ to upload data or folders. The uploaded data must
meet the dataset requirements of the ExeML project.

NO TE

● Upload data from unencrypted buckets. Otherwise, training will fail because data
cannot be decrypted.

● At least two classes of samples are required for training, and each class must have at
least 50 samples.

Creating a Dataset
After data is prepared, create a dataset of the type supported by the project. For
details, see Creating a Dataset.

4.3.2 Creating an Object Detection Project
ModelArts ExeML supports sound classification, text classification, image
classification, predictive analytics, and object detection projects. You can create
any of them based on your needs. Perform the following operations to create an
ExeML project.

Procedure
1. Log in to the ModelArts console. In the navigation pane, choose

Development Workspace > ExeML.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 77

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0307.html

2. Click Create Project in the box of your desired project. The page for creating
an ExeML project is displayed.

3. On the project creation page, set parameters by referring to Table 4-6.

Table 4-6 Parameters

Parameter Description

Name Name of a project
● Enter a maximum of 64 characters. Only digits, letters,

underscores (_), and hyphens (-) are allowed. This
parameter is mandatory.

● Start with a letter.
● The name must be unique.

Description Brief description of a project

Datasets You can select a dataset or click Create Dataset to create
one.
● Existing dataset: Select a dataset from the drop-down list

box. Only datasets of the same type are displayed.
● Creating a dataset: Click Create Dataset to create a

dataset. For details, see Creating a Dataset.

Output Path An OBS path for storing ExeML data
NOTE

The output path stores all data generated in the ExeML project.

Training
Flavor

Select a training flavor for this ExeML project. You will be
billed based on different flavors.
NOTE

● You can choose the package that you have bought. In the
configuration fee area, you will see your remaining package
quota and how much you will pay for any extra usage.

4. Click Create Project. Then, the ExeML workflow is displayed.
5. Wait until the workflow of the object detection project executes the following

phases in sequence:

a. Label Data: Check data labeling.
b. Publish Dataset Version: Publish a version for the labeled dataset.
c. Check Data: Check whether any exception occurs in your dataset.
d. Detect Objects: Train the dataset of the published version to generate a

model.
e. Register Model: Register the trained model with model management.
f. Deploy Service: Deploy the generated model as a real-time service.

Quickly Searching for a Project
On the ExeML overview page, you can use the search box to quickly search for and
filter workflows based on the ExeML type (or project name).

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 78

1. Log in to the ModelArts console. In the navigation pane, choose
Development Workspace > ExeML.

2. In the search box above the ExeML project list, filter the desired workflows
based on the required property, such as name, status, project type, current
phase, and tag.

3. To adjust the basic settings of ExeML and select the columns you want to see,

click on the right of the search box.
Table Text Wrapping: This function is disabled by default. If you enable this
function, excess text will move down to the next line; otherwise, the text will
be truncated.
Operation Column: This function is disabled by default. If you enable this
function, the Operation column is always fixed at the rightmost position of
the table.
Custom Columns: By default, all items are selected. You can select columns
you want to see.

Figure 4-12 Customizing table columns

4. Click OK. Then, the columns will be displayed based on the settings.

5. To arrange ExeML projects by a specific property, click in the table
header.

4.3.3 Labeling Object Detection Data
Before data labeling, consider how to design labels. The labels must correspond to
the distinct characteristics of the detected images and are easy to identify (the
detected object in an image is highly distinguished from the background). Each
label specifies the expected recognition result of the detected images. After the
label design is complete, prepare images based on the designed labels. It is
recommended that the number of all images to be detected be greater than 100.
If the labels of some images are similar, prepare more images. At least two classes
of samples are required for training, and each class with at least 50 samples.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 79

● During labeling, the variance of a class should be as small as possible. That is,
the labeled objects of the same class should be as similar as possible. The
labeled objects of different classes should be as different as possible.

● The contrast between the labeled objects and the image background should
be as stark as possible.

● In object detection labeling, a target object must be entirely contained within
a labeling box. If there are multiple objects in an image, do not relabel or
miss any objects.

After a project is created, you will be redirected to the new-version ExeML and the
project starts to run. When the data labeling phase changes to Awaiting
operation, manually confirm data labeling in the dataset. You can also add or
delete data in the dataset and modify labels.

Figure 4-13 Data labeling status

Labeling Images
1. On the labeling phase of the new-version ExeML, click Instance Details. The

data labeling page is displayed. Click an image to go to the labeling page.
2. Left-click and drag the mouse to select the area where the target object is

located. In the dialog box that is displayed, select the label color, enter the
label name, for example, yunbao, and press Enter. After the labeling is
complete, the status of the images changes to Labeled.
More descriptions of data labeling are as follows:
– You can click the arrow keys in the upper and lower parts of the image,

or press the left and right arrow keys on the keyboard to select another
image. Then, repeat the preceding operations to label the image. If an
image contains more than one object, you can label all the objects.

– You can add multiple labels with different colors for an object detection
ExeML project for easy identification. After selecting an object, select a
new color and enter a new label name in the dialog box that is displayed
to add a new label.

– In an ExeML project, object detection supports only rectangular labeling
boxes. On the Asset Management > Datasets page, more types of
labeling boxes are supported for object detection datasets.

– In the Label Data window, you can scroll the mouse to zoom in or zoom
out on the image to quickly locate the object.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 80

Figure 4-14 Image labeling for object detection

3. After all images in the image directory are labeled, return to the ExeML
workflow page and click Next. The workflow automatically publishes a data
labeling version and performs training.

Synchronizing or Adding Images
In the labeling phase, click Instance Details to go to the data labeling page. Then,
add images from your local PC or synchronize images from OBS.

Figure 4-15 Adding local images

Figure 4-16 Synchronizing images from OBS

● Add data: You can quickly add images on a local PC to ModelArts. These
images will be automatically synchronized to the OBS path specified during
project creation. Click Add data to import data.

● Synchronize New Data: You can upload images to the OBS directory
specified during project creation and click Synchronize New Data to quickly
add the new images in the OBS directory to ModelArts.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 81

● Delete: You can delete images one by one, or select Select Images on
Current Page to delete all images on the page.

NO TE

Deleted images cannot be recovered.

Modifying Labeled Data
After labeling data, you can modify the labeled data on the Labeled tab page.

● Modifying based on images
On the dataset details page, click the Labeled tab, and then select the image
to be modified. Modify the image information in the label information area
on the right.
– Modifying a label: In the Labeling area, click the editing icon, enter the

correct label name in the text box, and click the check mark to complete
the modification. The label color cannot be modified.

– Deleting a label: In the Labeling area, click the deletion button to delete
a label for the image.
After the label is deleted, click the project name in the upper left corner
of the page to exit the labeling page. The image will be returned to the
Unlabeled tab page.

Figure 4-17 Editing an object detection label

● Modifying based on labels
On the labeling job overview page, click Label Management on the right.
You will see the label management page, which shows information about all
labels.

Figure 4-18 Label management page

– Modifying a label: Click Modify in the Operation column. In the
displayed dialog box, enter a new label and click OK. After the
modification, the images that have been added with the label use the
new label name.

– Deleting a label: Click the delete button in the Operation column. In the
displayed dialog box, confirm the operation and click OK.

NO TE

Deleted tags cannot be restored.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 82

Resuming Workflow Execution
After confirming data labeling, return back to the new-version ExeML. Click Next.
Then, the workflow continues to run in sequence until all phases are executed.

Figure 4-19 Resuming the workflow execution

4.3.4 Training an Object Detection Model
After labeling the images, perform auto training to obtain an appropriate model
version.

Procedure
1. On the ExeML page of the new version, click the name of the target project.

Then, click Instance Details on the labeling phase to label data.

Figure 4-20 Finding unlabeled data

2. Return to the labeling phase of the new-version ExeML, click Next and wait
until the workflow enters the training phase.

3. Wait until the training is complete. No manual operation is required. If you
close or exit the page, the system continues training until it is complete.

4. On the object detection phase, wait until the training status changes from
Running to Completed.

5. After the training, click on the object detection phase to view metric
information. For details about the evaluation result parameters, see Table
4-7.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 83

Table 4-7 Evaluation result parameters

Parameter Description

Recall Fraction of correctly predicted samples over all
samples predicted as a class. It shows the ability of a
model to distinguish positive samples.

Precision Fraction of correctly predicted samples over all
samples predicted as a class. It shows the ability of a
model to distinguish negative samples.

Accuracy Fraction of correctly predicted samples over all
samples. It shows the general ability of a model to
recognize samples.

F1 Score Harmonic average of the precision and recall of a
model. It is used to evaluate the quality of a model.
A high F1 score indicates a good model.

NO TE

An ExeML project supports multiple rounds of training, and each round generates an AI
application version. For example, the first training version is 0.0.1, and the next version is
0.0.2. The trained models can be managed by training version. After the trained model
meets your requirements, deploy the model as a service.

4.3.5 Deploying an Object Detection Service

Model Deployment
You can deploy a model as a real-time service that provides a real-time test UI
and monitoring capabilities. After the model is trained, you can deploy a
Successful version with ideal accuracy as a service. The procedure is as follows:

1. On the phase execution page, after the service deployment status changes to
Awaiting input, double-click Deploy Service. On the configuration details
page, configure resource parameters.

2. On the service deployment page, select the resource specifications used for
model deployment.
– AI Application Source: defaults to the generated AI application.
– AI Application and Version: The current AI application version is

automatically selected, which is changeable.
– Resource Pool: defaults to public resource pools.
– Traffic Ratio: defaults to 100 and supports a value range of 0 to 100.
– Specifications: Select available specifications based on the list displayed

on the console. The specifications in gray cannot be used in the current
environment. If there are no specifications after you select a public
resource pool, no public resource pool is available in the current
environment. In this case, use a dedicated resource pool or contact the
administrator to create a public resource pool.

– Compute Nodes: an integer ranging from 1 to 5. The default value is 1.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 84

– Auto Stop: enables a service to automatically stop at a specified time. If
this function is not enabled, the real-time service continuously runs and
fees are incurred accordingly. Auto stop is enabled by default and its
default value is 1 hour later.
The auto stop options are 1 hour later, 2 hours later, 4 hours later, 6
hours later, and Custom. If you select Custom, enter any integer from 1
to 24 in the text box on the right.

NO TE

You can choose the package that you have bought when you select
specifications. On the configuration fee tab, you can view your remaining
package quota and how much you will pay for any extra usage.

3. After configuring resources, click Next. Wait until the status changes to
Executed. The AI application has been deployed as a real-time service.

Testing a Service

After the service is deployed, click Instance Details to go to the real-time service
details page. Click the Prediction tab to test the service.

Figure 4-21 Testing the service

The following describes the procedure for performing a service test after the
object detection model is deployed as a service on the ExeML page.

1. After the model is deployed, click Instance Details in the service deployment
phase to go to the service page. On the Prediction tab page, click Upload
and select a local image for test.

2. Click Predict to perform the test. After the prediction is complete, the result is
displayed in the Test Result pane on the right. If the model accuracy does not
meet your expectation, add images on the Label Data tab page, label the
images, and train and deploy the model again. Table 4-8 describes the
parameters in the prediction result. If you are satisfied with the model
prediction result, you can call the API to access the real-time service as
prompted.
Currently, only JPG, JPEG, BMP, and PNG images are supported.

Table 4-8 Parameters in the prediction result

Parameter Description

detection_classe
s

Label of each detection box

detection_boxes Coordinates of four points (y_min, x_min, y_max, and
x_max) of each detection box, as shown in Figure 4-22

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 85

Parameter Description

detection_scores Confidence of each detection box

Figure 4-22 Illustration for coordinates of four points of a detection box

NO TE

● A running real-time service keeps consuming resources. If you do not need to use
the real-time service, click Stop in the Version Manager pane to stop the service
so that charges will no longer be incurred. If you want to use the service again,
click Start.

● If you enable auto stop, the service automatically stops at the specified time and
no fees will be generated then.

4.4 Using ExeML for Predictive Analytics

4.4.1 Preparing Predictive Analysis Data
Before using ModelArts to build a predictive analytics model, upload data to OBS.
The OBS bucket and ModelArts must be in the same region. For example, if the
OBS bucket is in the CN North-Beijing4 region, ensure that the ModelArts
management console is also in the CN North-Beijing4 region. Otherwise, data
cannot be obtained.

Requirements on Datasets
The data set used in the predictive analytics project must be a table dataset in .csv
format. For details about the table dataset, see Table dataset.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 86

NO TE

To convert the data from .xlsx to .csv, perform the following operations:
Save the original table data in .xlsx. Choose File > Save As, select a local address, set Save
as type: to CSV (Comma delimited), and click Save. Then, click OK in the displayed dialog
box.

Requirements on the training data:
● The number of columns in the training data must be the same, and there has

to be at least 100 data records (a feature with different values is considered
as different data records).

● The training columns cannot contain timestamp data (such as yy-mm-dd or
yyyy-mm-dd).

● If a column has only one value, the column is considered invalid. Ensure that
there are at least two values in the label column and no data is missing.

NO TE

The label column is the training target specified in a training task. It is the output
(prediction item) for the model trained using the dataset.

● In addition to the label column, the dataset must contain at least two valid
feature columns. Ensure that there are at least two values in each feature
column and that the percentage of missing data must be lower than 10%.

● Due to the limitation of the feature filtering algorithm, place the predictive
data column at the last. Otherwise, the training may fail.

Example of a table dataset:

The following table takes the bank deposit predictive dataset as an example. Data
sources include age, occupation, marital status, cultural level, and whether there is
a personal mortgage or personal loan.

Table 4-9 Fields and meanings of data sources

Field Meaning Type Description

attr_1 Age Int Age of the customer

attr_2 Occupation String Occupation of the customer

attr_3 Marital
status

String Marital status of the customer

attr_4 Education
status

String Education status of the customer

attr_5 Real estate String Housing situation of the customer

attr_6 Loan String Loan of the customer

attr_7 Deposit String Deposit of the customer

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 87

Table 4-10 Sample data of the dataset

attr_1 attr_2 attr_3 attr_4 attr_5 attr_6 attr_7

31 blue-
collar

married secondar
y

yes no no

41 manage
ment

married tertiary yes yes no

38 technicia
n

single secondar
y

yes no no

39 technicia
n

single secondar
y

yes no yes

39 blue-
collar

married secondar
y

yes no no

39 services single unknown yes no no

Uploading Data to OBS

In this section, the OBS console is used to upload data.

Upload files to OBS according to the following specifications:

The OBS path of the predictive analytics projects must comply with the following
rules:

● The OBS path of the input data must redirect to the data files. The data files
must be stored in a folder in an OBS bucket rather than the root directory of
the OBS bucket, for example, /obs-xxx/data/input.csv.

● There must be at least 100 lines of valid data in .csv. There cannot be more
than 200 columns of data and the total data size must be smaller than 100
MB.

Procedure for uploading data to OBS:

Perform the following operations to import data to the dataset for model training
and building.

1. Log in to the OBS console and create a bucket in the same region as
ModelArts. If an available bucket exists, ensure that the OBS bucket and
ModelArts are in the same region.

2. Upload the local data to the OBS bucket. If you have a large amount of
data, use OBS Browser+ to upload data or folders. The uploaded data must
meet the dataset requirements of the ExeML project.

NO TE

Upload data from unencrypted buckets. Otherwise, training will fail because data cannot be
decrypted.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 88

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0307.html

Creating a Dataset

After data is prepared, create a dataset of the type supported by the project. For
details, see Creating a Dataset.

FAQs

How do I process Schema information when creating a table dataset using data
selected from OBS?

Schema information includes the names and types of table columns, which must
be the same as those of the imported data.

● If the original table contains a table header, enable Contain Table Header.
The first row's data of the file will be used as column names. You do not need
to modify the Schema information.

● If the original table does not contain a table header, disable Contain Table
Header. After data is selected from OBS, the first row's data of the table will
be used as the column names by default. Change the column names in
Schema information to attr_1, attr_2, ..., attr_n. attr_n is the prediction
column placed at last.

4.4.2 Creating a Predictive Analytics Project
ModelArts ExeML supports sound classification, text classification, image
classification, predictive analytics, and object detection projects. You can create
any of them based on your needs. Perform the following operations to create an
ExeML project.

Procedure
1. Log in to the ModelArts console. In the navigation pane, choose

Development Workspace > ExeML.

2. Click Create Project in the box of your desired project.

3. On the displayed page, set the parameters by referring to Table 4-11. The
default billing mode is Pay-per-use.

Table 4-11 Parameters

Parameter Description

Name Name of a project
● Enter a maximum of 64 characters. Only digits, letters,

underscores (_), and hyphens (-) are allowed. This
parameter is mandatory.

● Start with a letter.
● The name must be unique.

Description Brief description of a project

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 89

Parameter Description

Datasets You can select a dataset or click Create Dataset to create
one.
● Existing dataset: Select a dataset from the drop-down list

box. Only datasets of the same type are displayed.
● Creating a dataset: Click Create Dataset to create a

dataset. For details, see Creating a Dataset.

Label
Column

Select the column you want to predict.
The label column is the output of a prediction model. During
model training, all information is used to train a prediction
model. The model uses the data of other columns as the
input and outputs the prediction result in the label column.
You can publish the model as a real-time prediction service.

Output Path Select an OBS path for storing ExeML data.
NOTE

The output path stores all data generated in the ExeML project.

Training
Flavor

Select a training flavor for this ExeML project. You will be
billed based on different flavors.
NOTE

● You can choose the package that you have bought. In the
configuration fee area, you will see your remaining package
quota and how much you will pay for any extra usage.

4. Click Create Project. Then, the ExeML workflow is displayed.
5. Wait until the workflow of the predictive analytics project executes the

following phases in sequence:

a. Publish Dataset Version: Publish a version for the labeled dataset.
b. Check Data: Check whether any exception occurs in your dataset.
c. Predict: Train the dataset of the published version to generate a model.
d. Register Model: Register the trained model with model management.
e. Deploy Service: Deploy the generated model as a real-time service.

Quickly Searching for a Project

On the ExeML overview page, you can use the search box to quickly search for and
filter workflows based on the ExeML type (or project name).

1. Log in to the ModelArts console. In the navigation pane, choose
Development Workspace > ExeML.

2. In the search box above the ExeML project list, filter the desired workflows
based on the required property, such as name, status, project type, current
phase, and tag.

3. To adjust the basic settings of ExeML and select the columns you want to see,

click on the right of the search box.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 90

Table Text Wrapping: This function is disabled by default. If you enable this
function, excess text will move down to the next line; otherwise, the text will
be truncated.
Operation Column: This function is disabled by default. If you enable this
function, the Operation column is always fixed at the rightmost position of
the table.
Custom Columns: By default, all items are selected. You can select columns
you want to see.

Figure 4-23 Customizing table columns

4. Click OK. Then, the columns will be displayed based on the settings.

5. To arrange ExeML projects by a specific property, click in the table
header.

4.4.3 Training a Predictive Analysis Model
After the ExeML task is created, a model is trained for predictive analytics. You can
publish the model as a real-time prediction service.

Procedure
1. On the ExeML page of the new version, click the name of the target project to

view the execution status of the current workflow.
2. On the predictive analytics phase, wait until the phase status changes from

Running to Executed.

3. Click to view the training details, such as the label column, data type,
accuracy, and evaluation result.
The example is a discrete value of binary classification. For details about the
evaluation result parameters, see Table 4-12.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 91

For details about the evaluation results generated for different data types of
label columns, see Evaluation Results.

NO TE

An ExeML project supports multiple rounds of training, and each round generates an AI
application version. For example, the first training version is 0.0.1, and the next version is
0.0.2. The trained models can be managed by training version. After the trained model
meets your requirements, deploy the model as a service.

Evaluation Results

The parameters in evaluation results vary depending on the training data type.

● Discrete values
The evaluation parameters include recall, precision, accuracy, and F1 score,
which are described in the following table.

Table 4-12 Parameters in discrete value evaluation results

Param
eter

Description

Recall Fraction of correctly predicted samples over all samples predicted
as a class. It shows the ability of a model to distinguish positive
samples.

Precisi
on

Fraction of correctly predicted samples over all samples predicted
as a class. It shows the ability of a model to distinguish negative
samples.

Accura
cy

Fraction of correctly predicted samples over all samples. It shows
the general ability of a model to recognize samples.

F1
Score

Harmonic average of the precision and recall of a model. It is used
to evaluate the quality of a model. A high F1 score indicates a
good model.

● Continuous values

The evaluation parameters include Mean Absolute Error (MAE), Mean
Squared Error (MSE), and Root Mean Squared Error (RMSE). The three error
values represent a difference between a real value and a predicted value.
During multiple rounds of modeling, a group of error values is generated for
each round of modeling. Use these error values to determine the quality of a
model. A smaller error value indicates a better model.

4.4.4 Deploying a Predictive Analytics Service

Model Deployment

You can deploy a model as a real-time service that provides a real-time test UI
and monitoring capabilities. After the model is trained, you can deploy a
Successful version with ideal accuracy as a service. The procedure is as follows:

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 92

1. On the phase execution page, after the service deployment status changes to
Awaiting input, double-click Deploy Service. On the configuration details
page, configure resource parameters.

2. On the service deployment page, select the resource specifications used for
model deployment.
– AI Application Source: defaults to the generated AI application.
– AI Application and Version: The current AI application version is

automatically selected, which is changeable.
– Resource Pool: defaults to public resource pools.
– Traffic Ratio: defaults to 100 and supports a value range of 0 to 100.
– Specifications: Select available specifications based on the list displayed

on the console. The specifications in gray cannot be used in the current
environment. If there are no specifications after you select a public
resource pool, no public resource pool is available in the current
environment. In this case, use a dedicated resource pool or contact the
administrator to create a public resource pool.

– Compute Nodes: an integer ranging from 1 to 5. The default value is 1.
– Auto Stop: enables a service to automatically stop at a specified time. If

this function is disabled, a real-time service will continue to run and
charges will continue to be incurred. The auto stop function is enabled by
default. The default value is 1 hour later.
The options are 1 hour later, 2 hours later, 4 hours later, 6 hours later,
and Custom. If you select Custom, enter any integer from 1 to 24 in the
text box on the right.

NO TE

You can choose the package that you have bought when you select
specifications. On the configuration fee tab, you can view your remaining
package quota and how much you will pay for any extra usage.

3. After configuring resources, click Next and confirm the operation. Wait until
the status changes to Executed, which means the AI application has been
deployed as a real-time service.

Testing the Service
After the service is deployed, click Instance Details to go to the real-time service
details page. Click the Prediction tab to test the service.

Figure 4-24 Testing the service

The following describes the procedure for performing a service test after the
predictive analytics model is deployed as a service on the ExeML page.

1. After the model is deployed, you can test the model using code. In ExeML,
click Instance Details on the Deploy Service page to go to the real-time

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 93

service page. On the Prediction tab page, enter the debugging code in the
Inference Code area.

2. Click Predict to perform the test. After the prediction is complete, the result is
displayed in the Test Result pane on the right. If the model accuracy does not
meet your expectation, train and deploy the model again on the Label Data
tab page. If you are satisfied with the model prediction result, you can call the
API to access the real-time service as prompted.

– In the input code, the label column of a predictive analytics database
must be named class. Otherwise, the prediction will fail.
{
 "data": {
 "req_data": [{
 "attr_1": "34",
 "attr_2": "blue-collar",
 "attr_3": "single",
 "attr_4": "tertiary",
 "attr_5": "no",
 "attr_6": "tertiary"
 }]
 }
}

– In the preceding code snippet, predict is the inference result of the label
column.

Figure 4-25 Prediction result

NO TE

● A running real-time service continuously consumes resources. If you do not need to
use the real-time service, stop the service to stop billing. To do so, click Stop in the
More drop-down list in the Operation column. If you want to use the service
again, click Start.

● If you enable auto stop, the service automatically stops at the specified time and
no fees will be generated then.

4.5 Using ExeML for Sound Classification

4.5.1 Preparing Sound Classification Data
Before using ModelArts ExeML to build a model, upload data to an OBS bucket.
The OBS bucket and ModelArts must be in the same region.

Requirements for Sound Classification Data
● Only 16-bit WAV files are supported. All sub-formats of WAV are supported.

● The audio must be longer than 1 second and the file must be no larger than 4
MB.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 94

● Add more sound files to improve model precision. Prepare at least 20 sound
files for each class. Ensure that the total duration of each class is no shorter
than 5 minutes.

● Ensure that the sound files are authentic and cover all scenarios in real life.
● The quality of the training set has a great impact on the precision of the

model. Set the sampling rate to the precision of the training set.
● The labeling quality has a great impact on the model precision. Do not

mislabel objects.
● Only Chinese and English are supported for audio labeling.

Uploading Data to OBS

In this section, the OBS console is used to upload data.

Upload files to OBS according to the following specifications:

● If you do not need to upload training data in advance, create an empty folder
to store files generated in the future, for example, /bucketName/data-cat.

● If you need to upload training data in advance, create an empty folder, and
save the sound files to be labeled in the folder, for example, /bucketName/
data-cat/cat.wav.

Procedure for uploading data to OBS:

Perform the following operations to import data to the dataset for model training
and building.

1. Log in to the OBS console and create a bucket in the same region as
ModelArts. If an available bucket exists, ensure that the OBS bucket and
ModelArts are in the same region.

2. Upload the local data to the OBS bucket. If you have a large amount of
data, use OBS Browser+ to upload data or folders. The uploaded data must
meet the dataset requirements of the ExeML project.

NO TE

● Upload data from unencrypted buckets. Otherwise, training will fail because data
cannot be decrypted.

● Training sound files must be classified into at least two classes, and each class must
contain at least 20 sound files.

Creating a Dataset

After data is prepared, create a dataset of the type supported by the project. For
details, see Creating a Dataset.

4.5.2 Creating a Sound Classification Project
ModelArts ExeML supports sound classification, text classification, image
classification, predictive analytics, and object detection projects. You can create
any of them based on your needs. Perform the following operations to create an
ExeML project.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 95

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0307.html

Procedure
1. Log in to the ModelArts console. In the navigation pane, choose

Development Workspace > ExeML.
2. Click Create Project in the box of your desired project. The page for creating

an ExeML project is displayed.
3. On the displayed page, configure parameters by referring to Table 4-13. The

default billing mode is Pay-per-use.

Table 4-13 Parameters

Parameter Description

Name Name of a project
● Enter a maximum of 64 characters. Only digits, letters,

underscores (_), and hyphens (-) are allowed. This
parameter is mandatory.

● Start with a letter.
● The name must be unique.

Description Brief description of a project

Datasets You can select a dataset or click Create Dataset to create
one.
● Existing dataset: Select a dataset from the drop-down list

box. Only datasets of the same type are displayed.
● Creating a dataset: Click Create Dataset to create a

dataset. For details, see Creating a Dataset.

Output Path An OBS path for storing ExeML data
NOTE

The output path stores all data generated in the ExeML project.

Training
Flavor

Select a training flavor for this ExeML project. You will be
billed based on different flavors.
NOTE

● You can choose the package that you have bought. In the
configuration fee area, you will see your remaining package
quota and how much you will pay for any extra usage.

4. Click Create Project. Then, the ExeML workflow is displayed.
5. Wait until the workflow of the sound classification project executes the

following phases in sequence:

a. Label Data: Check data labeling.
b. Publish Dataset Version: Publish a version for the labeled dataset.
c. Check Data: Check whether any exception occurs in your dataset.
d. Classify Sounds: Train the dataset of the published version to generate a

model.
e. Register Model: Register the trained model with model management.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 96

f. Deploy Service: Deploy the generated model as a real-time service.

Quickly Searching for a Project
On the ExeML overview page, you can use the search box to quickly search for and
filter workflows based on the ExeML type (or project name).

1. Log in to the ModelArts console. In the navigation pane, choose
Development Workspace > ExeML.

2. In the search box above the ExeML project list, filter the desired workflows
based on the required property, such as name, status, project type, current
phase, and tag.

3. To adjust the basic settings of ExeML and select the columns you want to see,

click on the right of the search box.
Table Text Wrapping: This function is disabled by default. If you enable this
function, excess text will move down to the next line; otherwise, the text will
be truncated.
Operation Column: This function is disabled by default. If you enable this
function, the Operation column is always fixed at the rightmost position of
the table.
Custom Columns: By default, all items are selected. You can select columns
you want to see.

Figure 4-26 Customizing table columns

4. Click OK. Then, the columns will be displayed based on the settings.

5. To arrange ExeML projects by a specific property, click in the table
header.

4.5.3 Labeling Sound Classification Data
After a project is created, you will be redirected to the new-version ExeML and the
project starts to run. When the data labeling phase changes to Awaiting

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 97

operation, manually confirm data labeling in the dataset. You can also add or
delete data in the dataset and modify labels.

Figure 4-27 Data labeling status

Labeling Sound Files
1. On the labeling phase of the new-version ExeML, click Instance Details. The

data labeling page is displayed. Click an image to go to the labeling page.
2. On the labeling page, click the Unlabeled tab. All unlabeled sound files are

displayed. Select the sound files to be labeled in sequence, or tick Select
Current Page to select all sound files on the page, and then add labels to the
sound files in the right pane.

Figure 4-28 Labeling a sound file

3. Add a label. Play a sound file, and select the sound file. In the Label area,
enter a label name or select an existing label from the drop-down list on the
right, and select a shortcut from the drop-down list on the left. Click OK. The
selected sound file is labeled.

4. After all the sound files are labeled, view them on the Labeled tab page or
view the list of All Labels in the right pane to learn the name and quantity of
the labels.

Synchronizing or Adding Sound Files
On the data labeling phase, click Instance Details. The labeling page is displayed.
When creating a sound classification project, you can select local data or
synchronize data in OBS as the training data.
● Add Audio: You can quickly add sound files on a local PC to ModelArts and

synchronize the files to the OBS path specified during project creation. Click
Add data to import data.

NO TE

Only 16-bit WAV files are supported. The size of a sound file cannot exceed 4 MB. The
total size of all sound files uploaded in one attempt cannot exceed 8 MB.

● Synchronize Data Source: To quickly obtain the latest sound files in the OBS
bucket, click Synchronize Data Source to add sound files in OBS to
ModelArts.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 98

● Delete Audio: You can delete sound files one by one, or tick Select Current
Page to delete all sound files on the page.

NO TE

The deleted sound files cannot be recovered. Exercise caution when performing this
operation.

Modifying Labeled Data

After labeling data, you can modify the labeled data on the Labeled tab page.

● Modifying based on audio
On the dataset details page, click the Labeled tab. Select one or more audio
files to be modified from the audio list. Modify the label in the label details
area on the right.
– Modifying a label: In the File Labels area, click the editing icon in the

Operation column, enter the correct label name in the text box, and click
the check mark icon.

– Deleting a label: In the File Labels area, click the deletion icon in the
Operation column. In the displayed dialog box, click OK.

● Modifying based on labels
On the data labeling page, click Label Management on the right. You will
see information about all labels.
– Modifying a label: Click the edit button in the Operation column. In the

displayed dialog box, enter the new label name, select the new shortcut,
and click OK. After the modification, the new label applies to the audio
files that contain the original label.

– Deleting a label: Click the delete button in the Operation column. In the
displayed dialog box, confirm the operation and click OK.

NO TE

Deleted tags cannot be restored.

Resuming Workflow Execution

After confirming data labeling, return back to the new-version ExeML. Click Next.
Then, the workflow continues to run in sequence until all phases are executed.

Figure 4-29 Resuming the workflow execution

4.5.4 Training a Sound Classification Model
After labeling the audio files, train a model. You can perform model training to
obtain the required sound classification model. Training audio files must be

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 99

classified into at least two classes, and each class must contain at least five audio
files.

Procedure
Before starting the training, label data and then perform auto training.

1. On the ExeML page of the new version, click the name of the target project.
Then, click Instance Details on the labeling phase to label data.

2. Return to the labeling phase of the new-version ExeML, click Next and wait
until the workflow enters the training phase.

3. Wait until the training is complete. No manual operation is required. If you
close or exit the page, the system continues training until it is complete.

4. On the sound classification phase, wait until the training status changes from
Running to Executed.

5. After the training, click on the sound classification phase to view metric
information.

Table 4-14 Evaluation result parameters

Parameter Description

Recall Fraction of correctly predicted samples over all
samples predicted as a class. It shows the ability of a
model to distinguish positive samples.

Precision Fraction of correctly predicted samples over all
samples predicted as a class. It shows the ability of a
model to distinguish negative samples.

Accuracy Fraction of correctly predicted samples over all
samples. It shows the general ability of a model to
recognize samples.

F1 Score Harmonic average of the precision and recall of a
model. It is used to evaluate the quality of a model.
A high F1 score indicates a good model.

NO TE

An ExeML project supports multiple rounds of training, and each round generates an AI
application version. For example, the first training version is 0.0.1, and the next version is
0.0.2. The trained models can be managed by training version. After the trained model
meets your requirements, deploy the model as a service.

4.5.5 Deploying a Sound Classification Service

Model Deployment
You can deploy a model as a real-time service that provides a real-time test UI
and monitoring capabilities. After the model is trained, you can deploy a
Successful version with ideal accuracy as a service. The procedure is as follows:

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 100

1. On the Dashboard page, after the service deployment status changes to
Awaiting input, double-click Deploy Service. On the configuration details
page, configure resource parameters.

2. On the service deployment page, select the resource specifications used for
model deployment.
– AI Application Source: defaults to the generated AI application.
– AI Application and Version: The current AI application version is

automatically selected, which is changeable.
– Resource Pool: defaults to public resource pools.
– Traffic Ratio: defaults to 100 and supports a value range of 0 to 100.
– Specifications: Select available specifications based on the list displayed

on the console. The specifications in gray cannot be used in the current
environment. If there are no specifications after you select a public
resource pool, no public resource pool is available in the current
environment. In this case, use a dedicated resource pool or contact the
administrator to create a public resource pool.

– Compute Nodes: an integer ranging from 1 to 5. The default value is 1.
– Auto Stop: enables a service to automatically stop at a specified time. If

this function is not enabled, the real-time service continuously runs and
fees are incurred accordingly. Auto stop is enabled by default and its
default value is 1 hour later.
The auto stop options are 1 hour later, 2 hours later, 4 hours later, 6
hours later, and Custom. If you select Custom, enter any integer from 1
to 24 in the text box on the right.

NO TE

You can choose the package that you have bought when you select
specifications. On the configuration fee tab, you can view your remaining
package quota and how much you will pay for any extra usage.

3. After configuring resources, click Next and confirm the operation. Wait until
the status changes to Executed, which means the AI application has been
deployed as a real-time service.

Testing a Service
After the service is deployed, click Instance Details to go to the real-time service
details page. Click the Prediction tab to test the service.

Figure 4-30 Testing the service

The following describes the procedure for performing a service test after the
sound classification model is deployed as a service on the ExeML page.

1. After the model is deployed, you can add an audio file for test. On the ExeML
page, select the service deployment phase, click Instance Details to go to the

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 101

Model Deployment page, select the service in the Running status, click
Upload in the service test area, and upload a local audio file to perform the
test.

2. Click Predict to perform the test. After the prediction is complete, the result is
displayed in the Test Result pane on the right. If the model accuracy does not
meet your expectation, add audio files on the Label Data tab page, label the
files, and train and deploy the model again. Table 4-15 describes the
parameters in the prediction result. If you are satisfied with the model
prediction result, you can call the API to access the real-time service as
prompted.

Table 4-15 Parameters in the prediction result

Parameter Description

predicted_label Prediction type of the audio segment

score Confidence score for the predicated class

NO TE

A running real-time service keeps consuming resources. If you do not need to use the
real-time service, click Stop in the Version Manager pane to stop the service so that
charges will no longer be incurred. If you want to use the service again, click Start.

If you enable auto stop, the service automatically stops at the specified time and no
fees will be generated then.

4.6 Using ExeML for Text Classification

4.6.1 Preparing Text Classification Data
Before using ModelArts ExeML to build a model, upload data to an OBS bucket.
The OBS bucket and ModelArts must be in the same region.

Requirements on Datasets
● Files must be in TXT or CSV format, and cannot exceed 8 MB.
● Use line feed characters to separate rows in files, and each row of data

represents a labeled object.
● Currently, only Chinese is supported.

Uploading Data to OBS

In this section, the OBS console is used to upload data.

Requirements for files uploaded to OBS:
● If you do not need to upload training data in advance, create an empty folder

to store files generated in the future.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 102

● If you need to upload files to be labeled in advance, create an empty folder,
and save the files in the folder. An example of the file directory structure is /
bucketName/data/text.csv.

● A label name can contain a maximum of 32 characters, including Chinese
characters, letters, digits, hyphens (-), and underscores (_).

● If you want to upload labeled text files to an OBS bucket, upload them
according to the following specifications:

– The objects and files to be labels must be in the same directory. The
objects must be in one-to-one relationship with the files. For example, if
the object file name is COMMENTS_114745.txt, the label file name must
be COMMENTS_114745_result.txt.

The following shows an example of data file.
├─<dataset-import-path>
 │ COMMENTS_114732.txt
 │ COMMENTS_114732_result.txt
 │ COMMENTS_114745.txt
 │ COMMENTS_114745_result.txt
 │ COMMENTS_114945.txt
 │ COMMENTS_114945_result.txt

– The labeling objects and files are text files and correspond to each other
by line.

Procedures for uploading data from OBS:

Perform the following operations to import data to the dataset for model training
and building.

1. Log in to OBS Console and create a bucket in the same region as ModelArts.
If an available bucket exists, ensure that the OBS bucket and ModelArts are in
the same region.

2. Upload the local data to the OBS bucket. If you have a large amount of
data, use OBS Browser+ to upload data or folders. The uploaded data must
meet the dataset requirements of the ExeML project.

NO TE

● Upload data from unencrypted buckets. Otherwise, training will fail because data
cannot be decrypted.

● Training text files must be classified into at least two classes, and each class must
contain at least 20 rows.

Creating a Dataset

After data is prepared, create a dataset of the type supported by the project. For
details, see Creating a Dataset.

4.6.2 Creating a Text Classification Project
ModelArts ExeML supports sound classification, text classification, image
classification, predictive analytics, and object detection projects. You can create
any of them based on your needs. Perform the following operations to create an
ExeML project.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 103

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0306.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0307.html

Procedure
1. Log in to the ModelArts console. In the navigation pane, choose

Development Workspace > ExeML.
2. Click Create Project in the box of your desired project. The page for creating

an ExeML project is displayed.
3. On the displayed page, configure parameters by referring to Table 4-16. The

default billing mode is Pay-per-use.

Table 4-16 Parameters

Parameter Description

Name Name of a project
● Enter a maximum of 64 characters. Only digits, letters,

underscores (_), and hyphens (-) are allowed. This
parameter is mandatory.

● Start with a letter.
● The name must be unique.

Description Brief description of a project

Datasets You can select a dataset or click Create Dataset to create
one.
● Existing dataset: Select a dataset from the drop-down list

box. Only datasets of the same type are displayed.
● Creating a dataset: Click Create Dataset to create a

dataset. For details, see Creating a Dataset.

Output Path Select an OBS path for storing ExeML data.
NOTE

The output path stores all data generated in the ExeML project.

Training
Flavor

Select a training flavor for this ExeML project. You will be
billed based on different flavors.
NOTE

● You can choose the package that you have bought. In the
configuration fee area, you will see your remaining package
quota and how much you will pay for any extra usage.

4. Click Create Project. Then, the ExeML workflow is displayed.
5. Wait until the workflow of the text classification project executes the

following phases in sequence:

a. Label Data: Check data labeling.
b. Publish Dataset Version: Publish a version for the labeled dataset.
c. Check Data: Check whether any exception occurs in your dataset.
d. Classify Text: Train the dataset of the published version to generate a

model.
e. Register Model: Register the trained model with model management.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 104

f. Deploy Service: Deploy the generated model as a real-time service.

Quickly Searching for a Project
On the ExeML overview page, you can use the search box to quickly search for and
filter workflows based on the ExeML type (or project name).

1. Log in to the ModelArts console. In the navigation pane, choose
Development Workspace > ExeML.

2. In the search box above the ExeML project list, filter the desired workflows
based on the required property, such as name, status, project type, current
phase, and tag.

3. To adjust the basic settings of ExeML and select the columns you want to see,

click on the right of the search box.
Table Text Wrapping: This function is disabled by default. If you enable this
function, excess text will move down to the next line; otherwise, the text will
be truncated.
Operation Column: This function is disabled by default. If you enable this
function, the Operation column is always fixed at the rightmost position of
the table.
Custom Columns: By default, all items are selected. You can select columns
you want to see.

Figure 4-31 Customizing table columns

4. Click OK. Then, the columns will be displayed based on the settings.

5. To arrange ExeML projects by a specific property, click in the table
header.

4.6.3 Labeling Text Classification Data
After a project is created, you will be redirected to the new-version ExeML and the
project starts to run. When the data labeling phase changes to Awaiting

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 105

operation, manually confirm data labeling in the dataset. You can also add or
delete data in the dataset and modify labels.

Figure 4-32 Data labeling status

Double-click Label Data and click Instance Details. The data labeling page is
displayed.

Data Labeling for Text Classification
1. Select a text to be labeled in Labeling Objects and click different labels in the

Label Set area to label the text.
You can add only one label for a text object.

2. After confirming the file label, click Save Current Page in the lower right
corner to save the labeling.
If a large number of objects are included in Labeling Objects, the page
turning icon is displayed in the lower part of the area. After labeling objects
on this page, click Save Current Page before you turn to the next page. If you
turn pages before saving the labellings, the labeling information on the
previous page will be lost. You need to re-label for text data.

Figure 4-33 Data labeling - text classification

Adding or Deleting Data

In an ExeML project, the data source is the OBS directory corresponding to the
input path of the dataset. If the data in the directory cannot meet your
requirements, add or delete data on the ExeML page of ModelArts.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 106

● Adding a file
On the Unlabeled tab, click Add data in the top left corner. In the displayed
dialog box, select a local file and upload it.
The format of the file to be uploaded must meet requirement on datasets of
the text classification type.

● Deleting a text object
On the Labeled or Unlabeled tab page, select a text object to be deleted and
click Delete in the upper left corner. In the dialog box that is displayed,
confirm the deletion information and click OK.
On the Labeled tab page, you can tick Select Current Page and click Delete
to delete all text objects and their labeling information on the current page.

Modifying Labeled Data

For labeled text data, only labels of the text object can be deleted. To delete a
label, go to the Labeled tab, locate the label name area, and click the cross icon
next to the label. After the label is deleted, the text object is displayed on the
Unlabeled tab page.

Figure 4-34 Deleting a labeled text

Modifying a Label

After an ExeML project for text classification is created, you can modify labels
based on service changes, including label adding, modification, and deletion.

● Adding a label
On the Unlabeled tab, click the plus sign (+) on the right of Label Set. In the
Add Label dialog box that appears, set Label Name and Label Color, and
click OK.

● Modifying a label
On the Labeled tab, locate the All Labels area, and click the edit button in
the Operation column of the label you want to change. In the Modify Label
dialog box, set Label Name and Label Color and click OK.

● Deleting a label

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 107

In the lower part of All labels on the Labeled tab page, select a label to be
deleted and click the deletion icon in the Operation column. In the displayed
Delete dialog box, select Delete label or Delete the label and objects with
only the label, and click OK.

NO TE

The deleted labels cannot be recovered. Exercise caution when performing this
operation.

Resuming Workflow Execution

After confirming data labeling, return back to the new-version ExeML. Click Next.
Then, the workflow continues to run in sequence until all phases are executed.

Figure 4-35 Resuming the workflow execution

4.6.4 Training a Text Classification Model
After labeling the data, train a model. You can perform model training to obtain
the required text classification model. The text used for training has at least two
classifications (that is, more than two labels), and the number of texts in each
classification is more than 20. Before clicking Next, ensure that the labeled text
meets the requirements.

Procedure
1. On the ExeML page of the new version, click the name of the target project.

Then, click Instance Details on the labeling phase to label data.

Figure 4-36 Finding unlabeled files

2. Return to the labeling phase of the new-version ExeML, click Next and wait
until the workflow enters the training phase.

3. Wait until the training is complete. No manual operation is required. If you
close or exit the page, the system continues training until it is complete.

4. On the text classification phase, wait until the training status changes from
Running to Executed.

5. After the training, click on the text classification phase to view metric
information. For details about the evaluation result parameters, see Table
4-17.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 108

Table 4-17 Evaluation result parameters

Parameter Description

Recall Fraction of correctly predicted samples over all
samples predicted as a class. It shows the ability of a
model to distinguish positive samples.

Precision Fraction of correctly predicted samples over all
samples predicted as a class. It shows the ability of a
model to distinguish negative samples.

Accuracy Fraction of correctly predicted samples over all
samples. It shows the general ability of a model to
recognize samples.

F1 Score Harmonic average of the precision and recall of a
model. It is used to evaluate the quality of a model.
A high F1 score indicates a good model.

NO TE

An ExeML project supports multiple rounds of training, and each round generates a version.
For example, the first training version is 0.0.1, and the next version is 0.0.2. The trained
models can be managed by training version. After the trained model meets your
requirements, deploy the model as a service.

4.6.5 Deploying a Text Classification Service

Model Deployment
You can deploy a model as a real-time service that provides a real-time test UI
and monitoring capabilities. After the model is trained, you can deploy a
Successful version with ideal accuracy as a service. The procedure is as follows:

1. On the Dashboard page, after the service deployment status changes to
Awaiting input, double-click Deploy Service. On the configuration details
page, configure resource parameters.

2. On the service deployment page, select the resource specifications used for
model deployment.
– AI Application Source: defaults to the generated AI application.
– AI Application and Version: The current AI application version is

automatically selected, which is changeable.
– Resource Pool: defaults to public resource pools.
– Traffic Ratio: defaults to 100 and supports a value range of 0 to 100.
– Specifications: Select available specifications based on the list displayed

on the console. The specifications in gray cannot be used in the current
environment. If there are no specifications after you select a public
resource pool, no public resource pool is available in the current
environment. In this case, use a dedicated resource pool or contact the
administrator to create a public resource pool.

– Compute Nodes: an integer ranging from 1 to 5. The default value is 1.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 109

– Auto Stop: enables a service to automatically stop at a specified time. If
this function is not enabled, the real-time service continuously runs and
fees are incurred accordingly. Auto stop is enabled by default and its
default value is 1 hour later.

The auto stop options are 1 hour later, 2 hours later, 4 hours later, 6
hours later, and Custom. If you select Custom, enter any integer from 1
to 24 in the text box on the right.

NO TE

You can choose the package that you have bought when you select
specifications. On the configuration fee tab, you can view your remaining
package quota and how much you will pay for any extra usage.

3. After configuring resources, click Next and confirm the operation. Wait until
the status changes to Executed, which means the AI application has been
deployed as a real-time service.

Testing a Service

After the service is deployed, click Instance Details to go to the real-time service
details page. Click the Prediction tab to test the service.

Figure 4-37 Testing the service

The following describes the procedure for performing a service test after the text
classification model is deployed as a service on the ExeML page.

1. After the model is deployed, you can add a text file for test. On the ExeML
page, click the target project, go to the Model Deployment page, select the
service version in the Running state, and enter text to be tested in the text
box in the Service Test area.

2. Click Predict to perform the test. After the prediction is complete, the result is
displayed in the Test Result pane on the right. If the model accuracy does not
meet your expectation, add data on the Label Data tab page, label the data,
and train and deploy the model again. Table 4-18 describes the parameters in
the prediction result. If you are satisfied with the model prediction result, you
can call the API to access the real-time service as prompted.

Table 4-18 Parameters in the prediction result

Parameter Description

predicted_label Prediction type of the text

score Confidence score for the predicated class

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 110

NO TE

A running real-time service keeps consuming resources. If you do not need to use the
real-time service, click Stop in the Version Manager pane to stop the service so that
charges will no longer be incurred. If you want to use the service again, click Start.
If you enable auto stop, the service automatically stops at the specified time and no
fees will be generated then.

4.7 Tips

4.7.1 How Do I Quickly Create an OBS Bucket and a Folder
When Creating a Project?

When creating a project, select a training data path. This section describes how to
quickly create an OBS bucket and folder when you select the training data path.

1. On the page for creating an ExeML project, click on the right of Input
Dataset Path. The Input Dataset Path dialog box is displayed.

2. Click Create Bucket. The Create Bucket page is displayed. For details, see
Creating a Bucket in Object Storage Service Console Operation Guide.

Figure 4-38 Creating an OBS bucket

3. Select the bucket, and click Create Folder. In the dialog box that is displayed,
enter the folder name and click OK.
– The name cannot contain the following special characters: \/:*?"<>|
– The name cannot start or end with a period (.) or slash (/).
– The absolute path of a folder cannot exceed 1,023 characters.
– Any single slash (/) separates and creates multiple levels of folders at

once.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 111

https://support.huaweicloud.com/intl/en-us/qs-obs/obs_qs_0007.html

Figure 4-39 Creating a folder

4.7.2 Where Are Models Generated by ExeML Stored? What
Other Operations Are Supported?

Unified Model Management
For an ExeML project, after the model training is complete, the generated model is
automatically displayed on the AI Application Management > AI Applications
page. See the following figure. The model name is automatically generated by the
system. Its prefix is the same as the name of the ExeML project for easy
identification.

CA UTION

Models generated by ExeML cannot be downloaded.

Figure 4-40 Models generated by ExeML

What Other Operations Are Supported for Models Generated by ExeML?
● Deploying models as real-time, edge, and batch services

On the ExeML page, models can only be deployed as real-time services. You
can deploy models as batch services or edge services on the AI Application
Management > AI Applications page.

● Creating a version
When creating a new version, you can select a meta model only from a
ModelArts training job, OBS, model template, or custom image. You cannot
create a version from the original ExeML project.

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 112

● Deleting a model or its version

ModelArts
User Guide (ModelArts Standard) 4 Using ExeML for Zero-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 113

5 Using Workflows for Low-Code AI
Development

5.1 What Is Workflow?

MLOps Overview
Understanding MLOps is essential before learning about workflows.

Machine Learning Operations (MLOps) are a set of practices with machine
learning (ML) and DevOps combined. The ML development process consists of
project design, data engineering, model building, and model deployment. AI
development is not a unidirectional pipeline job. During development, multiple
iterations of experiments are performed based on the data and model results. To
achieve better model results, algorithm engineers perform diverse data processing
and model optimization based on the data features and labels of existing datasets.
Traditional AI development ends with a one-off delivery of the final model output
by iterative experimentation. As time passes after an application is released
however, model drift occurs, leading to worsening effects when applying new data
and features to the existing model. Iterative experimentation of MLOps forms a
fixed pipeline which contains data engineering, model algorithms, and training
configurations. You can use the pipeline to continuously perform iterative training
on data that is being continuously generated. This ensures that the model, built
using the pipeline, is always in an optimum state.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 114

Figure 5-1 MLOps

An entire MLOps link, which covers everything from algorithm development to
service delivery and O&M, requires an implementation tool. Originally, the
development and delivery processes were conducted separately. The models
developed by algorithm engineers were delivered to downstream system
engineers. In this process, algorithm engineers are highly involved, which is
different from MLOps. There are general delivery cooperation rules in each
enterprise. When it comes to project management, working process management
needs to be added to AI projects as the system does not simply build and manage
pipelines, but acts as a job management system.

The tool for the MLOps link must support the following features:

● Process analysis: Accumulated industry sample pipelines help you quickly
design AI projects and processes.

● Process definition and redefinition: You can use pipelines to quickly define AI
projects and design workflows for model training and release for inference.

● Resource allocation: You can use account management to allocate resource
quotas and permissions to participants (including developers and O&M
personnel) in the pipeline and view resource usage.

● Task arrangement: Sub-tasks can be arranged based on sub-pipelines.
Additionally, notifications can be enabled for efficient management and
collaboration.

● Process quality and efficiency evaluation: Pipeline execution views are
provided, and checkpoints for different phases such as data evaluation, model
evaluation, and performance evaluation are added so that AI project
managers can easily view the quality and efficiency of the pipeline execution.

● Process optimization: In each iteration of the pipeline, you can customize core
metrics and obtain affected data and causes. In this way, you can quickly
determine the next iteration based on these metrics.

Workflow Overview
A workflow is a pipeline tool developed based on service scenarios for deploying
models or applications. In ML, a pipeline may involve data labeling, data

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 115

processing, model development and training, model evaluation, application
development, and application evaluation.

Figure 5-2 Workflow

Different from traditional ML-based model building, workflows can be used to
develop production pipelines. Based on MLOps, workflows enable runtime
recording, monitoring, and continuous running. The development and continuous
iteration of a workflow are separated in products based on roles and concepts.

A pipeline consists of multiple phases. The functions required by the pipeline and
the function parameters are called through workflow SDKs. When developing a
pipeline, you can use SDKs to describe phases and the relationships between
phases. Developing a pipeline is the development state of the workflow. After a
pipeline is determined, you can consolidate and provide it for others to use. You
do not need to pay attention to what algorithms are used in the pipeline or how
the pipeline is implemented. Instead, you only need to check whether the models
or applications produced by the pipeline meet the release requirements. If not, you
need to check whether the data and parameters need to be adjusted for iteration.
Using such a consolidated pipeline is the running state of the workflow.

The development and running states of a workflow are as follows:

● Development state: Workflow Python SDKs are used to develop and debug a
pipeline.

● Running state: You can configure and run a produced pipeline in visualized
mode.

Leveraging DevOps principles and practices, workflows orchestrate ModelArts
capabilities to help you efficiently train, develop, and deploy AI models.

Different functions are implemented in the development and running states of a
workflow.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 116

Workflow Development State

Based on service requirements, you can use Python SDKs provided by ModelArts
workflows to offer each ModelArts capability as a step in a pipeline. This is a
familiar and flexible development mode for AI developers. Python SDKs support:

● Development and building: You can use Python code to create and orchestrate
workflows with flexibility.

● Commissioning: The debug and run modes are supported. The run mode
supports partial execution and fully execution of a workflow.

● Publishing: The debugged workflows can be fixed and published to the
running state for configuration and execution.

● Experiment record: for persistence and the management of experiments.

● Sharing: Workflows can be published to AI Gallery as assets and shared with
other users.

Workflow Running State

Workflows are executed in visualized mode. You only need to pay attention to
some simple parameter settings to start a workflow. Running workflows are
released from the development state or subscribed to from AI Gallery.

Running workflows are released from the development state or subscribed to from
AI Gallery.

A running workflow supports:

● Unified configuration management: The parameters and resources required
for a workflow are centrally managed.

● Easy-to-use operations: You can start, stop, retry, copy, and delete workflows.

● Running record: records historical running parameters and statuses of the
workflow.

Workflow Components

A workflow is the description of a directed acyclic graph (DAG). You can develop a
DAG through a workflow. A DAG consists of phases and the relationships between
phases. To define a DAG, specify the execution content and sequence on phases. A
green rectangle indicates a phase, and the link between phases shows the phase
relationship. A DAG is actually an ordered job execution template.

Sample Workflows

ModelArts provides abundant scenario-oriented sample workflows. You can
subscribe to them in AI Gallery.

5.2 Managing a Workflow

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 117

https://developer.huaweicloud.com/intl/en-us/develop/aigallery/workflow/list

5.2.1 Searching for a Workflow

Procedure
On the workflow list page, you can use the search box to quickly search for
workflows based on workflow properties.

1. Log in to the ModelArts console. In the navigation pane, choose
Development Workspace > Workflow.

2. In the search box above the workflow list, filter workflows based on the
required property, such as the name, status, current phase, start time, running
duration, or tag.

Figure 5-3 Property

3. Click on the right of the search box to set the content you want to display
on the workflow list page and modify other display settings.
– Table Text Wrapping: This feature is disabled by default. If you enable

this feature, excess text will move down to the next line; otherwise, the
text will be truncated.

– Operation Column: This feature is enabled by default. If you enable this
feature, the Operation column is always fixed at the rightmost position
of the table.

– Custom Columns: By default, all items are selected. You can select
columns you want to see.

4. Click OK.

5. To arrange workflows by a specific property, click in the table header.

Editing a Workflow Name and Tag
You can rename a workflow and add a tag to make it easier to find.

1. On the ModelArts console, choose Development Workspace > Workflow
from the navigation pane. The workflow list page is displayed.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 118

2. On the workflow list page, click the name of the target workflow.

3. Click in the upper left corner.

Figure 5-4 Editing a workflow

4. In the displayed dialog box, modify the workflow name and tag.
Enter a tag and click Add Tag. The new tag is displayed below. You can add
multiple tags at a time. After the tags are added, click Yes.

Figure 5-5 Adding a tag

5. Workflows with tags can be filtered by tag in the search box.

5.2.2 Viewing the Running Records of a Workflow
All runtime statuses of a workflow are recorded.

1. On the workflow list page, click the name of the target workflow.
2. On the workflow details page, view all runtime records of the workflow in the

left pane.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 119

Figure 5-6 Viewing execution records

3. Delete or edit the runtime records, or rerun the workflow.

– To delete a runtime record that is no longer needed, click Delete. In the
displayed dialog box, click Yes.

– To distinguish a runtime record from others, click Edit Tag to add a tag
to it.

– To rerun the workflow, click Rerun on a runtime record.

4. Filter and compare all runtime records of the workflow.

– Filter: You can filter all runtime records by status or tag.

Figure 5-7 Filtering

– Compare: You can compare all runtime records by status, execution
record, start time, duration, and metrics.

Figure 5-8 Comparison

After you click Start to run a workflow, the execution record list is refreshed. In
addition, the data is updated on both the DAG and dashboard. An execution
record is added after each startup.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 120

On the workflow details page, you can click any phase to view its information,
including attributes, input, output, and parameters.

5.2.3 Managing a Workflow

Starting a Workflow

Log in to the ModelArts console. In the navigation pane, choose Development
Workspace > Workflow.

You can run a workflow in any of the following ways:

● On the workflow list page, click Start in the Operation column. In the
displayed dialog box, click OK.

● On the runtime configuration page, click Start in the upper right corner. In
the displayed dialog box, click OK.

● On the workflow configuration page, click Start in the upper right corner. In
the displayed dialog box, click OK.

NO TE

After a workflow is started, you will be charged on a pay-per-use basis. After the
workflow is complete, you can stop it to avoid unnecessary fees.

Stopping a Workflow

Log in to the ModelArts console. In the navigation pane, choose Development
Workspace > Workflow.

You can stop a running workflow in either of the following ways:

● Workflow list page

When a workflow is running, the Stop button is available in the Operation
column. Click Stop. In the displayed dialog box, click OK.

● Click the name of a running workflow and click Stop in the upper right corner
of the displayed page. In the displayed dialog box, click OK.

NO TE

The Stop button is available only for a workflow that is running.

After a workflow is stopped, the associated training jobs and real-time services are
also stopped.

Copying a Workflow

A workflow can have only one running instance. If you want to concurrently run a
workflow, copy the workflow. To do so, click More in the Operation column and
select Copy. In the displayed dialog box, a new name is automatically generated
in the format of "Original workflow name_copy".

You can rename the new workflow. Ensure that the name complies with naming
specifications.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 121

NO TE

A workflow name is 1 to 64 characters long, starting with a letter and containing only
letters, digits, underscores (_), and hyphens (-).

Deleting a Workflow

Log in to the ModelArts console. In the navigation pane, choose Development
Workspace > Workflow.

You can delete a workflow in either of the following ways:

● Workflow list page

a. Click More in the Operation column and select Delete.
b. In the displayed dialog box, enter delete and click OK.

● Runtime configuration page
Click Delete in the upper right corner of the page. In the displayed dialog
box, enter DELETE and click OK.

NO TE

● Deleted workflows cannot be recovered.

● When a workflow is deleted, the associated real-time service or training job is not
deleted. You need to manually delete the real-time service or training job on the
Model Training > Training Jobs page or Model Deployment > Real-Time
Services page.

5.2.4 Retrying, Stopping, or Running a Workflow Phase

Retrying, Stopping, or Proceeding a Workflow Phase
● Retrying a phase

If executing a single phase failed, you can click Retry to re-execute the
current phase without restarting the workflow. Before the retry, you can
modify configurations on the Permission Management page. The
modification takes effect after the affected phase is retried.

● Stopping a phase
Click a phase to view its details. On this page, you can stop the running
phase.

● Proceeding a phase
If parameters need to be configured during the runtime of a single phase, the
phase is awaiting operation. After the parameters are configured, you can
click Proceed to proceed to the execution of the current phase.

Running Specific Workflow Phases

To reduce the time consumed by repeated execution in large-scale and complex
workflows, you can choose specific phases to execute in sequence.

To run specific workflow phases, specify the target phases when developing a
workflow. The procedure is as follows:

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 122

1. Predefine the phases you want to execute when you use the SDK to create a
workflow. For details, see Specifying Certain Phases to Run in a Workflow.

2. When configuring a workflow, enable Execute Certain Phases, select phases
to be executed, and configure parameters for these phases.

Figure 5-9 Partial execution

3. After saving the configuration, click Start to execute certain phases.

5.3 Workflow Development Command Reference

5.3.1 Core Concepts of Workflow Development

Workflow

A workflow is a DAG that consists of phases and the relationships between
phases.

A directed line segment shows the dependency between phases. The dependency
decides the order of phase execution. In this example, the workflow runs from left
to right after it starts. The DAG can handle the multi-branch structure as well. You
can design the DAG flexibly according to the real situation. In the multi-branch
situation, phases in parallel branches can run at the same time. For details, see
Configuring Multi-Branch Phase Data.

Table 5-1 Workflow

Parame
ter

Description Mandato
ry

Data Type

name Workflow name. The name can
contain a maximum of 64 characters,
including only letters, digits,
underscores (_), and hyphens (-), and
must start with a letter.

Yes str

desc Workflow description Yes str

steps Phases contained in a workflow Yes list[Step]

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 123

Parame
ter

Description Mandato
ry

Data Type

storages Unified storage objects No Storage or
list[Storage]

policy Workflow configuration policy, which is
used for partial execution

No Policy

Step
A step is the smallest unit of a workflow. In a DAG, a step is also a phase.
Different types of steps have different service abilities. The main parts of a step
are as follows.

Table 5-2 Step

Parame
ter

Description Man
dato
ry

Data Type

name Phase name. The name can contain a
maximum of 64 characters, including
only letters, digits, underscores (_), and
hyphens (-), and must start with a letter.

Yes str

title Title of a phase, which is displayed in the
DAG. If this parameter is not configured,
the name is displayed by default.

No str

step_typ
e

Type of a phase, which determines the
function of the phase

Yes enum

inputs Inputs of a phase No AbstractInput or
list[AbstractInput]

outputs Outputs of a phase No AbstractOutput or
list[AbstractOutpu
t]

properti
es

Node properties No dict

policy Phase execution policy, which includes
the phase scheduling interval, the phase
execution timeout interval, and the
option to skip phase execution

No StepPolicy

depend
_steps

List of dependency phases. This
parameter determines the DAG structure
and phase execution sequence.

No Step or list[Step]

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 124

Table 5-3 StepPolicy

Parameter Description Mandato
ry

Data Type

poll_interval_s
econds

Phase scheduling interval.
The default value is 1 second.

Yes str

max_execution
_minutes

Phase execution timeout
interval. The default value is
10080 minutes, that is, 7
days.

Yes str

skip_conditions Conditions that determine
whether a phase is skipped

No Condition or
condition list

Step is a superclass of a phase. It has a conceptual role and is not used directly by
you. Different types of phase are created based on functions, including
CreateDatasetStep, LabelingStep, DatasetImportStep, ReleaseDatasetStep,
JobStep, ModelStep, ServiceStep and ConditionStep. For details, see Creating
Workflow Phases.

Data
Data objects are used for phase input and are classified into the following types:

● Actual data objects, which are specified when you create a workflow
– Dataset: defines existing datasets. This object is used for data labeling

and model training.
– LabelTask: defines existing labeling jobs. This object is usually used for

data labeling and dataset version release.
– OBSPath: defines an OBS path. This object is used for model training,

dataset import, and model import.
– ServiceData: defines an existing service. This object is used only for

service update.
– SWRImage: defines an existing SWR path. This object is used for model

registration.
– GalleryModel: defines a model subscribed from AI Gallery. This object is

used for model registration.
● Placeholder data objects, which are specified when a workflow is running

– DatasetPlaceholder: defines datasets to be specified when a workflow is
running. This object is used for data labeling and model training.

– LabelTaskPlaceholder: defines labeling jobs to be specified when a
workflow is running. This object is used for data labeling and dataset
version release.

– OBSPlaceholder: defines an OBS path to be specified when a workflow is
running. This object is used for model training, dataset import, and model
import.

– ServiceUpdatePlaceholder: defines existing services to be specified when a
workflow is running. This object is used only for service update.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 125

– SWRImagePlaceholder: defines an SWR path to be specified when a
workflow is running. This object is used for model registration.

– ServiceInputPlaceholder: defines model information required for service
deployment when a workflow is running. This object is used only for
service deployment and update.

– DataSelector: supports multiple data types. Currently, this object can be
used only on the job phase (only OBS or datasets are supported).

● Data selection object:
DataConsumptionSelector: selects a valid output from the outputs of multiple
dependency phases as the data input. This object is usually used for
conditional branching. (When creating a workflow, the output of which
dependency phase will be used as the data input source is not specified. The
data input source should be automatically selected based on the actual
execution status of the dependency phases.)

Table 5-4 Dataset

Parameter Description Mandatory Data Type

dataset_name Dataset name Yes str

version_name Dataset version No str

Example:

 example = Dataset(dataset_name = "**", version_name = "**")
Obtain the dataset name and version name from ModelArts datasets.

NO TE

When a dataset is used as the input of a phase, configure version_name based on service
requirements. For example, version_name is not required for LabelingStep and
ReleaseDatasetStep, but mandatory for JobStep.

Table 5-5 LabelTask

Parameter Description Mandatory Data Type

dataset_name Dataset name Yes str

task_name Labeling job
name

Yes str

Example:

 example = LabelTask(dataset_name = "**", task_name = "**")
Obtain the dataset name and labeling job name from ModelArts datasets of the new version.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 126

Table 5-6 OBSPath

Parameter Description Mandatory Data Type

obs_path OBS path Yes str, Storage

Example:

example = OBSPath(obs_path = "**")
Obtain the OBS path from Object Storage Service.

Table 5-7 ServiceData

Parameter Description Mandatory Data Type

service_id Service ID Yes str

Example:

example = ServiceData(service_id = "**")
Obtain the service ID in ModelArts Real-Time Services. This object describes a specified real-time service
and is used for service update.

Table 5-8 SWRImage

Parameter Description Mandatory Data Type

swr_path SWR path to a
container image

Yes str

Example:

example = SWRImage(swr_path = "**")
Container image path, which is used as the input for model registration

Table 5-9 GalleryModel

Parameter Description Mandatory Data Type

subscription_id Subscription ID of
a subscribed
model

Yes str

version_num Version number
of a subscribed
model

Yes str

Example:

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 127

example = GalleryModel(subscription_id="**", version_num="**")
Subscribed model object, which is used as the input of the model registration phase

Table 5-10 DatasetPlaceholder

Parameter Description Mandatory Data Type

name Name Yes str

data_type Data Type No DataTypeEnum

delay Whether the data object
is configured when the
phase is running. The
default value is False.

No bool

default Default value of a data
object

No Dataset

Example:

example = DatasetPlaceholder(name = "**", data_type = DataTypeEnum.IMAGE_CLASSIFICATION)
Dataset object placeholder. Configure data_type to specify supported data types.

Table 5-11 OBSPlaceholder

Parameter Description Mandatory Data Type

name Name Yes str

object_type OBS object type. Only
"file" and "directory"
are supported.

Yes str

delay Whether the data
object is configured
when the phase is
running. The default
value is False.

No bool

default Default value of a data
object

No OBSPath

Example:

example = OBSPlaceholder(name = "**", object_type = "directory")
OBS object placeholder. You can set object_type to file or directory.

Table 5-12 LabelTaskPlaceholder

Parameter Description Mandatory Data Type

name Name Yes str

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 128

Parameter Description Mandatory Data Type

task_type Type of a labeling job No LabelTaskTypeEn
um

delay Whether the data object
is configured when the
phase is running. The
default value is False.

No bool

Example:

example = LabelTaskPlaceholder(name = "**")
LabelTask object placeholder

Table 5-13 ServiceUpdatePlaceholder

Parameter Description Mandatory Data Type

name Parameter Yes str

delay Whether the data object
is configured when the
phase is running. The
default value is False.

No bool

Example:

example = ServiceUpdatePlaceholder(name = "**")
ServiceData object placeholder, which is used as the input for service update

Table 5-14 SWRImagePlaceholder

Parameter Description Mandatory Data Type

name Name Yes str

delay Whether the data
object is configured
when the phase is
running. The default
value is False.

No bool

Example:

example = SWRImagePlaceholder(name = "**")
SWRImage object placeholder, which is used as the input for model registration

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 129

Table 5-15 ServiceInputPlaceholder

Parameter Description Mandatory Data Type

name Name Yes str

model_name Model name Yes str or Placeholder

model_versio
n

Model version No str

envs Environment variables No dict

delay Whether service
deployment
information is
configured when the
phase is running. The
default value is True.

No bool

Example:

example = ServiceInputPlaceholder(name = "**" , model_name = "model_name")
This object is used as the input for service deployment or service update.

Table 5-16 DataSelector

Parameter Description Mandatory Data Type

name Name Yes str

data_type_lis
t

Supported data types.
Currently, only obs and
dataset are supported.

Yes list

delay Whether the data
object is configured
when the phase is
running. The default
value is False.

No bool

Example:

example = DataSelector(name = "**" ,data_type_list=["obs", "dataset"])
This object is used as the input of the job phase.

Table 5-17 DataConsumptionSelector

Parameter Description Mandatory Data Type

data_list Output data objects of
a dependency phase

Yes list

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 130

Example:

example = DataConsumptionSelector(data_list=[step1.outputs["step1_output_name"].as_input(),
step2.outputs["step2_output_name"].as_input()])
Use the valid output from either step 1 or step 2 as the input. If step 1 is skipped and has no output, use
the valid output from step 2 as the input. (Make sure that data_list has only one valid output.)

5.3.2 Configuring Workflow Parameters

Description
A workflow parameter is a placeholder object that can be configured when the
workflow runs. The following data types are supported: int, str, bool, float, Enum,
dict, and list. You can display fields (such as algorithm hyperparameters) in a
phase as placeholders in a transparent way. You can modify and use the default
values that are set for them.

Parameter Overview (Placeholder)

Parameter Description Mandator
y

Data Type

name Parameter name, which must be
globally unique.

Yes str

placeholder
_type

Parameter type. The mapping
between placeholder types and
actual data types:
PlaceholderType.INT -> int
PlaceholderType.STR -> str
PlaceholderType.BOOL -> bool
PlaceholderType.FLOAT -> float
PlaceholderType.ENUM -> Enum
PlaceholderType.JSON -> dict
PlaceholderType.LIST -> list
● When the type is

PlaceholderType.ENUM, the
enum_list field cannot be empty.

● When the type is
PlaceholderType.LIST, the
placeholder_format field cannot
be empty and can only be set to
str, int, float, or bool, indicating
the data types in the list.

Yes PlaceholderT
ype

default Default parameter value. The data
type must be the same as that of
placeholder_type.

No Any

placeholder
_format

Supported data formats. Currently,
obs, flavor, train_flavor, swr, and
pacific are supported.

No str

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 131

Parameter Description Mandator
y

Data Type

delay Whether parameters are set when
the workflow is running. The default
value is False, indicating that
parameters are set before the
workflow runs. If the value is True,
parameters are set in an action of the
phase where they are needed.

No bool

description Parameter description. No str

enum_list List of enumerated values of a
parameter. This parameter is
mandatory only for parameters of
PlaceholderType.ENUM type.

No list

constraint Constraints on parameters. This
parameter only supports the
constraints of training specifications
and is not visible to you.

No dict

required Whether the parameter is mandatory.
● The default value is True.
● This parameter cannot be set to

False for Delay.
This parameter is optional at the
frontend during execution.

No bool

Examples
● Integer parameter

from modelarts import workflow as wf
wf.Placeholder(name="placeholder_int", placeholder_type=wf.PlaceholderType.INT, default=1,
description="This is an integer parameter.")

● String parameter
from modelarts import workflow as wf
wf.Placeholder(name="placeholder_str", placeholder_type=wf.PlaceholderType.STR,
default="default_value", description="This is a string parameter.")

● Bool parameter
from modelarts import workflow as wf
wf.Placeholder(name="placeholder_bool", placeholder_type=wf.PlaceholderType.BOOL, default=True,
description="This is a bool parameter.")

● Float parameter
from modelarts import workflow as wf
wf.Placeholder(name="placeholder_float", placeholder_type=wf.PlaceholderType.FLOAT, default=0.1,
description="This is a float parameter.")

● Enumeration parameter
from modelarts import workflow as wf
wf.Placeholder(name="placeholder_enum", placeholder_type=wf.PlaceholderType.ENUM, default="a",
enum_list=["a", "b"], description="This is an enumeration parameter.")

● Dictionary parameter

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 132

from modelarts import workflow as wf
wf.Placeholder(name="placeholder_dict", placeholder_type=wf.PlaceholderType.JSON, default={"key":
"value"}, description="This is a dictionary parameter.")

● List parameter
from modelarts import workflow as wf
wf.Placeholder(name="placeholder_list", placeholder_type=wf.PlaceholderType.LIST, default=[1, 2],
placeholder_format="int", description="This is a list parameter and its value is an integer.")

5.3.3 Configuring the Input and Output Paths of a Workflow

Description
Unified storage is used for workflow directory management. It centrally manages
all storage paths of a workflow with these functions:

● Input directory management: When developing a workflow, you can centrally
manage all data storage paths. You can store data and configure the root
directory based on your own requirements. This function orchestrates
directories but does not create them.

● Output directory management: When developing a workflow, you can
centrally manage all output paths. You do not need to create output
directories. Instead, you only need to configure the root path before the
workflow runs and view the output data in the specified directories based on
your directory orchestration rules. In addition, multiple executions of the same
workflow are output to different directories, isolating data for different
executions.

Common Usage
● InputStorage (Path concatenation)

This object is used to centrally manage input directories. The following is an
example:
import modelarts.workflow as wf
storage = wf.data.InputStorage(name="storage_name", title="title_info",
description="description_info") # Only name is mandatory.
input_data = wf.data.OBSPath(obs_path = storage.join("directory_path")) # Add a slash (/) after a
directory, for example, storage.join("/input/data/").

When a workflow is running, if the root path of the storage object is /root/, the obtained path will
be /root/directory_path.

● OutputStorage (Directory creation)
This object is used to centrally manage output directories and ensure that
multiple executions of the same workflow are output to different directories.
The following is an example:
import modelarts.workflow as wf
storage = wf.data.OutputStorage(name="storage_name", title="title_info",
description="description_info") # Only name is mandatory.
output_path = wf.data.OBSOutputConfig(obs_path = storage.join("directory_path")) # Only a
directory can be created but not files.

When a workflow is running, if the root path of the storage object is set to /root/, the system will
automatically create a relative directory and the obtained path will be /root/Execution ID/
directory_path.

Advanced Usage
Storage

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 133

This object contains capabilities of InputStorage and OutputStorage and can be
flexibly used based on your needs.

Parameter Description Manda
tory

Data Type

name Name. Yes str

title If this parameter is left blank, the
value of name is used by default.

No str

description Description. No str

create_dir Whether to create a directory. The
default value is False.

No bool

with_executio
n_id

Whether to combine execution_id
when a directory is created. The
default value is False. This
parameter can be set to True only
when create_dir is set to True.

No bool

The following is an example:

● Implementing InputStorage capabilities
import modelarts.workflow as wf
Create a Storage object (with_execution_id=False, create_dir=False).
storage = wf.data.Storage(name="storage_name", title="title_info", description="description_info",
with_execution_id=False, create_dir=False)
input_data = wf.data.OBSPath(obs_path = storage.join("directory_path")) # Add a slash (/) after a
directory, for example, storage.join("/input/data/").

When a workflow is running, if the root path of the storage object is /root/, the obtained path will
be /root/directory_path.

● Implementing OutputStorage capabilities
import modelarts.workflow as wf
Create a Storage object (with_execution_id=True, create_dir=True).
storage = wf.data.Storage(name="storage_name", title="title_info", description="description_info",
with_execution_id=True, create_dir=True)
output_path = wf.data.OBSOutputConfig(obs_path = storage.join("directory_path")) # Only a
directory can be created.

When a workflow is running, if the root path of the storage object is set to /root/, the system will
automatically create a relative directory and the obtained path will be /root/Execution ID/
directory_path.

● Implementing different capabilities of a Storage object through the join
method
import modelarts.workflow as wf
Create a Storage object. Assume that the root directory of the Storage object is /root/.
storage = wf.data.Storage(name="storage_name", title="title_info", description="description_info",
with_execution_id=False, create_dir=False)
input_data1 = wf.data.OBSPath(obs_path = storage) # The obtained path is /root/.
input_data2 = wf.data.OBSPath(obs_path = storage.join("directory_path")) # The obtained path is /
root/directory_path. Ensure that the path exists.
output_path1 = wf.data.OBSOutputConfig(obs_path = storage.join(directory="directory_path",
with_execution_id=False, create_dir=True)) # The system automatically creates a directory /root/
directory_path.
output_path2 = wf.data.OBSOutputConfig(obs_path = storage.join(directory="directory_path",
with_execution_id=True, create_dir=True)) # The system automatically creates a directory /root/
Execution ID/directory_path.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 134

Chain call is supported for Storage.

The following is an example:
import modelarts.workflow as wf
Create a base class Storage object. Assume that the root directory of the Storage object is /root/.
storage = wf.data.Storage(name="storage_name", title="title_info", description="description_info",
with_execution_id=False, create_dir=Fals)
input_storage = storage.join("directory_path_1") # The obtained path is /root/directory_path_1.
input_storage_next = input_storage.join("directory_path_2") # The obtained path is /root/directory_path_1/
directory_path_2.

Examples

Unified storage is mainly used in the job phase. The following code uses a
workflow that contains only the training phase as an example.

from modelarts import workflow as wf

Create an InputStorage object. Assume that the root directory of the Storage object is /root/input-data/.
input_storage = wf.data.InputStorage(name="input_storage", title="title_info",
description="description_info") # Only name is mandatory.

Create an OutputStorage object. Assume that the root directory of the Storage object is /root/output/.
output_storage = wf.data.OutputStorage(name="output_storage_name", title="title_info",
description="description_info") # Only name is mandatory.

Use JobStep to define a training phase, and set OBS paths for storing inputs and outputs.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image Classification Training", # Title, which defaults to the value of name
 algorithm=wf.AIGalleryAlgorithm(subscription_id="subscription_ID",
item_version_id="item_version_ID"), # Algorithm used for training. In this example, an algorithm subscribed
to from AI Gallery is used.
 inputs=[
 wf.steps.JobInput(name="data_url_1", data=wf.data.OBSPath(obs_path = input_storage.join("/
dataset1/new.manifest"))), # The obtained path is /root/input-data/dataset1/new.manifest.
 wf.steps.JobInput(name="data_url_2", data=wf.data.OBSPath(obs_path = input_storage.join("/
dataset2/new.manifest"))), # The obtained path is /root/input-data/dataset2/new.manifest.
],
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=output_storage.join("/model/"))), # The training output
path is /root/output/Execution ID/model/.
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")
),
 log_export_path=wf.steps.job_step.LogExportPath(obs_url=output_storage.join("/logs/")) # The log
output path is /root/output/Execution ID/logs/.
)# Training flavors
)

Define a workflow that contains only the job phase.
workflow = wf.Workflow(
 name="test-workflow",
 desc="this is a test workflow",
 steps=[job_step],
 storages=[input_storage, output_storage] # Add Storage objects used in this workflow.
)

Configuring Root Paths in the Development State

Use the run method of the workflow object, and input root paths in the text box
that is displayed when the workflow starts to run.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 135

Figure 5-10 Inputting root paths

You must enter a valid path. If the path does not exist, an error will occur. The
path format must be /Bucket name/Folder path/.

Configuring Root Paths in the Running State
Use the release method of the workflow object to release the workflow to the
running state. On the ModelArts console, go to the Workflow page, find the
target workflow, and configure root paths.

Figure 5-11 Configuring root paths

5.3.4 Creating Workflow Phases

5.3.4.1 Creating a Dataset Phase

Description
This phase integrates capabilities of the ModelArts dataset module, allowing you
to create datasets of the new version. This phase is used to centrally manage
existing data by creating datasets. It is usually followed by a dataset import phase
or a labeling phase.

Parameter Overview
You can use CreateDatasetStep to create a dataset creation phase. The following is
an example of defining a CreateDatasetStep.

Table 5-18 CreateDatasetStep

Paramet
er

Description Man
dato
ry

Data Type

name Name of a dataset creation phase. The
name contains a maximum of 64
characters, including only letters, digits,
underscores (_), and hyphens (-). It must
start with a letter and must be unique in
a workflow.

Yes str

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 136

Paramet
er

Description Man
dato
ry

Data Type

inputs Inputs of the dataset creation phase. Yes CreateDatasetIn-
put or a list of
CreateDatasetIn-
put

outputs Outputs of the dataset creation phase. Yes CreateDatasetOut
put or a list of
CreateDatasetOut
put

propertie
s

Configurations for dataset creation. Yes DatasetProperties

title Title for frontend display. No str

descripti
on

Description of the dataset creation
phase.

No str

policy Phase execution policy. No StepPolicy

depend_
steps

Dependent phases. No Step or step list

Table 5-19 CreateDatasetInput

Paramet
er

Description Man
dato
ry

Data Type

name Input name of the dataset creation
phase. The name can contain a
maximum of 64 characters, including
only letters, digits, underscores (_), and
hyphens (-), and must start with a letter.
The input name of a step must be
unique.

Yes str

data Input data object of the dataset creation
phase.

Yes OBS object.
Currently, only
OBSPath,
OBSConsumption,
OBSPlaceholder,
and
DataConsumption
Selector are
supported.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 137

Table 5-20 CreateDatasetOutput

Paramet
er

Description Man
dato
ry

Data Type

name Output name of the dataset creation
phase. The name can contain a
maximum of 64 characters, including
only letters, digits, underscores (_), and
hyphens (-), and must start with a letter.
The output name of a step must be
unique.

Yes str

config Output configurations of the dataset
creation phase.

Yes Currently, only
OBSOutputConfig
is supported.

Table 5-21 DatasetProperties

Paramet
er

Description Man
dat
ory

Data Type

dataset_
name

Dataset name. The value contains 1 to
100 characters. Only letters, digits,
underscores (_), and hyphens (-) are
allowed.

Yes str, Placeholder

dataset_f
ormat

Dataset format. The default value is 0,
indicating the file type.

No 0: file
1: table

data_typ
e

Data type. The default value is
FREE_FORMAT.

No DataTypeEnum

descripti
on

Description No str

import_d
ata

Whether to import data. The default
value is False. Currently, only table data
is supported.

No bool

work_pat
h_type

Type of the dataset output path.
Currently, only OBS is supported. The
default value is 0.

No int

import_c
onfig

Configurations for label import. The
default value is None. When creating a
dataset based on labeled data, you can
specify this parameter to import labeling
information.

No ImportConfig

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 138

Table 5-22 Importconfig

Parameter Description Man
dato
ry

Data Type

import_annotat
ions

Whether to automatically import
the labeling information in the
input directory, supporting
detection, image classification,
and text classification. The
options are as follows:
● true: The labeling information

in the input directory is
imported. (Default)

● false: The labeling information
in the input directory is not
imported.

No str, Placeholder

import_type Import mode. The options are as
follows:
● dir: imported from an OBS

path
● manifest: imported from a

manifest file

No 0: file type
ImportTypeEnum

annotation_for
mat_config

Configurations of the imported
labeling format.

No DAnnotationForm
aTypeEtConumfig
list

Table 5-23 AnnotationFormatConfig

Parameter Description Mand
atory

Data Type

format_name Name of a labeling format No AnnotationForma-
tEnum

scene Labeling scenario, which is
optional

No LabelTaskTypeEnu
m

Enumeration Value

ImportTypeEnum DIR
MANIFEST

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 139

Enumeration Value

DataTypeEnum IMAGE
TEXT
AUDIO
TABULAR
VIDEO
FREE_FORMAT

AnnotationFormatEnum MA_IMAGE_CLASSIFICATION_V1
MA_IMAGENET_V1
MA_PASCAL_VOC_V1
YOLO
MA_IMAGE_SEGMENTATION_V1
MA_TEXT_CLASSIFICATION_COMBINE_
V1
MA_TEXT_CLASSIFICATION_V1
MA_AUDIO_CLASSIFICATION_DIR_V1

Examples
There are two scenarios:

● Creating a dataset using unlabeled data
● Creating a dataset using labeled data with labels imported

Creating a dataset using unlabeled data

Data preparation: Store unlabeled data in an OBS folder.

from modelarts import workflow as wf
Use CreateDatasetStep to create a dataset of the new version using OBS data.

Define parameters of the dataset output path.
dataset_output_path = wf.Placeholder(name="dataset_output_path",
placeholder_type=wf.PlaceholderType.STR, placeholder_format="obs")

Define the dataset name.
dataset_name = wf.Placeholder(name="dataset_name", placeholder_type=wf.PlaceholderType.STR)

create_dataset = wf.steps.CreateDatasetStep(
 name="create_dataset", # Name of a dataset creation phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset Creation", # Title, which defaults to the value of name
 inputs=wf.steps.CreateDatasetInput(name="input_name",
data=wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")),#
CreateDatasetStep inputs, configured when the workflow is running; the data field can also be represented
by the wf.data.OBSPath(obs_path="fake_obs_path") object.
 outputs=wf.steps.CreateDatasetOutput(name="output_name",
config=wf.data.OBSOutputConfig(obs_path=dataset_output_path)),# CreateDatasetStep outputs
 properties=wf.steps.DatasetProperties(
 dataset_name=dataset_name, # If the dataset name does not exist, a dataset will be created using
this name. If the dataset name exists, the corresponding dataset will be used.
 data_type=wf.data.DataTypeEnum.IMAGE, # Data type of the dataset, for example, image

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 140

)
)
Ensure that the dataset name is not used by others under the account. Otherwise, the dataset created by
others will be used in the subsequent phases.

workflow = wf.Workflow(
 name="create-dataset-demo",
 desc="this is a demo workflow",
 steps=[create_dataset]
)

Creating a dataset using labeled data with labels imported

Data preparation: Store labeled data in an OBS folder.

For details about specifications for importing labeled data from an OBS directory,
see Specifications for Importing Data from an OBS Directory.

from modelarts import workflow as wf
Use CreateDatasetStep to create a dataset of the new version using OBS data.

Define parameters of the dataset output path.
dataset_output_path = wf.Placeholder(name="dataset_placeholder_name",
placeholder_type=wf.PlaceholderType.STR, placeholder_format="obs")

Define the dataset name.
dataset_name = wf.Placeholder(name="dataset_placeholder_name",
placeholder_type=wf.PlaceholderType.STR)

create_dataset = wf.steps.CreateDatasetStep(
 name="create_dataset", # Name of a dataset creation phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset Creation", # Title, which defaults to the value of name
 inputs=wf.steps.CreateDatasetInput(name="input_name",
data=wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")),#
CreateDatasetStep inputs, configured when the workflow is running; the data field can also be represented
by the wf.data.OBSPath(obs_path="fake_obs_path") object.
 outputs=wf.steps.CreateDatasetOutput(name="output_name",
config=wf.data.OBSOutputConfig(obs_path=dataset_output_path)),# CreateDatasetStep outputs
 properties=wf.steps.DatasetProperties(
 dataset_name=dataset_name, # If the dataset name does not exist, a dataset will be created using
this name. If the dataset name exists, the corresponding dataset will be used.
 data_type=wf.data.DataTypeEnum.IMAGE, # Data type of the dataset, for example, image
 import_config=wf.steps.ImportConfig(
 annotation_format_config=[
 wf.steps.AnnotationFormatConfig(
 format_name=wf.steps.AnnotationFormatEnum.MA_IMAGE_CLASSIFICATION_V1, # Labeling
format of labeled data
 scene=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION # Labeling scene
]
)
)
)
Ensure that the dataset name is not used by others under the account. Otherwise, the dataset created by
others will be used in the subsequent phases.

workflow = wf.Workflow(
 name="create-dataset-demo",
 desc="this is a demo workflow",
 steps=[create_dataset]
)

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 141

5.3.4.2 Creating a Dataset Labeling Phase

Description
This phase integrates capabilities of the ModelArts dataset module, allowing you
to label datasets. The labeling phase is used to create labeling jobs or label
existing jobs.

Parameter Overview
You can use LabelingStep to create a labeling phase. The following is an example
of defining a LabelingStep.

Table 5-24 LabelingStep

Parameter Description Mandatory Data Type

name Name of a labeling
phase. The name
contains a
maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-). It
must start with a
letter and must be
unique in a
workflow.

Yes str

inputs Inputs of the
labeling phase.

Yes LabelingInput or
LabelingInput list

outputs Outputs of the
labeling phase.

Yes LabelingOutput or
LabelingOutput
list

properties Configurations for
dataset labeling.

Yes LabelTaskProper-
ties

title Title for frontend
display.

No str

description Description of the
labeling phase.

No str

policy Phase execution
policy.

No StepPolicy

depend_steps Dependent phases. No Step or step list

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 142

Table 5-25 LabelingInput

Parameter Description Mandatory Data Type

name Input name of the
labeling phase. The
name can contain
a maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-),
and must start
with a letter. The
input name of a
step must be
unique.

Yes str

data Input data object
of the labeling
phase.

Yes Dataset or
labeling job
object. Currently,
only Dataset,
DatasetConsumpti
on,
DatasetPlacehold-
er, LabelTask,
LabelTaskPlacehol
der,
LabelTaskConsum
ption, and
DataConsumption
Selector are
supported.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 143

Table 5-26 LabelingOutput

Parameter Description Mandatory Data Type

name Output name of
the labeling phase.
The name can
contain a
maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-),
and must start
with a letter. The
output name of a
step must be
unique.

Yes str

Table 5-27 LabelTaskProperties

Parameter Description Mandatory Data Type

task_type Type of a labeling
job. Jobs of the
specified type are
returned.

Yes LabelTaskTypeEnu
m

task_name Labeling job name.
The value contains
1 to 100
characters,
including only
letters, digits,
hyphens (-), and
underscores (_).
This parameter is
mandatory when
the input is a
dataset object.

No str, Placeholder

labels Labels to be
created.

No Label

properties Attributes of a
labeling job. You
can update this
field to record
custom
information.

No dict

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 144

Parameter Description Mandatory Data Type

auto_sync_datase
t

Whether to
automatically
synchronize the
result of a labeling
job to the dataset.
The options are as
follows:
● true: The

labeling result
of the labeling
job is
automatically
synchronized to
the dataset.
(Default)

● false: The
labeling result
of the labeling
job is not
automatically
synchronized to
the dataset.

No bool

content_labeling Whether to enable
content labeling
for speech
paragraph labeling.
This function is
enabled by default.

No bool

description Labeling job
description. The
description
contains 0 to 256
characters and
does not support
the following
special characters:
^!<>=&"'

No str

Table 5-28 Label

Parameter Description Mand
atory

Data Type

name Tag name No str

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 145

Parameter Description Mand
atory

Data Type

property Basic attribute key-
value pair of a
label, such as color
and shortcut keys

No str, dic, Placeholder

type Tag type No LabelTypeEnum

Enumeration Value

LabelTaskTypeEnum IMAGE_CLASSIFICATION
OBJECT_DETECTION
IMAGE_SEGMENTATION
TEXT_CLASSIFICATION
NAMED_ENTITY_RECOGNITION
TEXT_TRIPLE
AUDIO_CLASSIFICATION
SPEECH_CONTENT
SPEECH_SEGMENTATION
DATASET_TABULAR
VIDEO_ANNOTATION
FREE_FORMAT

Sample Code of a Dataset Labeling Phase
There are three scenarios:

● Scenario 1: Creating a labeling job for a specified dataset and labeling the
dataset
Scenarios:
– You have created only one unlabeled dataset and need to label it when

the workflow is running.
– After a dataset is imported, the dataset needs to be labeled.
Data preparation: Create a dataset on the ModelArts console.
from modelarts import workflow as wf
Use LabelingStep to create a labeling job for the input dataset and label it.

Define an input dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Define the name parameters of the labeling job.
task_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

labeling = wf.steps.LabelingStep(
 name="labeling", # Name of the labeling phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 146

unique in a workflow.
 title="Dataset Labeling", # Title, which defaults to the value of name
 properties=wf.steps.LabelTaskProperties(
 task_type=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION, # Labeling job type, for
example, image classification
 task_name=task_name # If the labeling job name does not exist, a job will be created using
this name. If the labeling job name exists, the corresponding job will be used.
),
 inputs=wf.steps.LabelingInput(name="input_name", data=dataset), # LabelingStep inputs. The
dataset object is configured when the workflow is running. You can also use
wf.data.Dataset(dataset_name="fake_dataset_name") for the data field.
 outputs=wf.steps.LabelingOutput(name="output_name"), # LabelingStep outputs
)

workflow = wf.Workflow(
 name="labeling-step-demo",
 desc="this is a demo workflow",
 steps=[labeling]
)

● Scenario 2: Labeling a specified job
Scenarios:
– You have created a labeling job and need to label it when the workflow is

running.
– After a dataset is imported, the dataset needs to be labeled.
Data preparation: Create a labeling job using a specified dataset on the
ModelArts console.
from modelarts import workflow as wf
Input a labeling job and label it.

Define a dataset labeling job.
label_task = wf.data.LabelTaskPlaceholder(name="label_task_placeholder_name")

labeling = wf.steps.LabelingStep(
 name="labeling", # Name of the labeling phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Dataset Labeling", # Title, which defaults to the value of name
 inputs=wf.steps.LabelingInput(name="input_name", data=label_task), # LabelingStep inputs. The
labeling job object is configured when the workflow is running. You can also use
wf.data.LabelTask(dataset_name="dataset_name", task_name="label_task_name") for the data
field.
 outputs=wf.steps.LabelingOutput(name="output_name"), # LabelingStep outputs
)

workflow = wf.Workflow(
 name="labeling-step-demo",
 desc="this is a demo workflow",
 steps=[labeling]
)

● Scenario 3: Creating a labeling job based on the output of the dataset
creation phase
Scenario: The outputs of the dataset creation phase are used as the inputs of
the labeling phase.
from modelarts import workflow as wf

Define parameters of the dataset output path.
dataset_output_path = wf.Placeholder(name="dataset_output_path",
placeholder_type=wf.PlaceholderType.STR, placeholder_format="obs")

Define the dataset name.
dataset_name = wf.Placeholder(name="dataset_name", placeholder_type=wf.PlaceholderType.STR)

create_dataset = wf.steps.CreateDatasetStep(

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 147

 name="create_dataset", # Name of a dataset creation phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Dataset Creation", # Title, which defaults to the value of name
 inputs=wf.steps.CreateDatasetInput(name="input_name",
data=wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")),#
CreateDatasetStep inputs, configured when the workflow is running; the data field can also be
represented by the wf.data.OBSPath(obs_path="fake_obs_path") object.
 outputs=wf.steps.CreateDatasetOutput(name="create_dataset_output",
config=wf.data.OBSOutputConfig(obs_path=dataset_output_path)),# CreateDatasetStep outputs
 properties=wf.steps.DatasetProperties(
 dataset_name=dataset_name, # If the dataset name does not exist, a dataset will be created
using this name. If the dataset name exists, the corresponding dataset will be used.
 data_type=wf.data.DataTypeEnum.IMAGE, # Data type of the dataset, for example, image
)
)

Define the name parameters of the labeling job.
task_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

labeling = wf.steps.LabelingStep(
 name="labeling", # Name of the labeling phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Dataset Labeling", # Title, which defaults to the value of name
 properties=wf.steps.LabelTaskProperties(
 task_type=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION, # Labeling job type, for
example, image classification
 task_name=task_name # If the labeling job name does not exist, a job will be created using
this name. If the labeling job name exists, the corresponding job will be used.
),
 inputs=wf.steps.LabelingInput(name="input_name",
data=create_dataset.outputs["create_dataset_output"].as_input()), # LabelingStep inputs. The data
source is the outputs of the dataset creation phase.
 outputs=wf.steps.LabelingOutput(name="output_name"), # LabelingStep outputs
 depend_steps=create_dataset # Preceding dataset creation phase
)
create_dataset is an instance of wf.steps.CreateDatasetStep. create_dataset_output is the name
field value of wf.steps.CreateDatasetOutput.

workflow = wf.Workflow(
 name="labeling-step-demo",
 desc="this is a demo workflow",
 steps=[create_dataset, labeling]
)

5.3.4.3 Creating a Dataset Import Phase

Description
This phase integrates capabilities of the ModelArts dataset module, allowing you
to import data to datasets. The dataset import phase is used to import data from
a specified path to a dataset or a labeling job. The application scenarios are as
follows:

● This phase is used for continuous data update. You can import raw data or
labeled data to a labeling job and label the data in the labeling phase.

● Some labeled raw data can be directly imported to a dataset or labeling job,
and the dataset with version information can be obtained in the dataset
release phase.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 148

Parameter Overview
You can use DatasetImportStep to create a dataset import phase. The following is
an example of defining a DatasetImportStep.

Table 5-29 DatasetImportStep

Parameter Description Mandator
y

Data Type

name Name of a dataset
import phase. The
name contains a
maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-). It
must start with a
letter and must be
unique in a
workflow.

Yes str

inputs Inputs of the
dataset import
phase.

Yes DatasetImportInput or
DatasetImportInput list

outputs Outputs of the
dataset import
phase.

Yes DatasetImportOutput or
DatasetImportOutput list

properties Configurations for
dataset import.

Yes ImportDataInfo

title Title for frontend
display.

No str

description Description of the
dataset import
phase.

No str

policy Phase execution
policy.

No StepPolicy

depend_steps Dependent phases. No Step or step list

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 149

Table 5-30 DatasetImportInput

Parameter Description Mandator
y

Data Type

name Input name of the
dataset import
phase. The name
can contain a
maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-),
and must start
with a letter. The
input name of a
step must be
unique.

Yes str

data Input data object
of the dataset
import phase.

Yes Dataset, OBS, or labeling
job object. Currently, only
Dataset,
DatasetConsumption,
DatasetPlaceholder,
OBSPath,
OBSConsumption,
OBSPlaceholder,
LabelTask,
LabelTaskPlaceholder,
LabelTaskConsumption,
and DataConsumptionSe-
lector are supported.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 150

Table 5-31 DatasetImportOutput

Parameter Description Mandatory Data Type

name Output name of
the dataset import
phase. The name
can contain a
maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-),
and must start
with a letter. The
output name of a
step must be
unique.

Yes str

Table 5-32 ImportDataInfo

Parameter Description Mandatory Data Type

annotation_form
at_config

Configurations of
the imported
labeling format.

No AnnotationFormat
Config

excluded_labels Samples with
specified labels are
not imported.

No Label list

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 151

Parameter Description Mandatory Data Type

import_annotate
d

Whether to import
the labeled
samples in the
original dataset to
the To Be
Confirmed tab.
The default value
is false, indicating
that the labeled
samples in the
original dataset
are not imported
to the To Be
Confirmed tab.
The options are as
follows:
● true: The

labeled samples
in the original
dataset are
imported to the
To Be
Confirmed tab.

● false: The
labeled samples
in the original
dataset are not
imported to the
To Be
Confirmed tab.

No bool

import_annotatio
ns

Whether to import
labels. The options
are as follows:
● true: The labels

are imported.
(Default)

● false: The labels
are not
imported.

No bool

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 152

Parameter Description Mandatory Data Type

import_samples Whether to import
samples. The
options are as
follows:
● true: The

samples are
imported.
(Default)

● false: The
samples are not
imported.

No bool

import_type Import mode. The
options are as
follows:
● dir: imported

from an OBS
path

● manifest:
imported from
a manifest file

No ImportTypeEnum

included_labels Samples with
specified labels are
imported.

No Label list

label_format Label format. This
parameter is used
only for text
datasets.

No LabelFormat

Table 5-33 AnnotationFormatConfig

Parameter Description Mandator
y

Data Type

format_name Name of a labeling
format

No AnnotationForma-
tEnum

parameters Advanced parameters of
the labeling format

No AnnotationFormat
Parameters

scene Labeling scenario, which is
optional

No LabelTaskTypeEnu
m

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 153

Table 5-34 AnnotationFormatParameters

Parameter Description Mandatory Data Type

difficult_only Whether to import only
hard examples. The
options are as follows:
● true: Only hard

examples are imported.
● false: All the samples

are imported. (Default)

No bool

included_labels Samples with specified
labels are imported.

No Label list

label_separator Separator between labels.
By default, the comma (,)
is used as the separator.
The separator needs to be
escaped. The separator
can contain only one
character, which must be a
letter, a digit, or any of
the following special
characters: !@#$
%^&*_=|?/':.;,

No str

sample_label_sep
arator

Separator between the
text and label. By default,
the Tab key is used as the
separator. The separator
needs to be escaped. The
separator can contain only
one character, which must
be a letter, a digit, or any
of the following special
characters: !@#$
%^&*_=|?/':.;,

No str

Examples
There are three scenarios:

● Scenario 1: Updating a dataset by importing data from a specified path
– You import labeled data (with label information) in a specified path to a

dataset. Then, you can create a dataset release phase to release a
version.
Data preparation: Create a dataset on the ModelArts console and upload
labeled data to OBS.
from modelarts import workflow as wf
Use DatasetImportStep to import data in a specified path to a dataset and output the dataset.

Define a dataset.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 154

dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Define OBS data.
obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") #
object_type must be file or directory.

dataset_import = wf.steps.DatasetImportStep(
 name="data_import", # Name of the dataset import phase. The name contains a maximum
of 64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start
with a letter and must be unique in a workflow.
 title="Dataset Import", # Title, which defaults to the value of name
 inputs=[
 wf.steps.DatasetImportInput(name="input_name_1", data=dataset), # The target dataset
is configured when the workflow is running. You can also use
wf.data.Dataset(dataset_name="dataset_name") for the data field.
 wf.steps.DatasetImportInput(name="input_name_2", data=obs) # Storage path to the
imported dataset, configured when the workflow is running. You can also use
wf.data.OBSPath(obs_path="obs_path") for the data field.
],# DatasetImportStep inputs
 outputs=wf.steps.DatasetImportOutput(name="output_name"), # DatasetImportStep outputs
 properties=wf.steps.ImportDataInfo(
 annotation_format_config=[
 wf.steps.AnnotationFormatConfig(
 format_name=wf.steps.AnnotationFormatEnum.MA_IMAGE_CLASSIFICATION_V1, #
Labeling format of labeled data, for example, image classification
 scene=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION # Labeling scene
)
]
)
)

workflow = wf.Workflow(
 name="dataset-import-demo",
 desc="this is a demo workflow",
 steps=[dataset_import]
)

– You import unlabeled data in a specified path to a dataset. Then, you can
add a labeling phase to label the imported data.

Data preparation: Create a dataset on the ModelArts console and upload
unlabeled data to OBS.
from modelarts import workflow as wf
Use DatasetImportStep to import data in a specified path to a dataset and output the dataset.

Define a dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Define OBS data.
obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") #
object_type must be file or directory.

dataset_import = wf.steps.DatasetImportStep(
 name="data_import", # Name of the dataset import phase. The name contains a maximum
of 64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start
with a letter and must be unique in a workflow.
 title="Dataset Import", # Title, which defaults to the value of name
 inputs=[
 wf.steps.DatasetImportInput(name="input_name_1", data=dataset), # The target dataset
is configured when the workflow is running. You can also use
wf.data.Dataset(dataset_name="dataset_name") for the data field.
 wf.steps.DatasetImportInput(name="input_name_2", data=obs) # Storage path to the
imported dataset, configured when the workflow is running. You can also use
wf.data.OBSPath(obs_path="obs_path") for the data field.
],# DatasetImportStep inputs
 outputs=wf.steps.DatasetImportOutput(name="output_name"), # DatasetImportStep outputs
)

workflow = wf.Workflow(

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 155

 name="dataset-import-demo",
 desc="this is a demo workflow",
 steps=[dataset_import]
)

● Scenario 2: Updating a labeling job by importing data from a specified path
– You import labeled data in a specified path to a labeling job. Then, you

can create a dataset release phase to release a version.
Data preparation: Create a labeling job using a specified dataset and
upload the labeled data to OBS.
from modelarts import workflow as wf
Use DatasetImportStep to import data in a specified path to a labeling job and output the
labeling job.

Define a labeling job.
label_task = wf.data.LabelTaskPlaceholder(name="label_task_placeholder_name")

Define the OBS data.
obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") #
object_type must be file or directory.

dataset_import = wf.steps.DatasetImportStep(
 name="data_import", # Name of the dataset import phase. The name contains a maximum
of 64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start
with a letter and must be unique in a workflow.
 title="Dataset Import", # Title, which defaults to the value of name
 inputs=[
 wf.steps.DatasetImportInput(name="input_name_1", data=label_task), # Labeling job
object, configured when the workflow is running. You can also use
wf.data.LabelTask(dataset_name="dataset_name", task_name="label_task_name") for the
data field.
 wf.steps.DatasetImportInput(name="input_name_2", data=obs) # Storage path to the
imported dataset, configured when the workflow is running. You can also use
wf.data.OBSPath(obs_path="obs_path") for the data field.
],# DatasetImportStep inputs
 outputs=wf.steps.DatasetImportOutput(name="output_name"), # DatasetImportStep outputs
 properties=wf.steps.ImportDataInfo(
 annotation_format_config=[
 wf.steps.AnnotationFormatConfig(
 format_name=wf.steps.AnnotationFormatEnum.MA_IMAGE_CLASSIFICATION_V1, #
Labeling format of labeled data, for example, image classification
 scene=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION # Labeling scene
)
]
)
)

workflow = wf.Workflow(
 name="dataset-import-demo",
 desc="this is a demo workflow",
 steps=[dataset_import]
)

– You import unlabeled data in a specified path to a labeling job. Then, you
can add a labeling phase to label the imported data.
Data preparation: Create a labeling job using a specified dataset and
upload the unlabeled data to OBS.
from modelarts import workflow as wf
Use DatasetImportStep to import data in a specified path to a labeling job and output the
labeling job.

Define a labeling job.
label_task = wf.data.LabelTaskPlaceholder(name="label_task_placeholder_name")

Define the OBS data.
obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") #

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 156

object_type must be file or directory.

dataset_import = wf.steps.DatasetImportStep(
 name="data_import", # Name of the dataset import phase. The name contains a maximum
of 64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start
with a letter and must be unique in a workflow.
 title="Dataset Import", # Title, which defaults to the value of name
 inputs=[
 wf.steps.DatasetImportInput(name="input_name_1", data=label_task), # Labeling job
object, configured when the workflow is running. You can also use
wf.data.LabelTask(dataset_name="dataset_name", task_name="label_task_name") for the
data field.
 wf.steps.DatasetImportInput(name="input_name_2", data=obs) # Storage path to the
imported dataset, configured when the workflow is running. You can also use
wf.data.OBSPath(obs_path="obs_path") for the data field.
],# DatasetImportStep inputs
 outputs=wf.steps.DatasetImportOutput(name="output_name"), # DatasetImportStep outputs
)

workflow = wf.Workflow(
 name="dataset-import-demo",
 desc="this is a demo workflow",
 steps=[dataset_import]
)

● Scenario 3: Creating a dataset import phase using the outputs of the dataset
creation phase.
from modelarts import workflow as wf
Use DatasetImportStep to import data in a specified path to a dataset and output the dataset.

Define the OBS data.
obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") #
object_type must be file or directory.

dataset_import = wf.steps.DatasetImportStep(
 name="data_import", # Name of the dataset import phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Dataset Import", # Title, which defaults to the value of name
 inputs=[
 wf.steps.DatasetImportInput(name="input_name_1",
data=create_dataset.outputs["create_dataset_output"].as_input()), # The outputs of the dataset
creation phase are used as the inputs of the dataset import phase.
 wf.steps.DatasetImportInput(name="input_name_2", data=obs) # Storage path to the imported
dataset, configured when the workflow is running. You can also use
wf.data.OBSPath(obs_path="obs_path") for the data field.
],# DatasetImportStep inputs
 outputs=wf.steps.DatasetImportOutput(name="output_name"), # DatasetImportStep outputs
 depend_steps=create_dataset # Preceding dataset creation phase
)
create_dataset is an instance of wf.steps.CreateDatasetStep. create_dataset_output is the name
field value of wf.steps.CreateDatasetOutput.

workflow = wf.Workflow(
 name="dataset-import-demo",
 desc="this is a demo workflow",
 steps=[dataset_import]
)

5.3.4.4 Creating a Dataset Release Phase

Description

This phase integrates capabilities of the ModelArts dataset module, enabling
automatic dataset version release. The dataset release phase is used to release
versions of existing datasets or labeling jobs. Each version is a data snapshot and

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 157

can be used for subsequent data source tracing. The application scenarios are as
follows:

● After data labeling is completed, a dataset version can be automatically
released and used as inputs in subsequent phases.

● When data update is required for model training, you can use the dataset
import phase to import data and then use the dataset release phase to
release a version for subsequent phases.

Parameter Overview
You can use ReleaseDatasetStep to create a dataset release phase. The following is
an example of defining a ReleaseDatasetStep.

Table 5-35 ReleaseDatasetStep

Parameter Description Mandator
y

Data Type

name Name of a dataset release
phase. The name contains a
maximum of 64 characters,
including only letters, digits,
underscores (_), and hyphens
(-). It must start with a letter
and must be unique in a
workflow.

Yes str

inputs Inputs of the dataset release
phase.

Yes ReleaseDatasetInput
or ReleaseDatasetIn-
put list

outputs Outputs of the dataset
release phase.

Yes ReleaseDatasetOut-
put or
ReleaseDatasetOut-
put list

title Title for frontend display. No str

description Description of the dataset
release phase.

No str

policy Phase execution policy. No StepPolicy

depend_st
eps

Dependent phases. No Step or step list

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 158

Table 5-36 ReleaseDatasetInput

Parameter Description Mandator
y

Data Type

name Input name of the dataset
release phase. The name can
contain a maximum of 64
characters, including only
letters, digits, underscores
(_), and hyphens (-), and
must start with a letter. The
input name of a step must be
unique.

Yes str

data Input data object of the
dataset release phase.

Yes Dataset or labeling
job object. Currently,
only Dataset,
DatasetConsumption
, DatasetPlaceholder,
LabelTask,
LabelTaskPlacehold-
er,
LabelTaskConsump-
tion, and
DataConsumptionSe-
lector are supported.

Table 5-37 ReleaseDatasetOutput

Parameter Description Mandator
y

Data Type

name Output name of the dataset
release phase. The name can
contain a maximum of 64
characters, including only
letters, digits, underscores (_),
and hyphens (-), and must
start with a letter. The output
name of a step must be
unique.

Yes str

dataset_ver
sion_config

Configurations for dataset
version release.

Yes DatasetVersionCon-
fig

Table 4 DatasetVersionConfig

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 159

Parameter Description Mandato
ry

Data Type

version_na
me

Dataset version name. By
default, the dataset version is
named in ascending order of
V001 and V002.

No str or Placeholder

version_for
mat

Version format, which defaults
to Default. You can also set it
to CarbonData.

No str

train_evalu
ate_sample
_ratio

Ratio between the training set
and validation set, which
defaults to 1.00. The value
ranges from 0 to 1.00. For
example, 0.8 indicates the
ratio for the training set is
80%, and that for the
validation set is 20%.

No str or Placeholder

clear_hard_
property

Whether to clear hard
examples. The default value is
True.

No bool or Placeholder

remove_sa
mple_usage

Whether to clear existing
usage information of a
dataset. The default value is
True.

No bool or Placeholder

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 160

Parameter Description Mandato
ry

Data Type

label_task_t
ype

Type of a labeling job. If the
input is a dataset, this field is
mandatory and is used to
specify the labeling scenario
of the dataset version. If the
input is a labeling job, this
field does not need to be
configured.

No LabelTaskTypeEnum
The following types
are supported:
● IMAGE_CLASSIFIC

ATION
● OBJECT_DETECTI

ON = 1
● IMAGE_SEGMEN

TATION
● TEXT_CLASSIFICA

TION
● NAMED_ENTITY_

RECOGNITION
● TEXT_TRIPLE
● AUDIO_CLASSIFI

CATION
● SPEECH_CONTEN

T and
SPEECH_SEGMEN
TATION

● TABLE
● VIDEO_ANNOTAT

ION

description Version description. No str

NO TE

If there is no special requirement, use the default values.

Examples
Scenario 1: Releasing a dataset version

Scenario: When data in a dataset is updated, this phase can be used to release a
dataset version for subsequent phases to use.

from modelarts import workflow as wf
Use ReleaseDatasetStep to release a version of the input dataset and output the dataset with version
information.

Define a dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Define the split ratio between the training set and validation set
train_ration = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR,
default="0.8")

release_version = wf.steps.ReleaseDatasetStep(

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 161

 name="release_dataset", # Name of the dataset release phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset Version Release", # Title, which defaults to the value of name
 inputs=wf.steps.ReleaseDatasetInput(name="input_name", data=dataset), # ReleaseDatasetStep inputs.
The dataset object is configured when the workflow is running. You can also use
wf.data.Dataset(dataset_name="dataset_name") for the data field.
 outputs=wf.steps.ReleaseDatasetOutput(
 name="output_name",
 dataset_version_config=wf.data.DatasetVersionConfig(
 label_task_type=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION, # Labeling job type for
dataset version release
 train_evaluate_sample_ratio=train_ration # Split ratio between the training set and validation set
)
) # ReleaseDatasetStep outputs
)

workflow = wf.Workflow(
 name="dataset-release-demo",
 desc="this is a demo workflow",
 steps=[release_version]
)

Scenario 2: Releasing a labeling job version

When data or labeling information of a labeling job is updated, this phase can be
used to release a dataset version for subsequent phases to use.

from modelarts import workflow as wf
Use ReleaseDatasetStep to release a version of the input labeling job and output the dataset with version
information.

Define a labeling job.
label_task = wf.data.LabelTaskPlaceholder(name="label_task_placeholder_name")

Define the split ratio between the training set and validation set
train_ration = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR,
default="0.8")

release_version = wf.steps.ReleaseDatasetStep(
 name="release_dataset", # Name of the dataset release phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset Version Release", # Title, which defaults to the value of name
 inputs=wf.steps.ReleaseDatasetInput(name="input_name", data=label_task), # ReleaseDatasetStep inputs
The labeling job object is configured when the workflow is running. You can also use
wf.data.LabelTask(dataset_name="dataset_name", task_name="label_task_name") for the data field.
 outputs=wf.steps.ReleaseDatasetOutput(name="output_name",
dataset_version_config=wf.data.DatasetVersionConfig(train_evaluate_sample_ratio=train_ration)), # Split
ratio between the training set and validation set
)

workflow = wf.Workflow(
 name="dataset-release-demo",
 desc="this is a demo workflow",
 steps=[release_version]
)

Scenario 3: Creating a dataset release phase based on the labeling phase

Scenario: The outputs of the labeling phase are used as the inputs of the dataset
release phase.

from modelarts import workflow as wf
Use ReleaseDatasetStep to release a version of the input labeling job and output the dataset with version
information.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 162

Define the split ratio between the training set and validation set
train_ration = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR,
default="0.8")

release_version = wf.steps.ReleaseDatasetStep(
 name="release_dataset", # Name of the dataset release phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset Version Release", # Title, which defaults to the value of name
 inputs=wf.steps.ReleaseDatasetInput(name="input_name",
data=labeling_step.outputs["output_name"].as_input()), # ReleaseDatasetStep inputs
The labeling job object is configured when the workflow is running. You can also use
wf.data.LabelTask(dataset_name="dataset_name", task_name="label_task_name") for the data field.
 outputs=wf.steps.ReleaseDatasetOutput(name="output_name",
dataset_version_config=wf.data.DatasetVersionConfig(train_evaluate_sample_ratio=train_ration)), # Split
ratio between the training set and validation set
 depend_steps = [labeling_step] # Preceding labeling phase
)
labeling_step is an instance object of wf.steps.LabelingStep and output_name is the value of the name
field of wf.steps.LabelingOutput.

workflow = wf.Workflow(
 name="dataset-release-demo",
 desc="this is a demo workflow",
 steps=[release_version]
)

5.3.4.5 Creating a Training Job Phase

Description
This phase defines the algorithm, input, and output of a job for data processing,
model training, or model evaluation. The application scenarios are as follows:

● Data preprocessing such as image enhancement and noise reduction
● Model training for object detection and image classification

Parameter Overview
You can use JobStep to create a job phase. The following is an example of defining
a JobStep.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 163

Table 5-38 JobStep

Parameter Description Mandatory Data Type

name Name of a job
phase. The name
contains a
maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-). It
must start with a
letter and must be
unique in a
workflow.

Yes str

algorithm Algorithm object. Yes ● BaseAlgorithm
● Algorithm
● AIGalleryAlgori

thm

spec Job specifications. Yes JobSpec

inputs Inputs of a job
phase.

Yes JobInput or
JobInput list

outputs Outputs of a job
phase.

Yes JobOutput or
JobOutput list

title Title for frontend
display.

No str

description Description of a
job phase.

No str

policy Phase execution
policy.

No StepPolicy

depend_steps Dependent phases. No Step or step list

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 164

Table 5-39 JobInput

Parameter Description Mandatory Data Type

name Input name of the
job phase. The
name can contain
a maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-),
and must start
with a letter. The
input name of a
step must be
unique.

Yes str

data Input data object
of a job phase.

Yes Dataset or OBS
object. Currently,
only Dataset,
DatasetPlacehold-
er,
DatasetConsumpti
on, OBSPath,
OBSConsumption,
OBSPlaceholder,
and
DataConsumption
Selector are
supported.

Table 5-40 JobOutput

Parameter Description Mandatory Data Type

name Output name of
the job phase. The
name can contain
a maximum of 64
characters,
including only
letters, digits,
underscores (_),
and hyphens (-),
and must start
with a letter. The
output name of a
step must be
unique.

Yes str

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 165

Parameter Description Mandatory Data Type

obs_config OBS output
configuration.

No OBSOutputConfig

model_config Model output
configuration.

No ModelConfig

metrics_config Metrics
configuration.

No MetricsConfig

Table 5-41 OBSOutputConfig

Parameter Description Mandatory Data Type

obs_path Existing OBS
directory

Yes str, Placeholder,
Storage

metric_file Name of the file
that stores metric
information

No str, Placeholder

Table 5-42 BaseAlgorithm

Parameter Description Mandatory Data Type

id Algorithm ID No str

subscription_id Subscription ID of
the subscribed
algorithm

No str

item_version_id Version ID of the
subscribed
algorithm

No str

code_dir Code directory No str, Placeholder,
Storage

boot_file Boot file No str, Placeholder,
Storage

command Boot command No str, Placeholder

parameters Algorithm
hyperparameters

No AlgorithmParame
ters list

engine Information about
the image used by
the job

No JobEngine

environments Environment
variables

No dict

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 166

Table 5-43 Algorithm

Parameter Description Mandatory Data Type

algorithm_id Algorithm ID Yes str

parameters Algorithm
hyperparameters

No List of algorithm
parameters

Table 5-44 AIGalleryAlgorithm

Parameter Description Mandatory Data Type

subscription_id Subscription ID of
the subscribed
algorithm

Yes str

item_version_id Version ID of the
subscribed
algorithm

Yes str

parameters Algorithm
hyperparameters

No List of algorithm
parameters

Table 5-45 AlgorithmParameters

Parameter Description Mandatory Data Type

name Name of an
algorithm
hyperparameter

Yes str

value Value of an
algorithm
hyperparameter

Yes int, bool, float, str,
Placeholder,
Storage

Table 5-46 JobEngine

Parameter Description Mandatory Data Type

engine_id Image ID No str, Placeholder

engine_name Image name No str, Placeholder

engine_version Image version No str, Placeholder

image_url Image URL No str, Placeholder

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 167

Table 5-47 JobSpec

Parameter Description Mandatory Data Type

resource Resource
information

Yes JobResource

log_export_path Log output path No LogExportPath

schedule_policy Job scheduling
policy

No SchedulePolicy

volumes Information about
the file system
mounted to the
job

No list[Volume]

Table 5-48 JobResource

Parameter Description Mandatory Data Type

flavor Resource flavor. Yes Placeholder

node_count Number of nodes.
The default value
is 1. If there are
multiple nodes,
distributed training
is supported.

No int, Placeholder

Table 5-49 SchedulePolicy

Parameter Description Mandatory Data Type

priority Job scheduling
priority. The value
can only be 1, 2, or
3, indicating low,
medium, and high
priorities,
respectively.

Yes int, Placeholder

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 168

Table 5-50 Volume

Parameter Description Mandatory Data Type

nfs NFS file system
object. In a volume
object, only one of
nfs, pacific, and
pfs can be
configured.

No NFS

pacific Pacific file system
object. In a volume
object, only one of
nfs, pacific, and
pfs can be
configured.

No Placeholder

pfs OBS parallel file
system object. In a
volume object,
only one of nfs,
pacific, and pfs
can be configured.

No PFS, Placeholder

Table 5-51 NFS

Parameter Description Mandatory Data Type

nfs_server_path Service address of
the NFS file
system.

Yes str, Placeholder

local_path Path mounted to
the container.

Yes str, Placeholder

read_only Indicates if the
mount mode is set
to read-only.

No bool, Placeholder

Table 5-52 PFS

Parameter Description Mandatory Data Type

pfs_path Path of the parallel
file system

Yes str, Placeholder

local_path Path mounted to
the container

Yes str, Placeholder

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 169

Obtaining Resource Flavors
Before creating a job phase, perform the following operations to obtain supported
training flavors and engines:

● Import packages.
from modelarts.session import Session
from modelarts.estimatorV2 import TrainingJob
from modelarts.workflow.client.job_client import JobClient

● Initialize a session.
If you develop a workflow in a local IDEA, initialize a session as follows:
Hardcoded or plaintext AK/SK is risky. For security, encrypt your AK/SK and store them in the
configuration file or environment variables.
In this example, the AK/SK are stored in environment variables for identity authentication. Before
running this example, set environment variables HUAWEICLOUD_SDK_AK and
HUAWEICLOUD_SDK_SK.
__AK = os.environ["HUAWEICLOUD_SDK_AK"]
__SK = os.environ["HUAWEICLOUD_SDK_SK"]
Decrypt the information if it is encrypted.
session = Session(
 access_key=__AK, # AK information of your account
 secret_key=__SK, # SK information of your account
 region_name="***", # Region to which your account belongs
 project_id="***" # Project ID of your account
)

If you develop a workflow in a notebook environment, initialize a session:
session = Session()

● Obtain public resource pools.
Obtain the specification list of public resource pools.
spec_list = TrainingJob(session).get_train_instance_types(session) # A list is returned. You can
download it.
print(spec_list)

● Obtain dedicated resource pools.
Obtain the list of running dedicated resource pools.
pool_list = JobClient(session).get_pool_list() # A list of dedicated resource pools is returned.
pool_id_list = JobClient(session).get_pool_id_list() # An ID list of dedicated resource pools is returned.
The following lists the flavor IDs of dedicated resource pools. Select one as required.
 modelarts.pool.visual.xlarge (1 card)
 modelarts.pool.visual.2xlarge (2 cards)
 modelarts.pool.visual.4xlarge (4 cards)
 modelarts.pool.visual.8xlarge (8 cards)

● Obtain engine types.
Obtain engine types.
engine_dict = TrainingJob(session).get_engine_list(session) # A dictionary is returned. You can
download it.
print(engine_dict)

Examples
There are seven scenarios:

● Using an algorithm subscribed to in AI Gallery
● Using an algorithm in Algorithm Management
● Using a custom algorithm (code directory+boot file+official image)
● Using a custom algorithm (code directory+boot command+official image)
● Creating a job phase based on the dataset release phase
● Job phase with visualization
● Using the DataSelector object as the input, which supports OBS or datasets

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 170

Using an Algorithm Subscribed from AI Gallery

from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Define an input dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image Classification Training", # Title, which defaults to the value of name
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Algorithm subscription ID. You can also enter the version number.
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version number
instead.
 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep inputs are configured when the
workflow is running. You can also use wf.data.Dataset(dataset_name="fake_dataset_name",
version_name="fake_version_name") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

workflow = wf.Workflow(
 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=[storage]
)

Using an Algorithm in Algorithm Management

from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Define an input dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 171

 title="Image Classification Training", # Title, which defaults to the value of name
 algorithm=wf.Algorithm(
 algorithm_id="algorithm_id", # Algorithm ID
 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), # Algorithm used for training. An algorithm from Algorithm Management is used in this example. If
the value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep inputs are configured when the
workflow is running. You can also use wf.data.Dataset(dataset_name="fake_dataset_name",
version_name="fake_version_name") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

workflow = wf.Workflow(
 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=[storage]
)

Using a Custom Algorithm (Code Directory + Boot File + Official Image)

from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Define an input dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image Classification Training", # Title, which defaults to the value of name
 algorithm=wf.BaseAlgorithm(
 code_dir="fake_code_dir", # Code directory
 boot_file="fake_boot_file", # Boot file path, which must be in the code directory
 engine=wf.steps.JobEngine(engine_name="fake_engine_name",
engine_version="fake_engine_version"), # Name and version of the official image

 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), # The custom algorithm is implemented using the code directory, boot file, and official image.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 172

 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep inputs are configured when the
workflow is running. You can also use wf.data.Dataset(dataset_name="fake_dataset_name",
version_name="fake_version_name") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

workflow = wf.Workflow(
 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=[storage]
)

Using a Custom Algorithm (Code Directory + Boot Command + Custom
Image)
from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Define an input dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image Classification Training", # Title, which defaults to the value of name
 algorithm=wf.BaseAlgorithm(
 code_dir="fake_code_dir", # Code directory
 command="fake_command", # Boot command
 engine=wf.steps.JobEngine(image_url="fake_image_url"), # Custom image URL, in the format of
Organization name/Image name:Version name. Do not contain the domain name; If image_url is required
to be configurable in the running state, use the following: image_url=wf.Placeholder(name="image_url",
placeholder_type=wf.PlaceholderType.STR, placeholder_format="swr", description="Custom image")
 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), The custom algorithm is implemented using the code directory, boot command, and custom image.

 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep inputs are configured when the
workflow is running. You can also use wf.data.Dataset(dataset_name="fake_dataset_name",
version_name="fake_version_name") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 173

workflow = wf.Workflow(
 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=[storage]
)

NO TE

The preceding four methods use a dataset as the input. If you want to use an OBS path as
the input, set data of JobInput to
data=wf.data.OBSPlaceholder(name="obs_placeholder_name",
object_type="directory") or data=wf.data.OBSPath(obs_path="fake_obs_path").
In addition, you can specify a dataset or OBS path when creating a workflow to reduce
configuration operations and facilitate debugging in the development state. You are advised
to use placeholders to create a workflow you want to publish to the running state or AI
Gallery. In this case, you can configure parameters before workflow execution.

Creating a Job Phase Based on the Dataset Release Phase

Scenario: The output of the dataset release phase is used as the input of the job
phase.

from modelarts import workflow as wf

Define the dataset object.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Define the split ratio between the training set and validation set
train_ration = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR,
default="0.8")

release_version_step = wf.steps.ReleaseDatasetStep(
 name="release_dataset", # Name of the dataset release phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Dataset Version Release", # Title, which defaults to the value of name
 inputs=wf.steps.ReleaseDatasetInput(name="input_name", data=dataset), # ReleaseDatasetStep inputs.
The dataset object is configured when the workflow is running. You can also use
wf.data.Dataset(dataset_name="dataset_name") for the data field.
 outputs=wf.steps.ReleaseDatasetOutput(
 name="output_name",
 dataset_version_config=wf.data.DatasetVersionConfig(
 label_task_type=wf.data.LabelTaskTypeEnum.IMAGE_CLASSIFICATION, # Labeling job type for
dataset version release
 train_evaluate_sample_ratio=train_ration # Split ratio between the training set and validation set
)
) # ReleaseDatasetStep outputs
)

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image Classification Training", # Title, which defaults to the value of name
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Version ID of the subscribed algorithm
 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 174

) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url",
data=release_version_step.outputs["output_name"].as_input()), # The output of the dataset release phase is
used as the input of JobStep.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
), # Training flavors
 depend_steps=release_version_step # Preceding dataset release phase
)
release_version_step is an instance object of wf.steps.ReleaseDatasetStep and output_name is the
value of the name field of wf.steps.ReleaseDatasetOutput.

workflow = wf.Workflow(
 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[release_version_step, job_step],
 storages=[storage]
)

Job Phase With Visualization

Phase visualization enables you to view the metrics generated by your workflows
in real time. You can also display the external disks of each phase separately. To
use phase visualization, you need to add and configure an output for showing
metrics through the MetricsConfig object, based on the original job phase.

Table 5-53 MetricsConfig

Parameter Description Mandatory Data Type

metric_files Metric files.
Supported
element types: str,
Placeholder, and
Storage.

Yes list

realtime_visualiza
tion

Whether to
display the output
metrics in real
time. The default
value is False.

No bool

visualization Whether to
display
visualization
phases separately.
The default value
is True.

No bool

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 175

The output metrics file must contain standard JSON data with a maximum size of
1 MB. The data formats must match the supported ones.

● Key-value pair data
[
 {
 "key": "loss",
 "title": "loss",
 "type": "float",
 "data": {
 "value": 1.2
 }
 },
 {
 "key": "accuracy",
 "title": "accuracy",
 "type": "float",
 "data": {
 "value": 1.6
 }
 }
]

● Line chart data
[
 {
 "key": "metric",
 "title": "metric",
 "type": "line chart",
 "data": {
 "x_axis": [
 {
 "title": "step/epoch",
 "value": [
 1,
 2,
 3
]
 }
],
 "y_axis": [
 {
 "title": "value",
 "value": [
 0.5,
 0.4,
 0.3
]
 }
]
 }
 }
]

● Histogram data
[
 {
 "key": "metric",
 "title": "metric",
 "type": "histogram",
 "data": {
 "x_axis": [
 {
 "title": "step/epoch",
 "value": [
 1,
 2,
 3
]
 }

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 176

],
 "y_axis": [
 {
 "title": "value",
 "value": [
 0.5,
 0.4,
 0.3
]
 }
]
 }
 }
]

● Confusion matrix
[
 {
 "key": "confusion_matrix",
 "title": "confusion_matrix",
 "type": "table",
 "data": {
 "cell_value": [
 [
 1,
 2
],
 [
 2,
 3
]
],
 "col_labels": {
 "title": "labels",
 "value": [
 "daisy",
 "dandelion"
]
 },
 "row_labels": {
 "title": "predictions",
 "value": [
 "daisy",
 "dandelion"
]
 }
 }
 }
]

● One-dimensional table
[
 {
 "key": "Application Evaluation Results",
 "title": "Application Evaluation Results",
 "type": "one-dimensional-table",
 "data": {
 "cell_value": [
 [
 10,
 2,
 0.5
]
],
 "labels": [
 "samples",
 "maxResTine",
 "p99"
]
 }

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 177

 }
]

Example:
from modelarts import workflow as wf

Create a Storage object to centrally manage training output directories.
storage = wf.data.Storage(name="storage_name", title="title_info", description="description_info",
with_execution_id=True, create_dir=True) # Only name is mandatory.

Define an input dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Image Classification Training", # Title, which defaults to the value of name
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version
number instead.
 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer,
bool, float, or string.
]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If
the value of an algorithm hyperparameter does not need to be changed, you do not need to
configure the hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep inputs are configured when
the workflow is running. You can also use wf.data.Dataset(dataset_name="fake_dataset_name",
version_name="fake_version_name") for the data field.
 outputs=[
 wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))),# JobStep outputs
 wf.steps.JobOutput(name="metrics_output",
metrics_config=wf.data.MetricsConfig(metric_files=storage.join("directory_path/metrics.json",
create_dir=False))) # Metrics are output to the configured path by the job script.
],
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

workflow = wf.Workflow(
 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=[storage]
)

NO TE

Workflow does not automatically retrieve the metrics produced by training. You need to
extract the metrics from the algorithm code, create the metrics.json file in the required
data format, and upload the file to the OBS path specified in MetricsConfig. Workflow only
reads, renders, and displays the data.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 178

Using the DataSelector Object as the Input, Which Supports OBS or Datasets

You can use this method when you can choose the input type. The DataSelector
object allows you to select either a dataset object or an OBS object as the training
input. Here is a code sample:

from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Define the DataSelector object.
data_selector = wf.data.DataSelector(name="input_data", data_type_list=["dataset", "obs"])

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image Classification Training", # Title, which defaults to the value of name
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Algorithm subscription ID. You can also enter the version number.
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version number
instead.
 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=data_selector), # JobStep inputs are configured when
the workflow is running. You can choose OBS or datasets as the input.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

workflow = wf.Workflow(
 name="job-step-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=[storage]
)

NO TE

When using DataSelector as the input, ensure that the algorithm input supports both
datasets and OBS.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 179

5.3.4.6 Creating a Model Registration Phase

Description
This phase integrates capabilities of ModelArts AI application management. This
enables trained models to be registered in AI Application Management for service
deployment and update. The application scenarios are as follows:

● Registering models trained from ModelArts training jobs
● Registering models from custom images

Parameter Overview
You can use ModelStep to create a model registration phase. The following is an
example of defining a ModelStep.

Table 5-54 ModelStep

Parameter Description Mandat
ory

Data Type

name Name of a model registration
phase. The name contains a
maximum of 64 characters,
including only letters, digits,
underscores (_), and hyphens (-).
It must start with a letter and
must be unique in a workflow.

Yes str

inputs Inputs of the model registration
phase.

No ModelInput or
ModelInput list

outputs Outputs of the model registration
phase.

Yes ModelOutput or
ModelOutput list

title Title for frontend display. No str

description Description of the model
registration phase.

No str

policy Phase execution policy. No StepPolicy

depend_ste
ps

Dependent phases. No Step or step list

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 180

Table 5-55 ModelInput

Parame
ter

Description Mandat
ory

Data Type

name Input name of the model registration
phase. The name can contain a
maximum of 64 characters, including
only letters, digits, underscores (_),
and hyphens (-), and must start with
a letter. The input name of a step
must be unique.

Yes str

data Input data object of the model
registration phase.

Yes OBS, SWR, or
subscribed model
object. Currently,
only OBSPath,
SWRImage,
OBSConsumption,
OBSPlaceholder,
SWRImagePlaceh
older,
DataConsumption
Selector, and
GalleryModel are
supported.

Table 5-56 ModelOutput

Parame
ter

Description Manda
tory

Data Type

name Output name of the model
registration phase. The name can
contain a maximum of 64 characters,
including only letters, digits,
underscores (_), and hyphens (-), and
must start with a letter. The output
name of a step must be unique.

Yes str

model_c
onfig

Configurations for model registration. Yes ModelConfig

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 181

Table 5-57 ModelConfig

Paramete
r

Description Man
dato
ry

Data Type

model_typ
e

Model type. Supported types:
TensorFlow, MXNet, Caffe,
Spark_MLlib, Scikit_Learn, XGBoost,
Image, PyTorch, Template, and
Custom. The default value is
TensorFlow.

Yes str

model_na
me

Model name. Enter 1 to 64 characters.
Only letters, digits, hyphens (-), and
underscores (_) are allowed.

No str, Placeholder

model_ver
sion

Model version in the format of
Digit.Digit.Digit. The value range of
the digits is [1, 99]. If this parameter is
left blank, the version number
automatically increases.
CAUTION

No part of the version number can start
with 0. For example, 01.01.01 is not
allowed.

No str, Placeholder

runtime Model runtime environment. The
options of runtime are the same as
those of model_type.

No str, Placeholder

descriptio
n

Model description that consists of 1 to
100 characters. The following special
characters cannot be contained:
&!'"<>=

No str

execution_
code

OBS path for storing the execution
code. By default, this parameter is left
blank. The name of the execution code
file is fixed to customize_service.py.
The inference code file must be stored
in the model directory. This parameter
is left blank. The system can
automatically identify the inference
code in the model directory.

No str

dependen
cies

Package required for the inference
code and model. By default, this
parameter is left blank. It is read from
the configuration file.

No str

model_me
trics

Model precision, which is read from
the configuration file.

No str

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 182

Paramete
r

Description Man
dato
ry

Data Type

apis All apis input and output parameters
of a model (optional), which are
parsed from the configuration file.

No str

initial_conf
ig

Model configuration information. No dict

template Template configuration items. This
parameter is mandatory when
model_type is set to Template.

No Template

dynamic_l
oad_mode

Dynamic loading mode. Currently, only
Single is supported.

No str, Placeholder

prebuild Whether the model is prebuilt. The
default value is False.

No bool, Placeholder

install_typ
e

Model installation type. The value can
be real_time, edge, batch. If this
parameter is left blank, all types are
supported by default.

No list[str]

Table 5-58 Template

Paramete
r

Description Mand
atory

Data Type

template_i
d

ID of the used template. The
template has a built-in input and
output mode.

Yes str, Placeholder

infer_form
at

Input and output mode. When this
parameter is used, the input and
output mode built in the template
does not take effect.

No str, Placeholder

template_i
nputs

Template input configuration,
specifying the source path for
configuring a model

Yes list of
TemplateInputs
object

Table 5-59 TemplateInputs

Paramete
r

Description Manda
tory

Data Type

input_id Input item ID, which is obtained
from the template details.

Yes str, Placeholder

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 183

Paramete
r

Description Manda
tory

Data Type

input Template input path, which can be
an OBS file path or OBS directory
path. When you use a template with
multiple input items to create a
model, if the target paths
input_properties specified in the
template are the same, the OBS
directory or OBS file name entered
here must be unique to prevent files
from being overwritten.

Yes str, Placeholder,
Storage

Examples
There are six scenarios:

● Registering models output by JobStep
● Registering a model using OBS data
● Registering a model using a template
● Registering a model using a custom image
● Registering a model using a custom image and OBS
● Registering a model using a subscribed model and OBS

Registering a Model from a Training Job (Model Source: JobStep Output)
import modelarts.workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info", description="description_info") #
Only name is mandatory.

Define an input dataset.
dataset = wf.data.DatasetPlaceholder(name="input_dataset")

Use JobStep to define a training phase. Use a dataset as the input, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image Classification Training", # Title, which defaults to the value of name
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Algorithm subscription ID. You can also enter the version number.
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version number
instead.
 parameters=[
 wf.AlgorithmParameters(
 name="parameter_name",
 value=wf.Placeholder(name="parameter_name", placeholder_type=wf.PlaceholderType.STR,
default="fake_value",description="description_info")
) # Algorithm hyperparameters are represented using placeholders, which can be integer, bool,
float, or string.
]
), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 184

 inputs=wf.steps.JobInput(name="data_url", data=dataset), # JobStep inputs are configured when the
workflow is running. You can also use wf.data.Dataset(dataset_name="fake_dataset_name",
version_name="fake_version_name") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))), # JobStep outputs
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
)# Training flavors
)

Define a model registration phase using ModelStep. The output of JobStep is used as the input of
ModelStep.

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_registration = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model Registration", # Title
 inputs=wf.steps.ModelInput(name='model_input', data=job_step.outputs["train_url"].as_input()), # The
output of JobStep is used as the input of ModelStep.

outputs=wf.steps.ModelOutput(name='model_output',model_config=wf.steps.ModelConfig(model_name=mo
del_name, model_type="TensorFlow")), # ModelStep outputs
 depend_steps=job_step # Preceding job phase
)
job_step is an instance object of wf.steps.JobStep and train_url is the value of the name field of
wf.steps.JobOutput.

workflow = wf.Workflow(
 name="model-step-demo",
 desc="this is a demo workflow",
 steps=[job_step, model_registration],
 storages=[storage]
)

Registering a Model from a Training Job (Model Source: A Trained Model
Stored in OBS)

import modelarts.workflow as wf
Define a model registration phase using ModelStep. The input is from OBS.

Define the OBS data.
obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") # object_type
must be file or directory.

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_registration = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model Registration", # Title
 inputs=wf.steps.ModelInput(name='model_input', data=obs), # ModelStep inputs are configured when
the workflow is running. You can also use wf.data.OBSPath(obs_path="fake_obs_path") for the data field.

outputs=wf.steps.ModelOutput(name='model_output',model_config=wf.steps.ModelConfig(model_name=mo
del_name, model_type="TensorFlow"))# ModelStep outputs
)

workflow = wf.Workflow(
 name="model-step-demo",

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 185

 desc="this is a demo workflow",
 steps=[model_registration]
)

Registering a Model Using a Template
import modelarts.workflow as wf
Define a model registration phase using ModelStep. Register a model using a preset template.

Define a preset template object. Fields in the template object can be represented by placeholders.
template = wf.steps.Template(
 template_id="fake_template_id",
 infer_format="fake_infer_format",
 template_inputs=[
 wf.steps.TemplateInputs(
 input_id="fake_input_id",
 input="fake_input_file"
)
]
)

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_registration = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model Registration", # Title
 outputs=wf.steps.ModelOutput(
 name='model_output',
 model_config=wf.steps.ModelConfig(
 model_name=model_name,
 model_type="Template",
 template=template
)
) # ModelStep outputs
)

workflow = wf.Workflow(
 name="model-step-demo",
 desc="this is a demo workflow",
 steps=[model_registration]
)

Registering a Model from a Custom Image
import modelarts.workflow as wf
Define a model registration phase using ModelStep. The input is from the URL of a custom image.

Define the image data.
swr = wf.data.SWRImagePlaceholder(name="placeholder_name")

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_registration = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model Registration", # Title
 inputs=wf.steps.ModelInput(name="input",data=swr), # ModelStep inputs are configured when the
workflow is running. You can also use wf.data.SWRImage(swr_path="fake_path") for the data field.

outputs=wf.steps.ModelOutput(name='model_output',model_config=wf.steps.ModelConfig(model_name=mo
del_name, model_type="TensorFlow"))# ModelStep outputs
)

workflow = wf.Workflow(

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 186

 name="model-step-demo",
 desc="this is a demo workflow",
 steps=[model_registration]
)

Registering a Model Using a Custom Image and OBS
import modelarts.workflow as wf
Define a model registration phase using ModelStep. The input is from the URL of a custom image.

Define the image data.
swr = wf.data.SWRImagePlaceholder(name="placeholder_name")

Define OBS model data.
model_obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") #
object_type must be file or directory.

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_registration = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model Registration", # Title
 inputs=[
 wf.steps.ModelInput(name="input",data=swr), # ModelStep inputs are configured when the workflow
is running. You can also use wf.data.SWRImage(swr_path="fake_path") for the data field.
 wf.steps.ModelInput(name="input",data=model_obs) # ModelStep inputs are configured when the
workflow is running. You can also use wf.data.OBSPath(obs_path="fake_obs_path") for the data field.
],
 outputs=wf.steps.ModelOutput(
 name='model_output',
 model_config=wf.steps.ModelConfig(
 model_name=model_name,
 model_type="Custom",
 dynamic_load_mode="Single"
)
) # ModelStep outputs
)

workflow = wf.Workflow(
 name="model-step-demo",
 desc="this is a demo orkflow",
 steps=[model_registration]
)

Registering a Model Using a Subscribed Model and OBS
This mode is similar to the custom image + OBS mode, except that you obtain a
custom image from a subscribed model.

Example:

import modelarts.workflow as wf

Define the subscribed model object.
base_model = wf.data.GalleryModel(subscription_id="fake_subscription_id", version_num="fake_version") #
Model subscribed to from AI Gallery, generally published by a developer

Define OBS model data.
model_obs = wf.data.OBSPlaceholder(name = "obs_placeholder_name", object_type = "directory") #
object_type must be file or directory.

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_registration = wf.steps.ModelStep(

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 187

 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model Registration", # Title
 inputs=[
 wf.steps.ModelInput(name="input",data=base_model) # Use a subscribed model as the ModelStep
input.
 wf.steps.ModelInput(name="input",data=model_obs) # ModelStep inputs are configured when the
workflow is running. You can also use wf.data.OBSPath(obs_path="fake_obs_path") for the data field.
],
 outputs=wf.steps.ModelOutput(
 name='model_output',
 model_config=wf.steps.ModelConfig(
 model_name=model_name,
 model_type="Custom",
 dynamic_load_mode="Single"
)
) # ModelStep outputs
)

workflow = wf.Workflow(
 name="model-step-demo",
 desc="this is a demo workflow",
 steps=[model_registration]
)

In the preceding example, the system automatically obtains the custom image
from the subscribed model and registers and generates a model based on the
entered OBS model path. model_obs can be replaced with the dynamic output of
JobStep.

NO TE

The value of model_type can be TensorFlow, MXNet, Caffe, Spark_MLlib, Scikit_Learn,
XGBoost, Image, PyTorch, Template, or Custom.

If model_type is not set for wf.steps.ModelConfig, TensorFlow is used by default.

● If the model type of your workflow does not need to be changed, refer to the
preceding examples.

● If the model type of your workflow needs to be changed in multiple
executions, write the parameter using placeholders.

model_type = wf.Placeholder(name="placeholder_name",
placeholder_type=wf.PlaceholderType.ENUM, default="TensorFlow",
enum_list=["TensorFlow", "MXNet", "Caffe", "Spark_MLlib", "Scikit_Learn",
"XGBoost", "Image", "PyTorch", "Template", "Custom"], description="Model
type")

5.3.4.7 Creating a Service Deployment Phase

Description

This phase integrates capabilities of ModelArts service management to enable
service deployment and update in a workflow. The application scenarios are as
follows:

● Deploying a model as a web service

● Updating an existing service (gray update supported)

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 188

Parameter Overview
You can use ServiceStep to create a service deployment phase. The following is an
example of defining a ServiceStep.

Table 5-60 ServiceStep

Paramete
r

Description Mandato
ry

Data Type

name Name of a service deployment
phase. The name contains a
maximum of 64 characters,
including only letters, digits,
underscores (_), and hyphens (-).
It must start with a letter and
must be unique in a workflow.

Yes str

inputs Inputs of the service deployment
phase.

No ServiceInput or
ServiceInput list

outputs Outputs of the service deployment
phase.

Yes ServiceOutput or
ServiceOutput list

title Title for frontend display. No str

descriptio
n

Description of the service
deployment phase.

No str

policy Phase execution policy. No StepPolicy

depend_st
eps

Dependent phases. No Step or step list

Table 5-61 ServiceInput

Paramete
r

Description Mandato
ry

Data Type

name Input name of the service
deployment phase. The name can
contain a maximum of 64
characters, including only letters,
digits, underscores (_), and
hyphens (-), and must start with a
letter. The input name of a step
must be unique.

Yes str

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 189

Paramete
r

Description Mandato
ry

Data Type

data Input data object of the service
deployment phase.

Yes Model list or
service object.
Currently, only
ServiceInputPlace-
holder,
ServiceData, and
ServiceUpdatePla-
ceholder are
supported.

Table 5-62 ServiceOutput

Paramete
r

Description Mandato
ry

Data Type

name Output name of the service
deployment phase. The name can
contain a maximum of 64
characters, including only letters,
digits, underscores (_), and
hyphens (-), and must start with a
letter. The output name of a step
must be unique.

Yes str

service_co
nfig

Configurations for service
deployment.

Yes ServiceConfig

Table 4 ServiceConfig

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 190

Parameter Description Mandat
ory

Data Type

infer_type Inference mode. The value can be
real-time, batch, or edge. The
default value is real-time.
● real-time: real-time service. The

model is deployed as a web
service.

● batch: batch service. A batch
service can perform inference on
batch data and automatically
stops after data processing is
completed.

● edge: edge service. A model is
deployed as a web service on an
edge node through IEF. You must
create an edge node on IEF
beforehand.

Yes str

service_na
me

Service name. Enter 1 to 64
characters. Only letters, digits,
hyphens (-), and underscores (_) are
allowed.
NOTE

If you do not specify this parameter, the
default service name is generated
automatically.

No str, Placeholder

description Service description, which contains a
maximum of 100 characters. By
default, this parameter is left blank.

No str

vpc_id ID of the VPC to which a real-time
service instance is deployed. By
default, this parameter is left blank.
In this case, ModelArts allocates a
dedicated VPC to each user, and
users are isolated from each other.
To access other service components
in the VPC of the service instance,
set this parameter to the ID of the
corresponding VPC. Once a VPC is
configured, it cannot be modified. If
both vpc_id and cluster_id are
configured, only the dedicated
resource pool takes effect.

No str

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 191

Parameter Description Mandat
ory

Data Type

subnet_net
work_id

ID of a subnet. By default, this
parameter is left blank. This
parameter is mandatory when
vpc_id is configured. Enter the
network ID displayed in the subnet
details on the VPC management
console. A subnet provides
dedicated network resources that
are isolated from other networks.

No str

security_gr
oup_id

Security group. By default, this
parameter is left blank. This
parameter is mandatory when
vpc_id is configured. A security
group is a virtual firewall that
provides secure network access
control policies for service instances.
A security group must contain at
least one inbound rule to permit the
requests whose protocol is TCP,
source address is 0.0.0.0/0, and port
number is 8080.

No str

cluster_id ID of a dedicated resource pool. By
default, this parameter is left blank,
indicating that no dedicated
resource pool is used. When using a
dedicated resource pool to deploy
services, ensure that the cluster is
running properly. After this
parameter is configured, the
network configuration of the cluster
is used, and the vpc_id parameter
does not take effect. If both this
parameter and cluster_id in real-
time config are configured,
cluster_id in real-time config is
preferentially used.

No str

additional_
properties

Additional configurations. No dict

apps Whether to enable application
authentication for service
deployment. Multiple application
names can be entered.

No str, Placeholder,
list

envs Environment variables. No dict

Example:

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 192

example = ServiceConfig()
This object is used in the output of the service deployment phase.

If there is no special requirement, use the default values.

Examples
There are three scenarios:

● Deploying a real-time service
● Modifying a real-time service
● Getting the inference address from the service deployment phase

Deploying a Real-Time Service
import modelarts.workflow as wf
Use ServiceStep to define a service deployment phase and specify a model for service deployment.

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

service_step = wf.steps.ServiceStep(
 name="service_step", # Name of the service deployment phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Deploying a Service", # Title
 inputs=wf.steps.ServiceInput(name="si_service_ph",
data=wf.data.ServiceInputPlaceholder(name="si_placeholder1",
 # Restrictions on the model name: Only the model
name specified here can be used in the running state; use the same model name as model_name of the
model registration phase.
 model_name=model_name)),# ServiceStep inputs
 outputs=wf.steps.ServiceOutput(name="service_output") # ServiceStep outputs
)

workflow = wf.Workflow(
 name="service-step-demo",
 desc="this is a demo workflow",
 steps=[service_step]
)

Modifying a Real-Time Service
Scenario: When you use a new model version to update an existing service, ensure
that the name of the new model version is the same as that of the deployed
service.

import modelarts.workflow as wf
Use ServiceStep to define a service deployment phase and specify a model for service update.

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

Define a service object.
service = wf.data.ServiceUpdatePlaceholder(name="placeholder_name")

service_step = wf.steps.ServiceStep(
 name="service_step", # Name of the service deployment phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Service Update", # Title
 inputs=[wf.steps.ServiceInput(name="si2",
data=wf.data.ServiceInputPlaceholder(name="si_placeholder2",
 # Restrictions on the model name: Only the model

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 193

name specified here can be used in the running state.
 model_name=model_name)),
 wf.steps.ServiceInput(name="si_service_data", data=service) # ServiceStep inputs are configured
when the workflow is running. You can also use wf.data.ServiceData(service_id="fake_service") for the
data field.
], # ServiceStep inputs
 outputs=wf.steps.ServiceOutput(name="service_output") # ServiceStep outputs
)

workflow = wf.Workflow(
 name="service-step-demo",
 desc="this is a demo workflow",
 steps=[service_step]
)

Getting the Inference Address from the Service Deployment Phase
The service deployment phase supports the output of the inference address. You
can use the get_output_variable("access_address") method to obtain the output
and use it in subsequent phases.

● For services deployed in the public resource pool, you can use access_address
to obtain the inference address registered on the public network from the
output.

● For services deployed in a dedicated resource pool, you can get the internal
inference address from the output using cluster_inner_access_address, in
addition to the public inference address. The internal address can only be
accessed by other inference services.
import modelarts.workflow as wf

Define model name parameters.
sub_model_name = wf.Placeholder(name="si_placeholder1",
placeholder_type=wf.PlaceholderType.STR)

sub_service_step = wf.steps.ServiceStep(
 name="sub_service_step", # Name of the service deployment phase. The name contains a
maximum of 64 characters, including only letters, digits, underscores (_), and hyphens (-). It must
start with a letter and must be unique in a workflow.
 title="Subservice", # Title
 inputs=wf.steps.ServiceInput(
 name="si_service_ph",
 data=wf.data.ServiceInputPlaceholder(name="si_placeholder1", model_name=sub_model_name)
),# ServiceStep inputs
 outputs=wf.steps.ServiceOutput(name="service_output") # ServiceStep outputs
)

main_model_name = wf.Placeholder(name="si_placeholder2",
placeholder_type=wf.PlaceholderType.STR)

Obtain the inference address output by the subservice and transfer the address to the main service
through envs.
main_service_config = wf.steps.ServiceConfig(
 infer_type="real-time",
 envs={"infer_address":
sub_service_step.outputs["service_output"].get_output_variable("access_address")} # Obtain the
inference address output by the subservice and transfer the address to the main service through envs.
)

main_service_step = wf.steps.ServiceStep(
 name="main_service_step", # Name of the service deployment phase. The name contains a
maximum of 64 characters, including only letters, digits, underscores (_), and hyphens (-). It must
start with a letter and must be unique in a workflow.
 title="Main service", # Title
 inputs=wf.steps.ServiceInput(
 name="si_service_ph",

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 194

 data=wf.data.ServiceInputPlaceholder(name="si_placeholder2",
model_name=main_model_name)
),# ServiceStep inputs
 outputs=wf.steps.ServiceOutput(name="service_output", service_config=main_service_config), #
ServiceStep outputs
 depend_steps=sub_service_step
)

workflow = wf.Workflow(
 name="service-step-demo",
 desc="this is a demo workflow",
 steps=[sub_service_step, main_service_step]
)

Configuring Information for Deploying a Synchronous Service
After the service deployment phase is started in the development state (usually a
notebook instance), configure the information based on the following format in
the logs.

1. On the ModelArts console, choose Development Workspace > Workflow
from the navigation pane.

2. Configure the information after the service deployment phase is started. After
the configuration, click Next.
If you want to start the deployment phase automatically without manual
configuration, configure the ServiceInputConfig or ServiceConfig parameter
in the code in advance, for example,
service_config=wf.steps.ServiceConfig(cluster_id="XX"). If all required
parameters are specified, the service deployment phase automatically starts.

Configuring Information for Deploying an Asynchronous Service
1. On the ModelArts console, choose Workflow from the navigation pane.
2. Configure the information after the service deployment phase is started.

Select an asynchronous inference model and a version, and configure service
startup parameters. After the configuration, click Next.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 195

NO TE

After you select the required model and version, the system automatically matches the
service startup parameters.

5.3.5 Creating a Multi-Branch Workflow

5.3.5.1 Multi-Branch Workflow
You can implement multi-branch in two ways. However, the condition phase is
limited to two branches. Configuring Phase Parameters to Control Branch
Execution allows you to replace the ConditionStep capability without adding new
phases, offering more flexibility.

Creating a Condition Phase to Control Branch Execution is used for conditional
branching in the execution of phases based on condition value comparison or
metrics output by the preceding phase.

Configuring Phase Parameters to Control Branch Execution is used for complex
scenarios that involve multiple branches. When each execution starts, the
workflow decides which branches to run and which ones to skip based on the
relevant configuration information. This way, only some branches are executed.
This function has a similar use case as ConditionStep, but it is more powerful.

5.3.5.2 Creating a Condition Phase to Control Branch Execution

Description
This phase is used for conditional branching in the execution of phases based on
condition value comparison or metrics output by the preceding phase. The
application scenarios are as follows:

You need to determine the subsequent process based on different input values. If
you need to determine whether to retrain or register a model based on the model
precision output by the training phase, you can use this phase to control the
process.

Parameter Overview
You can use ConditionStep to create a condition phase. The following is an
example of defining a ConditionStep.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 196

Table 5-63 ConditionStep

Parameter Description Mandato
ry

Data Type

name Name of a condition phase.
The name contains a
maximum of 64 characters,
including only letters,
digits, underscores (_), and
hyphens (-). It must start
with a letter and must be
unique in a workflow.

Yes str

conditions List of conditions. The AND
operation is used for
multiple conditions.

Yes Condition or
condition list

if_then_steps Steps to be executed if the
calculation result of the
condition expression is
True.

No str or str list

else_then_steps Steps to be executed if the
calculation result of the
condition expression is
False.

No str or str list

title Title for frontend-phase
display.

No str

description Description of a condition
phase.

No str

depend_steps Dependent phases. No Step or step list

Table 5-64 Condition

Parameter Description Mandator
y

Data Type

condition_type Condition type. The "==",
">", ">=", "in", "<", "<=",
"!=", and "or" operators
are supported.

Yes ConditionTypeEnu
m

left Left value of a condition
expression.

Yes int, float, str, bool,
Placeholder,
Sequence,
Condition,
MetricInfo

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 197

Parameter Description Mandator
y

Data Type

right Right value of a condition
expression

Yes int, float, str, bool,
Placeholder,
Sequence,
Condition,
MetricInfo

Table 5-65 MetricInfo

Parameter Description Mandator
y

Data Type

input_data Metric input. Currently,
only the output of
JobStep is supported.

Yes JobStep output

json_key Key value corresponding
to the metric information
to be obtained

Yes str

Description of the structure:

● Condition object, which consists of the condition type, left value, and
right value
– The condition type is obtained from ConditionTypeEnum. The "==", ">",

">=", "in", "<", "<=", "!=", and "or" operators are supported. The following
table describes the mapping.

Enumeration Operator

ConditionTypeEnum.EQ ==

ConditionTypeEnum.GT >

ConditionTypeEnum.GTE >=

ConditionTypeEnum.IN in

ConditionTypeEnum.LT <

ConditionTypeEnum.LTE <=

ConditionTypeEnum.NOT !=

ConditionTypeEnum.OR or

– The left and right values support the following types: integer, float, string,

bool, placeholder, sequence, condition, and MetricInfo.
– A condition phase supports a list of condition objects. The && operation

is performed between multiple conditions.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 198

● if_then_steps and else_then_steps
– if_then_steps indicates a list of phases that are ready for execution if

conditions evaluate to true. In this case, steps in else_then_steps are
skipped.

– else_then_steps indicates a list of phases that are ready for execution if
conditions evaluate to false. In this case, steps in if_then_steps are
skipped.

Examples

Refer to simple or advanced examples as needed.

Simple Examples
● Implemented using parameter configurations

import modelarts.workflow as wf

left_value = wf.Placeholder(name="left_value", placeholder_type=wf.PlaceholderType.BOOL,
default=True)

Condition object
condition = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ, left=left_value,
right=True) # Condition object, including the type, left value, and right value.

Condition phase
condition_step = wf.steps.ConditionStep(
 name="condition_step_test", # Name of the condition phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 conditions=condition, # Condition objects. The relationship between the conditions is &&.
 if_then_steps="job_step_1", # If conditions evaluate to true, job_step_1 is ready for execution, and
job_step_2 is skipped.
 else_then_steps="job_step_2" # If conditions evaluate to false, job_step_2 is ready for execution,
and job_step_1 is skipped.
)

This phase is used only as an example. You need to supplement other fields as required.
job_step_1 = wf.steps.JobStep(
 name="job_step_1",
 depend_steps=condition_step
)

This phase is used only as an example. You need to supplement other fields as required.
model_step_1 = wf.steps.ModelStep(
 name="model_step_1",
 depend_steps=job_step_1
)

This phase is used only as an example. You need to supplement other fields as required.
job_step_2 = wf.steps.JobStep(
 name="job_step_2",
 depend_steps=condition_step
)

This phase is used only as an example. You need to supplement other fields as required.
model_step_2 = wf.steps.ModelStep(
 name="model_step_2",
 depend_steps=job_step_2
)

workflow = wf.Workflow(
 name="condition-demo",
 desc="this is a demo workflow",

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 199

 steps=[condition_step, job_step_1, job_step_2, model_step_1, model_step_2]
)

NO TE

Scenario description: job_step_1 and job_step_2 indicate two training phases that
depend on condition_step. condition_step parameters determine the subsequent
phase execution.

Execution analysis:
– If the default value of left_value is True, the calculation result of the

condition logical expression is True. Then, job_step_1 is executed,
job_step_2 is skipped, and all phases contained in the branches that use
job_step_2 as the unique root node are skipped. That is, model_step_2 is
skipped. Therefore, condition_step, job_step_1, and model_step_1 are
executed.

– If left_value is set to False, the calculation result of the condition logical
expression is False. Then, job_step_2 is executed, job_step_1 is skipped,
and all phases contained in the branches that use job_step_1 as the
unique root node are skipped. That is, model_step_1 is skipped, and
condition_step, job_step_2, and model_step_2 are executed.

● Implemented by obtaining the metric information output by JobStep
from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.Storage(name="storage_name", title="title_info", with_execution_id=True,
create_dir=True, description="description_info") # The name field is mandatory, and the title and
description fields are optional.

Define the input OBS object.
obs_data = wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")

Use JobStep to define a training phase, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version
number instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If
the value of an algorithm hyperparameter does not need to be changed, you do not need to
configure the hyperparameter in parameters. Hyperparameter values will be automatically filled.
 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 outputs=[

wf.steps.JobOutput(name="train_url",obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("dir
ectory_path"))),
 wf.steps.JobOutput(name="metrics",
metrics_config=wf.data.MetricsConfig(metric_files=storage.join("directory_path/metrics.json",
create_dir=False))) # Metric output path. Metric information is automatically output by the job script
based on the specified data format. (In the example, the metric information needs to be output to the
metrics.json file in the training output directory.)
],
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")
)
) # Training flavors
)

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 200

Define a condition object.
condition_lt = wf.steps.Condition(
 condition_type=wf.steps.ConditionTypeEnum.LT,
 left=wf.steps.MetricInfo(job_step.outputs["metrics"].as_input(), "accuracy"),
 right=0.5
)

condition_step = wf.steps.ConditionStep(
 name="condition_step_test", # Name of the condition phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 conditions=condition_lt, # Condition objects. The relationship between the conditions is &&.
 if_then_steps="training_job_retrain", # If conditions evaluate to true, training_job_retrain is ready
for execution, and model_registration is skipped.
 else_then_steps="model_registration", # If conditions evaluate to false, model_registration is
ready for execution, and training_job_retrain is skipped.
 depend_steps=job_step
)

Use JobStep to define a training phase, and use OBS to store the output.
job_step_retrain = wf.steps.JobStep(
 name="training_job_retrain", # Name of a training phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Image classification retraining", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version
number instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If
the value of an algorithm hyperparameter does not need to be changed, you do not need to
configure the hyperparameter in parameters. Hyperparameter values will be automatically filled.
 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 outputs=[

wf.steps.JobOutput(name="train_url",obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("dir
ectory_path_retrain"))),
 wf.steps.JobOutput(name="metrics",
metrics_config=wf.data.MetricsConfig(metric_files=storage.join("directory_path_retrain/metrics.json",
create_dir=False))) # Metric output path. Metric information is automatically output by the job script
based on the specified data format. (In the example, the metric information needs to be output to the
metrics.json file in the training output directory.)
],
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor_retrain",
placeholder_type=wf.PlaceholderType.JSON, description="Training flavor")
)
), # Training flavors
 depend_steps=condition_step
)

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_step = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a
maximum of 64 characters, including only letters, digits, underscores (_), and hyphens (-). It must
start with a letter and must be unique in a workflow.
 title="Model Registration", # Title
 inputs=wf.steps.ModelInput(name='model_input', data=job_step.outputs["train_url"].as_input()), #
job_step output is used as the input.
 outputs=wf.steps.ModelOutput(name='model_output',
model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow")), #
ModelStep outputs
 depend_steps=condition_step,

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 201

)

workflow = wf.Workflow(
 name="condition-demo",
 desc="this is a demo workflow",
 steps=[job_step, condition_step, job_step_retrain, model_step],
 storages=storage
)

In this example, ConditionStep obtains the accuracy output by job_step and
compares it with the preset value to determine whether to retrain or register
the model. When the accuracy output by job_step is less than the threshold
0.5, the calculation result of condition_lt is True. In this case,
job_step_retrain runs and model_step skips. Otherwise, job_step_retrain
skips and model_step runs.

NO TE

For details about the format requirements of the metric file generated by job_step,
see Creating a Training Job Phase. In the condition phase, only the metric data
whose type is float can be used as the input.

The following is an example of the metrics.json file:
[
 {
 "key": "loss",
 "title": "loss",
 "type": "float",
 "data": {
 "value": 1.2
 }
 },
 {
 "key": "accuracy",
 "title": "accuracy",
 "type": "float",
 "data": {
 "value": 0.8
 }
 }
]

Advanced Examples
import modelarts.workflow as wf

left_value = wf.Placeholder(name="left_value", placeholder_type=wf.PlaceholderType.BOOL, default=True)
condition1 = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ, left=left_value, right=True)

internal_condition_1 = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.GT, left=10, right=9)
internal_condition_2 = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.LT, left=10, right=9)

The result of condition2 is internal_condition_1 || internal_condition_2.
condition2 = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.OR, left=internal_condition_1,
right=internal_condition_2)

condition_step = wf.steps.ConditionStep(
 name="condition_step_test", # Name of the condition phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 conditions=[condition1, condition2], # Condition objects. The relationship between the conditions is &&.
 if_then_steps=["job_step_1"], # If conditions evaluate to true, job_step_1 is ready for execution, and
job_step_2 is skipped.
 else_then_steps=["job_step_2"] # If conditions evaluate to false, job_step_2 is ready for execution, and
job_step_1 is skipped.
)

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 202

This phase is used only as an example. You need to supplement other fields as required.
job_step_1 = wf.steps.JobStep(
 name="job_step_1",
 depend_steps=condition_step
)

This phase is used only as an example. You need to supplement other fields as required.
job_step_2 = wf.steps.JobStep(
 name="job_step_2",
 depend_steps=condition_step
)

workflow = wf.Workflow(
 name="condition-demo",
 desc="this is a demo workflow",
 steps=[condition_step, job_step_1, job_step_2],
)

ConditionStep supports nested condition phases. You can flexibly design tit based
on different scenarios.

NO TE

The condition phase can only support two branches, which is very limiting. You can use the
new branch function to replace the ConditionStep capability without creating new phases.
For details, see Configuring Phase Parameters to Control Branch Execution.

5.3.5.3 Configuring Phase Parameters to Control Branch Execution

Function
You can use parameters or metrics from training output to decide whether to run
a phase. This way, you can control the process.

Application Scenarios
This function is used for complex scenarios that involve multiple branches. When
each execution starts, the workflow decides which branches to run and which ones
to skip based on the relevant configuration information. This way, only some
branches are executed. This function has a similar use case as ConditionStep, but it
is more powerful. This function applies to the dataset creation phase, labeling
phase, dataset import phase, dataset release phase, job phase, model registration
phase, and service deployment phase.

Controlling the Execution of a Single Phase
● Implemented using parameter configurations

from modelarts import workflow as wf

condition_equal = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ,
left=wf.Placeholder(name="is_skip", placeholder_type=wf.PlaceholderType.BOOL), right=True)

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info",
 description="description_info") # Only name is mandatory.

Define the input OBS object.
obs_data = wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 203

Use JobStep to define a training phase, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version
number instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If
the value of an algorithm hyperparameter does not need to be changed, you do not need to
configure the hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 # JobStep input is configured when the workflow is running. You can also use
data=wf.data.OBSPath(obs_path="fake_obs_path") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
 obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))),
 # JobStep output
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
), # Training flavors
 policy=wf.steps.StepPolicy(
 skip_conditions=[condition_equal] # Determines whether to skip job_step based on the
calculation result of skip_conditions.
)
)

workflow = wf.Workflow(
 name="new-condition-demo",
 desc="this is a demo workflow",
 steps=[job_step],
 storages=storage
)

In this example, job_step has a skip policy that is controlled by a bool
parameter. If the placeholder parameter named is_skip is set to True, then
job_step is skipped when condition_equal evaluates to True. Otherwise,
job_step is run. For more details about the condition object, see Creating a
Condition Phase to Control Branch Execution.

● Implemented by obtaining the metric information output by JobStep
from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.Storage(name="storage_name", title="title_info", with_execution_id=True,
create_dir=True, description="description_info") # The name field is mandatory, and the title and
description fields are optional.

Define the input OBS object.
obs_data = wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")

Use JobStep to define a training phase, and use OBS to store the output.
job_step = wf.steps.JobStep(
 name="training_job", # Name of a training phase. The name contains a maximum of 64
characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter
and must be unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version
number instead.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 204

 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If
the value of an algorithm hyperparameter does not need to be changed, you do not need to
configure the hyperparameter in parameters. Hyperparameter values will be automatically filled.
 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 outputs=[

wf.steps.JobOutput(name="train_url",obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("dir
ectory_path"))),
 wf.steps.JobOutput(name="metrics",
metrics_config=wf.data.MetricsConfig(metric_files=storage.join("directory_path/metrics.json",
create_dir=False))) # Metric output path. Metric information is automatically output by the job script
based on the specified data format. (In the example, the metric information needs to be output to the
metrics.json file in the training output directory.)
],
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")
)
) # Training flavors
)

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

Define a condition object.
condition_lt = wf.steps.Condition(
 condition_type=wf.steps.ConditionTypeEnum.LT,
 left=wf.steps.MetricInfo(job_step.outputs["metrics"].as_input(), "accuracy"),
 right=0.5
)

model_step = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a
maximum of 64 characters, including only letters, digits, underscores (_), and hyphens (-). It must
start with a letter and must be unique in a workflow.
 title="Model Registration", # Title
 inputs=wf.steps.ModelInput(name='model_input', data=job_step.outputs["train_url"].as_input()), #
job_step output is used as the input.
 outputs=wf.steps.ModelOutput(name='model_output',
model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow")), #
ModelStep outputs
 depend_steps=job_step # Preceding job phase
 policy=wf.steps.StepPolicy(skip_conditions=condition_lt) # Determines whether to skip model_step
based on the calculation result of skip_conditions.
)

workflow = wf.Workflow(
 name="new-condition-demo",
 desc="this is a demo workflow",
 steps=[job_step, model_step],
 storages=storage
)

In this example, model_step has a skip policy. The model registration depends
on whether the accuracy output by job_step meets the preset value. When
the accuracy output by job_step is less than the threshold 0.5, the calculation
result of condition_lt is True. In this case, model_step skips. Otherwise,
model_step runs.

NO TE

For details about the format requirements of the metric file generated by job_step,
see Creating a Training Job Phase. In the condition phase, only the metric data
whose type is float can be used as the input.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 205

The following is an example of the metrics.json file:
[
 {
 "key": "loss", // Metric data name. The value contains a maximum of 64 characters and cannot
contain special characters.
 "title": "loss", // Metric data title. The value contains a maximum of 64 characters.
 "type": "float", // Metric data type. Floating point, line chart, histogram, table, and one-
dimensional table data types are supported.
 "data": {
 "value": 1.2 // Metric data value. For details about the usage examples of different types, see
Creating a Training Job Phase.
 }
 },
 {
 "key": "accuracy",
 "title": "accuracy",
 "type": "float",
 "data": {
 "value": 0.8
 }
 }
]

Controlling Partial Execution of Multiple Branches
from modelarts import workflow as wf

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.Storage(name="storage_name", title="title_info", with_execution_id=True, create_dir=True,
description="description_info") # The name field is mandatory, and the title and description fields are
optional.

Define the input OBS object.
obs_data = wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")

condition_equal_a = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ,
left=wf.Placeholder(name="job_step_a_is_skip", placeholder_type=wf.PlaceholderType.BOOL), right=True)

Use JobStep to define a training phase, and use OBS to store the output.
job_step_a = wf.steps.JobStep(
 name="training_job_a", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version number
instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.
 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 outputs=[wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path_a")))],
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
), # Training flavors
 policy=wf.steps.StepPolicy(skip_conditions=condition_equal_a)
)

condition_equal_b = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ,
left=wf.Placeholder(name="job_step_b_is_skip", placeholder_type=wf.PlaceholderType.BOOL), right=True)

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 206

Use JobStep to define a training phase, and use OBS to store the output.
job_step_b = wf.steps.JobStep(
 name="training_job_b", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version number
instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.
 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 outputs=[wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path_b")))],
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
), # Training flavors
 policy=wf.steps.StepPolicy(skip_conditions=condition_equal_b)
)

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_step = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model Registration", # Title
 inputs=wf.steps.ModelInput(name='model_input',
data=wf.data.DataConsumptionSelector(data_list=[job_step_a.outputs["train_url"].as_input(),
job_step_b.outputs["train_url"].as_input()])), # Select the output of job_step_a or job_step_b as the input.
 outputs=wf.steps.ModelOutput(name='model_output',
model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow")), # ModelStep
outputs
 depend_steps=[job_step_a, job_step_b], # Preceding job phase
)

workflow = wf.Workflow(
 name="new-condition-demo",
 desc="this is a demo workflow",
 steps=[job_step_a, job_step_b, model_step],
 storages=storage
)

In this example, both job_step_a and job_step_b have a skip policy that is
controlled by parameters. When the parameter values are different, the execution
of model_step can be divided into the following cases (model_step has no skip
policy configured, so it follows the default rule).

job_step_a_is_skip job_step_b_is_skip Whether to Execute
model_step

True True No

False Yes

False True Yes

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 207

job_step_a_is_skip job_step_b_is_skip Whether to Execute
model_step

False Yes

CA UTION

Default rule: A phase is automatically skipped if all the phases it depends on are
skipped. Otherwise, the phase is run. This logic can apply to any phase.

Based on the previous example, if you want to override the default rule and make
model_step run when job_step_a and job_step_b are skipped, you only need to
configure a skip policy in model_step. The skip policy takes precedence over the
default rule.

5.3.5.4 Configuring Multi-Branch Phase Data

Function
This function is only for the scenario where multiple branches are run. When you
create a workflow phase, the data input source of the phase is uncertain. The data
input source could be the output of any of the phases it depends on. Only after all
dependency phases are run, the valid output is automatically selected as the input
based on the actual execution situation.

Examples
from modelarts import workflow as wf

condition_equal = wf.steps.Condition(condition_type=wf.steps.ConditionTypeEnum.EQ,
left=wf.Placeholder(name="is_true", placeholder_type=wf.PlaceholderType.BOOL), right=True)
condition_step = wf.steps.ConditionStep(
 name="condition_step",
 conditions=[condition_equal],
 if_then_steps=["training_job_1"],
 else_then_steps=["training_job_2"],
)

Create an OutputStorage object to centrally manage training output directories.
storage = wf.data.OutputStorage(name="storage_name", title="title_info",
 description="description_info") # Only name is mandatory.

Define the input OBS object.
obs_data = wf.data.OBSPlaceholder(name="obs_placeholder_name", object_type="directory")

Use JobStep to define a training phase, and use OBS to store the output.
job_step_1 = wf.steps.JobStep(
 name="training_job_1", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version number
instead.
 parameters=[]

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 208

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 # JobStep input is configured when the workflow is running. You can also use
data=wf.data.OBSPath(obs_path="fake_obs_path") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
 obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))),
 # JobStep output
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
), # Training flavors
 depend_steps=[condition_step]
)

Use JobStep to define a training phase, and use OBS to store the output.
job_step_2 = wf.steps.JobStep(
 name="training_job_2", # Name of a training phase. The name contains a maximum of 64 characters,
including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and must be
unique in a workflow.
 title="Image classification training", # Title, which defaults to the value of name.
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="subscription_id", # Subscription ID of the subscribed algorithm
 item_version_id="item_version_id", # Algorithm version ID. You can also enter the version number
instead.
 parameters=[]

), # Algorithm used for training. An algorithm subscribed to in AI Gallery is used in this example. If the
value of an algorithm hyperparameter does not need to be changed, you do not need to configure the
hyperparameter in parameters. Hyperparameter values will be automatically filled.

 inputs=wf.steps.JobInput(name="data_url", data=obs_data),
 # JobStep input is configured when the workflow is running. You can also use
data=wf.data.OBSPath(obs_path="fake_obs_path") for the data field.
 outputs=wf.steps.JobOutput(name="train_url",
 obs_config=wf.data.OBSOutputConfig(obs_path=storage.join("directory_path"))),
 # JobStep output
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(name="train_flavor", placeholder_type=wf.PlaceholderType.JSON,
description="Training flavor")

)
), # Training flavors
 depend_steps=[condition_step]
)

Define model name parameters.
model_name = wf.Placeholder(name="placeholder_name", placeholder_type=wf.PlaceholderType.STR)

model_step = wf.steps.ModelStep(
 name="model_registration", # Name of the model registration phase. The name contains a maximum of
64 characters, including only letters, digits, underscores (_), and hyphens (-). It must start with a letter and
must be unique in a workflow.
 title="Model Registration", # Title
 inputs=wf.steps.ModelInput(name='model_input',
data=wf.data.DataConsumptionSelector(data_list=[job_step_1.outputs["train_url"].as_input(),
job_step_2.outputs["train_url"].as_input()])), # Select the output of job_step_1 or job_step_2 as the input.
 outputs=wf.steps.ModelOutput(name='model_output',
model_config=wf.steps.ModelConfig(model_name=model_name, model_type="TensorFlow")), # ModelStep
outputs
 depend_steps=[job_step_1, job_step_2] # Preceding job phase
)# job_step is an instance object of wf.steps.JobStep and train_url is the value of the name field of
wf.steps.JobOutput.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 209

workflow = wf.Workflow(name="data-select-demo",
 desc="this is a test workflow",
 steps=[condition_step, job_step_1, job_step_2, model_step],
 storages=storage
)

NO TE

The workflow in this example has two parallel branches, but only one branch runs at a
time, depending on the configuration of condition_step. The input source of model_step is
either job_step_1 or job_step_2's output. If job_step_1 runs and job_step_2 is skipped,
model_step uses job_step_1's output as input, and vice versa.

5.3.6 Creating a Workflow
To create a workflow, define each phase by referring to Creating Workflow
Phases. Follow these steps:

1. Sort out scenarios, understand preset steps' functions, and determine the DAG
structure.

2. Debug single-phase functions like training or inference on ModelArts.
3. Choose the code template that matches the phase function and fill in the

details.
4. Arrange phases according to the DAG structure to create a workflow.

Importing the Workflow Data Package
When creating a workflow, required objects are imported through workflow
packages. The details are as follows:

from modelarts import workflow as wf

Import the data package:

wf.data.DatasetTypeEnum
wf.data.Dataset
wf.data.DatasetVersionConfig
wf.data.DatasetPlaceholder
wf.data.ServiceInputPlaceholder
wf.data.ServiceData
wf.data.ServiceUpdatePlaceholder
wf.data.DataTypeEnum
wf.data.ModelData
wf.data.GalleryModel
wf.data.OBSPath
wf.data.OBSOutputConfig
wf.data.OBSPlaceholder
wf.data.SWRImage
wf.data.SWRImagePlaceholder
wf.data.Storage
wf.data.InputStorage
wf.data.OutputStorage
wf.data.LabelTask
wf.data.LabelTaskPlaceholder
wf.data.LabelTaskConfig
wf.data.LabelTaskTypeEnum
wf.data.MetricsConfig
wf.data.TripartiteServiceConfig
wf.data.DataConsumptionSelector

Import the policy package:

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 210

wf.policy.Policy
wf.policy.Scene

Import the steps package:

wf.steps.MetricInfo
wf.steps.Condition
wf.steps.ConditionTypeEnum
wf.steps.ConditionStep
wf.steps.LabelingStep
wf.steps.LabelingInput
wf.steps.LabelingOutput
wf.steps.LabelTaskProperties
wf.steps.ImportDataInfo
wf.steps.DataOriginTypeEnum
wf.steps.DatasetImportStep
wf.steps.DatasetImportInput
wf.steps.DatasetImportOutput
wf.steps.AnnotationFormatConfig
wf.steps.AnnotationFormatParameters
wf.steps.AnnotationFormatEnum
wf.steps.Label
wf.steps.ImportTypeEnum
wf.steps.LabelFormat
wf.steps.LabelTypeEnum
wf.steps.ReleaseDatasetStep
wf.steps.ReleaseDatasetInput
wf.steps.ReleaseDatasetOutput
wf.steps.CreateDatasetStep
wf.steps.CreateDatasetInput
wf.steps.CreateDatasetOutput
wf.steps.DatasetProperties
wf.steps.SchemaField
wf.steps.ImportConfig
wf.steps.JobStep
wf.steps.JobMetadata
wf.steps.JobSpec
wf.steps.JobResource
wf.steps.JobTypeEnum
wf.steps.JobEngine
wf.steps.JobInput
wf.steps.JobOutput
wf.steps.LogExportPath
wf.steps.MrsJobStep
wf.steps.MrsJobInput
wf.steps.MrsJobOutput
wf.steps.MrsJobAlgorithm
wf.steps.ModelStep
wf.steps.ModelInput
wf.steps.ModelOutput
wf.steps.ModelConfig
wf.steps.Template
wf.steps.TemplateInputs
wf.steps.ServiceStep
wf.steps.ServiceInput
wf.steps.ServiceOutput
wf.steps.ServiceConfig
wf.steps.StepPolicy

Import the workflow package:

wf.workflow
wf.Subgraph
wf.Placeholder
wf.PlaceholderType
wf.AlgorithmParameters
wf.BaseAlgorithm
wf.Algorithm
wf.AIGalleryAlgorithm
wf.resource

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 211

wf.SystemEnv
wf.add_whitelist_users
wf.delete_whitelist_users

5.3.7 Publishing a Workflow

5.3.7.1 Publishing a Workflow to ModelArts
You can publish a workflow to ModelArts in two ways: Publishing to the Running
State and Publishing and Executing the Workflow. Publishing to the running
state requires configuring input and output parameters on the workflow page.
Publishing and executing the workflow allows you to modify the code and run it
directly through the SDK, eliminating the need to configure and run it on the
console.

Publishing to the Running State
After creating a workflow, you can use the release() method to publish the
workflow to the running state for configuration and execution (on the workflow
page of the management console).

Run the following command:

workflow.release()

After the preceding command is executed, if the log indicates that the workflow is
published, you can go to the ModelArts workflow page to view the workflow. On
the workflow details page, click Configure to configure parameters.

The release_and_run() method is based on the release() method and allows you
to publish and run workflows in the development state, without the need to
configure and execute workflows on the console.

CA UTION

Note the following when using this method:
● For all configuration objects related to placeholders in the workflow, you need

to either set default values or use fixed data objects directly.
● The method executes differently depending on the workflow object's name. It

creates and runs a new workflow if the name does not exist. It updates and
runs the existing workflow if the name already exists, using the new workflow
structure for the new execution.
workflow.release_and_run()

Publishing and Executing the Workflow
With this method, you can publish and run workflows on the SDK without using
the console. You need to modify the workflow code as follows:

from modelarts import workflow as wf

Define a unified output storage path.
output_storage = wf.data.OutputStorage(name="output_storage", description="Unified configuration of
output storage", default="**")

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 212

Dataset object
dataset = wf.data.DatasetPlaceholder(name="input_data", default=wf.data.Dataset(dataset_name="**",
version_name="**"))

Create a training job.
job_step = wf.steps.JobStep(
 name="training_job",
 title="Image Classification Training",
 algorithm=wf.AIGalleryAlgorithm(
 subscription_id="**", # Subscription ID of the image classification algorithm. Obtain the subscription
ID on the algorithm management page. This parameter is optional.
 item_version_id="10.0.0", # Version number of the subscribed algorithm. This parameter is optional.
 parameters=[
 wf.AlgorithmParameters(name="task_type", value="image_classification_v2"),
 wf.AlgorithmParameters(name="model_name", value="resnet_v1_50"),
 wf.AlgorithmParameters(name="do_train", value="True"),
 wf.AlgorithmParameters(name="do_eval_along_train", value="True"),
 wf.AlgorithmParameters(name="variable_update", value="horovod"),
 wf.AlgorithmParameters(name="learning_rate_strategy",
value=wf.Placeholder(name="learning_rate_strategy", placeholder_type=wf.PlaceholderType.STR,
default="0.002", description="Learning rate for training. 10:0.001,20:0.0001 indicates that the learning rate
of the first 10 epochs is 0.001 and that of the next 10 epochs is 0.0001. If the epoch is not specified, the
learning rate will be adjusted based on the validation precision. The training will be stopped if the precision
is not significantly improved anymore.")),
 wf.AlgorithmParameters(name="batch_size", value=wf.Placeholder(name="batch_size",
placeholder_type=wf.PlaceholderType.INT, default=64, description="Number of images trained in each step
(on a single card)")),
 wf.AlgorithmParameters(name="eval_batch_size", value=wf.Placeholder(name="eval_batch_size",
placeholder_type=wf.PlaceholderType.INT, default=64, description="Number of images validated in each
step (on a single card)")),
 wf.AlgorithmParameters(name="evaluate_every_n_epochs",
value=wf.Placeholder(name="evaluate_every_n_epochs", placeholder_type=wf.PlaceholderType.FLOAT,
default=1.0, description="Validation is performed every n epochs.")),
 wf.AlgorithmParameters(name="save_model_secs", value=wf.Placeholder(name="save_model_secs",
placeholder_type=wf.PlaceholderType.INT, default=60, description="Model saving frequency (unit: s)")),
 wf.AlgorithmParameters(name="save_summary_steps",
value=wf.Placeholder(name="save_summary_steps", placeholder_type=wf.PlaceholderType.INT, default=10,
description="Summary saving frequency (unit: step)")),
 wf.AlgorithmParameters(name="log_every_n_steps",
value=wf.Placeholder(name="log_every_n_steps", placeholder_type=wf.PlaceholderType.INT, default=10,
description="Log printing frequency (unit: step)")),
 wf.AlgorithmParameters(name="do_data_cleaning",
value=wf.Placeholder(name="do_data_cleaning", placeholder_type=wf.PlaceholderType.STR, default="True",
description="Whether to clean data. If the data format is abnormal, the training fails. You are advised to
enable this function to ensure training stability. If the data volume is too large, data cleaning may take a
long time. You can clean data offline. (Formats including BMP, JPEG, PNG, and RGB three-channel are
supported.) You are advised to use JPEG.")),
 wf.AlgorithmParameters(name="use_fp16", value=wf.Placeholder(name="use_fp16",
placeholder_type=wf.PlaceholderType.STR, default="True", description="Whether to use mixed precision.
Mixed precision accelerates training but causes precision loss. Enable this parameter unless precision is
strictly required.")),
 wf.AlgorithmParameters(name="xla_compile", value=wf.Placeholder(name="xla_compile",
placeholder_type=wf.PlaceholderType.STR, default="True", description="Whether to use XLA for accelerated
training. This function is enabled by default.")),
 wf.AlgorithmParameters(name="data_format", value=wf.Placeholder(name="data_format",
placeholder_type=wf.PlaceholderType.ENUM, default="NCHW", enum_list=["NCHW", "NHWC"],
description="Input data format. NHWC indicates channel last, and NCHW indicates channel first. This
parameter defaults to NCHW (faster).")),
 wf.AlgorithmParameters(name="best_model", value=wf.Placeholder(name="best_model",
placeholder_type=wf.PlaceholderType.STR, default="True", description="Whether to save and use the model
with the highest precision instead of the latest model during training. The default value is True, indicating
that the optimal model is saved. Within a certain error range, the latest high precision model is saved as
the optimal model.")),
 wf.AlgorithmParameters(name="jpeg_preprocess", value=wf.Placeholder(name="jpeg_preprocess",
placeholder_type=wf.PlaceholderType.STR, default="True", description="Whether to use the JPEG
preprocessing acceleration operator (only JPEG data is supported) to accelerate data reading and improve
performance. This function is enabled by default. If the data format is not JPEG, enable data cleaning to use
the function."))

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 213

]
),
 inputs=[wf.steps.JobInput(name="data_url", data=dataset)],
 outputs=[wf.steps.JobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=output_storage.join("/train_output/")))],
 spec=wf.steps.JobSpec(
 resource=wf.steps.JobResource(
 flavor=wf.Placeholder(
 name="training_flavor",
 placeholder_type=wf.PlaceholderType.JSON,
 description="Training flavor",
 default={"flavor_id": "**"}
)
)
)
)

Create a workflow.
workflow = wf.Workflow(
 name="image-classification-ResNeSt",
 desc="this is a image classification workflow",
 steps=[job_step],
 storages=[output_storage]
)

1. Fill in the actual values for all ** in the code above. The configuration mainly
involves these three items:
– Unified storage: default value of output_storage. Enter an existing OBS

path in the format of /OBS bucket name/Folder path/.
– Dataset object: Enter the dataset name and version number.
– Training flavor: Configure GPU resources since the algorithm in this

example can run only on GPUs. You can use free flavor
modelarts.p3.large.public.free.

2. After the configuration, run this code:
workflow.release_and_run()

3. After the execution, go to the ModelArts console. In the navigation pane,
choose Workflow to view the workflow status.

5.3.7.2 Publishing a Workflow to AI Gallery

You can publish workflows to AI Gallery and share them with other users. To do
so, run this code:

workflow.release_to_gallery()

Once the release is done, you can visit AI Gallery to see the asset details. The asset
permission is set to private by default, but you can change it if you want.

1. Go to AI Gallery.
2. Choose My Gallery > My Assets > Workflow.
3. In the My Publishes tab, view the workflow published to AI Gallery.
4. Click the workflow name to view the workflow details.

The release_to_gallery() method contains the following input parameters.

Parameter Description Mandatory Type

content_id Workflow asset ID No str

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 214

Parameter Description Mandatory Type

version Version number of the
workflow asset. The
format is x.x.x.

No str

desc Description of the
workflow asset version

No str

title Workflow asset name. If
this parameter is not
specified, the workflow
name is used by default.

No str

visibility Visibility of the
workflow asset. The
value can be public,
group (whitelist), and
private (visible only to
you). The default value
is private.

No str

group_users Whitelist. This
parameter is mandatory
only when visibility is set
to group. You can only
enter domain_id.

No list[str]

You can use the method in two ways based on the input parameters:

● workflow.release_to_gallery(title="Asset name") publishes a new workflow
asset with version 1.0.0. If the workflow includes an algorithm that is not
from AI Gallery, it also publishes the algorithm to AI Gallery with version
1.0.0.

● workflow.release_to_gallery(content_id="**", title="Asset name") publishes a
new version based on the specified workflow asset. The version number
increases automatically. If the workflow includes an AI Gallery algorithm, it
updates the algorithm asset with a higher version number.

Workflow asset whitelist setting:

You can specify the visibility and group_users fields of the release_to_gallery
method when you publish an asset for the first time. To change the whitelist for
accessing a certain asset, use this command:

from modelarts import workflow as wf

Add specified whitelist users.
wf.add_whitelist_users(content_id="**", version_num="*.*.*", user_groups=["**", "**"])

Delete specified whitelist users.
wf.delete_whitelist_users(content_id="**", version_num="*.*.*", user_groups=["**", "**"])

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 215

NO TE

When you modify the whitelist for a workflow asset, the system automatically obtains the
information of the algorithm asset that the workflow version depends on and sets the
whitelist for the algorithm asset as well.

5.3.8 Advanced Workflow Capabilities

5.3.8.1 Using Big Data Capabilities (DLI/MRS) in a Workflow

Function
This phase calls MRS for big data cluster computing. It is used for batch data
processing and model training.

Application Scenarios
You can use MRS Spark for big data computing in this phase.

Examples
On the Huawei Cloud MRS console, check available MRS clusters of your account.
If no MRS cluster is available, create one with Spark selected.

You can use MrsStep to create a job phase. The following is an example of
defining a MrsStep:

● Specifying a boot script and cluster
from modelarts import workflow as wf
Define a MrsJobStep using MrsStep.

algorithm = wf.steps.MrsJobAlgorithm(
 boot_file="obs://spark-sql/wordcount.py", # OBS path to the boot script
 parameters=[wf.AlgorithmParameters(name="run_args", value="--master,yarn-cluster")]
)
inputs = wf.steps.MrsJobInput(name="mrs_input", data=wf.data.OBSPath(obs_path="/spark-sql/
mrs_input/")) # OBS path to the input data
outputs = wf.steps.MrsJobOutput(name="mrs_output",
obs_config=wf.data.OBSOutputConfig(obs_path="/spark-sql/mrs_output")) # OBS path to the output
data
step = wf.steps.MrsJobStep(
 name="mrs_test", # Step name, which can be customized
 mrs_algorithm=algorithm,
 inputs=inputs,
 outputs=outputs,
 cluster_id="cluster_id_xxx" # MRS cluster ID
)

● Configuring a cluster and boot script
from modelarts import workflow as wf
Define a phase using MrsJobStep.
run_arg_description = "Program execution parameter, which is used as the program running
environment parameter. The default value is (--master,yarn-cluster)".
app_arg_description = "Program execution parameter, which is used as the input parameter of the
boot script, for example, (--param_a=3,--param_b=4). This parameter is optional and left blank by
default."
mrs_outputs_description = "Data output path, which can be obtained from train_url in the parameter
list."
cluster_id_description = "cluster id of MapReduce Service"

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 216

algorithm = wf.steps.MrsJobAlgorithm(
 boot_file=wf.Placeholder(name="boot_file",
 description="Program boot script",
 placeholder_type=wf.PlaceholderType.STR,
 placeholder_format="obs"),
 parameters=[wf.AlgorithmParameters(name="run_args",
 value=wf.Placeholder(name="run_args",
 description=run_arg_description,
 default="--master,yarn-cluster",
 placeholder_type=wf.PlaceholderType.STR),
),
 wf.AlgorithmParameters(name="app_args",
 value=wf.Placeholder(name="app_args",
 description=app_arg_description,
 default="",
 placeholder_type=wf.PlaceholderType.STR)
)
]
)

inputs = wf.steps.MrsJobInput(name="data_url",
 data=wf.data.OBSPlaceholder(name="data_url",object_type="directory"))

outputs = wf.steps.MrsJobOutput(name="train_url",
obs_config=wf.data.OBSOutputConfig(obs_path=wf.Placeholder(name="train_url",
placeholder_type=wf.PlaceholderType.STR,
placeholder_format="obs",description=mrs_outputs_description)))

mrs_job_step = wf.steps.MrsJobStep(
 name="mrs_job_test",
 mrs_algorithm=algorithm,
 inputs=inputs,
 outputs=outputs,
 cluster_id=wf.Placeholder(name="cluster_id", placeholder_type=wf.PlaceholderType.STR,
description=cluster_id_description, placeholder_format="cluster")
)

● Using an MRS phase on the console
After a workflow is published, configure phase parameters such as the data
input, data output, boot script, and cluster ID on the workflow configuration
page.

5.3.8.2 Specifying Certain Phases to Run in a Workflow
Workflows support predefined scenarios to enable partial execution. You can split
the DAG into different branches based on the scenarios during workflow
development. Then, you can run each branch independently as a separate
workflow. The sample code is as follows:
workflow =wf.Workflow(
 name="image_cls",
 desc="this is a demo workflow",
 steps=[label_step, release_data_step, training_step, model_step, service_step],
 policy=wf.policy.Policy(
 scenes=[
 wf.policy.Scene(
 scene_name="Model training",
 scene_steps=[label_step, release_data_step, training_step]
),
 wf.policy.Scene(
 scene_name="Service deployment",
 scene_steps=[model_step, service_step]
),
]
)
)

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 217

This example shows a workflow with five phases. The policy defines two preset
scenarios: model training and service deployment. When the workflow is published
to the running state, partial execution is disabled by default and all phases run.
You can specify certain scenarios to run on the global configuration page.

NO TE

You can define the same phase in different running scenarios using partial execution.
However, you must ensure that the data dependency between phases is correct. Partial
execution can only be configured and used in the running state and cannot be debugged in
the development state.

ModelArts
User Guide (ModelArts Standard) 5 Using Workflows for Low-Code AI Development

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 218

6 Development Environments

6.1 Application Scenarios
ModelArts provides flexible, open development environments. Select a
development environment based on site requirements.

● In-cloud notebook, which is out of the box, relieving you from concerning
environment installation or configuration. For details, see Creating a
Notebook Instance.

● ModelArts Notebook supports the following methods to develop AI models
based on engines such as PyTorch, TensorFlow, and MindSpore:
– Use JupyterLab to open a notebook instance. For details, see Using a

Notebook Instance for AI Development Through JupyterLab.
– Local IDE for model development. After enabling remote SSH, you can

remotely access the ModelArts notebook development environment to
debug and run code from a local IDE. The local IDE allows you to use the
in-cloud notebook development environment while with local coding
habits unchanged.
A local IDE supports Visual Studio (VS) Code, PyCharm, and SSH.
Additionally, PyCharm Toolkit and VS Code Toolkit are provided for
convenient remote access. For details, see Using Notebook Instances
Remotely Through PyCharm, Using Notebook Instances Remotely
Through VS Code, and Using a Notebook Instance Remotely with
SSH .

● Easy and fast file uploading is a common requirement in AI development.
ModelArts allows you to upload files in multiple ways. You can view the
upload progress and speed during the uploading.
– Upload local files.
– Upload GitHub open-source repository files.
– Upload OBS files.
– Upload remote files such as open-source datasets.

● When using a notebook instance, you can quickly obtain target instances and
switch images in the same instance. You can flexibly adjust the specifications
by adjusting the AI engine and switching node runtime specifications. For
users who just start to use ModelArts notebook, choose a rather small storage

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 219

at first. After the notebook instance is created, scale out EVS as needed and
use dynamic mounting to simulate OBS objects as a local file system. You can
also view events to locate faults when a notebook instance is faulty. For
details, see Managing Notebook Instances.

● ModelArts CLI (ma-cli) is integrated in the notebook instance to interconnect
with ModelArts and run management commands on ModelArts resources.
ma-cli allows you to interact with cloud services in ModelArts notebook
instances and offline VMs. You can run ma-cli commands to implement
automatic command completion, authentication, image building, ModelArts
training job submission, DLI Spark job submission, and OBS data replication.
For details, see ModelArts CLI Command Reference.

● ModelArts Notebook has a built-in MoXing Framework module. ModelArts
mox.file provides a set of APIs for accessing OBS more conveniently, allowing
users to operate OBS files by simulating a series of APIs for operating the
local file system. For details, see Using Moxing Commands in a Notebook
Instance.

6.2 Creating a Notebook Instance
Before developing a model, create a notebook instance and access it for coding.

Context
● Notebook is billed as follows:

– A running notebook instance will be billed based on used resources. The
fees vary depending on your selected resources. For details, see Pricing
Details. When a notebook instance is not used, stop it.

– If you select EVS for storage when creating a notebook instance, the EVS
disk will be continuously billed if the instance is not deleted. Stop and
delete the notebook instance if it is not required.

● When a notebook instance is created, auto stop is enabled by default. The
notebook instance will automatically stop at the specified time.

● Only running notebook instances can be accessed or stopped.
● A maximum of 10 notebook instances can be created under one account.

Procedure
1. Log in to the ModelArts management console. In the navigation pane, choose

Settings and check whether the access authorization has been configured. If
not, configure access authorization. For details, see Configuring Agency
Authorization for ModelArts with One Click.

Figure 6-1 Viewing agency configurations

2. Log in to the ModelArts management console. In the navigation pane on the
left, choose Development Workspace > Notebook.

3. Click Create Notebook in the upper right corner. On the displayed page,
configure the parameters.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 220

https://www.huaweicloud.com/intl/en-us/pricing/index.html?tab=detail#/modelarts
https://www.huaweicloud.com/intl/en-us/pricing/index.html?tab=detail#/modelarts

a. Configure the basic information of the notebook instance, including its
name, description, and auto stop status. For details, see Table 6-1.

Figure 6-2 Basic information of a notebook instance

Table 6-1 Basic parameters

Paramete
r

Description

Name Name of the notebook instance, which is automatically
generated by the system. You can rename it based on
service requirements. A name consists of a maximum of
128 characters and cannot be empty. It can contain only
digits, letters, underscores (_), and hyphens (-).

Descriptio
n

Brief description of the notebook instance

Auto Stop Automatically stops the notebook instance at a specified
time. This function is enabled by default. The default value
is 1 hour, indicating that the notebook instance
automatically stops after running for 1 hour and its
resource billing will stop then. The options are 1 hour, 2
hours, 4 hours, 6 hours, and Custom. You can select
Custom to specify any integer from 1 to 72 hours.
● Stop as scheduled: If this option is enabled, the

notebook instance automatically stops when the
running duration exceeds the specified duration.

NOTE
To protect in-progress jobs, a notebook instance does not
automatically stop immediately at the auto stop time. Instead,
there is a period of 2 to 5 minutes provided for you to renew the
auto stop time.

b. Configure notebook parameters, such as the image and instance flavor.

For details, see Table 6-2.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 221

Table 6-2 Notebook instance parameters

Paramete
r

Description

Image Public and private images are supported.
● Public images are the AI engines built in ModelArts.
● Private images can be created using an instance that is

created using a public image. For details, see Saving a
Notebook Instance. You can also create a custom
image using preset or third-party images. For details,
see Creating a Custom Image.

An image corresponds to an AI engine. When you select an
image during instance creation, the AI engine is specified
accordingly. Select an image as required. Enter a keyword
of the image name in the search box on the right to
quickly search for the image.
You can change an image on a stopped notebook instance.

Resource
Type

Public and dedicated resource pools are available for you
to select.
Public resource pools are billed based on the running
duration of your notebook instances.
Select a created dedicated resource pool based on site
requirements. If no dedicated resources are available,
purchase one.
NOTE

If the dedicated resource pool you purchased is a single-node
Tnt004 pool whose specification is GPU: 1*tnt004 | CPU: 8 vCPUs
and 32 GiB (modelarts.vm.gpu._tnt004u8), when you use the
cluster to create a notebook instance, the Tnt004 card is idle but is
displayed as sold out or the creation fails due to insufficient
resources, contact technical support.

Type Processor type, which can be CPU or GPU.
The chips vary depending on the selected image.
GPUs deliver better performance that CPUs but at a higher
cost. Select a chip type as needed.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 222

Paramete
r

Description

Flavor The flavor of your notebook instance. Select a flavor based
on your needs.
● CPU

2vCPUs 8GB: General-purpose Intel CPU flavor, ideal for
rapid data exploration and experiments
8vCPUs 32GB: General computing-plus Intel CPU flavor,
ideal for compute-intensive applications

● GPU
GPU: 1*Vnt1(32GB)|CPU: 8vCPUs 64GB: Single GPU
with 32 GB of memory, ideal for algorithm training and
debugging in deep learning scenarios
GPU: 1*Tnt004(16GB)|CPU: 8vCPUs* 32GB: Single GPU
with 16 GB of memory, ideal for inference computing
such as computer vision, video processing, and NLP
tasks
GPU: 1*Pnt1(16GB)|CPU: 8vCPUs 64GB: Single GPU
with 16 GB of memory, ideal for algorithm training and
debugging in deep learning scenarios

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 223

Paramete
r

Description

Storage The value can be EVS, SFS, OBS, or PFS. Configure this
parameter based on your needs.
NOTE

OBS and PFS are whitelist functions. If you have trial requirements,
submit a service ticket to apply for permissions.

● EVS
Set a disk size based on service requirements. The
default value is 5 GB. The maximum disk size is
displayed on the GUI.
The EVS disk space is charged by GB from the time the
notebook instance is created to the time the notebook
instance is deleted.

● SFS Select this type only for a dedicated resource pool.
SFS takes effect only after a dedicated resource pool
can communicate with your VPC. For details, see
ModelArts Network.
NOTE

For details about how to set permissions to access SFS Turbo
folders, see Permissions Management.

– Scalable File Service: Select a created SFS Turbo file
system. To create an SFS Turbo file system, log in to
Huawei Cloud.

– Cloud Mount Path: Retain the default value /
home/ma-user/work/.

– Mounted Subdirectory: Select the storage path on
SFS Turbo.

– Mount Method: This parameter is displayed when
the folder control permission is granted for the user.
The read/write or read-only permission is displayed
based on the storage path on SFS Turbo.

● The value can be OBS or PFS.
Storage Path: Set the OBS path for storing notebook
data. If you want to use existing files or data, upload
them to the specified OBS path. Storage Path must be
set to a specific directory in an OBS bucket rather than
the root directory of the OBS bucket.
Secret: Select an existing secret or click Create on the
right to create one. On the displayed DEW console,
create a secret. Enter accessKeyId and
secretAccessKey under Key, and enter the AKs/SKs
obtained from My Credentials > Access Keys under
Value.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 224

https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/resmgmt-modelarts_0004.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0137.html
https://console-intl.huaweicloud.com/sfs/v2?agencyId=417499fc1eea4cbd942c2118304cb933®ion=ap-southeast-1&locale=en-us#/sfs/manager/efslist
https://support.huaweicloud.com/intl/en-us/usermanual-dew/dew_01_9993.html

Paramete
r

Description

Figure 6-3 Configuring the secret values

EVS and SFS are all mounted to the /home/ma-user/
work directory.
You can add a data storage path during the runtime of a
notebook instance by referring to Dynamically Mounting
an OBS Parallel File System.
The data is retained in /home/ma-user/work, even if the
notebook instance is stopped or restarted.
When a notebook instance is deleted, the EVS storage is
released and the stored data is not retained. SFS can be
mounted to a new notebook instance and data can be
retained.

Extended
Storage

NOTE
This parameter is a whitelist function. If you have trial
requirements, submit a service ticket to apply for permissions.

If you need multiple data storage paths, click Add
Extended Storage to add more storage mount directories.
You can add an OBS, PFS, or SFS directory.
Constraints:
● For each type, a maximum of five directories can be

mounted.
● The directories must be unique and cannot be mounted

to a blacklisted directory. Nested mounting is allowed.
Blacklisted directories are those with the following
prefixes:
/data/, /cache/, /dev/, /etc/, /bin/, /lib/, /sbin/, /
modelarts/, /train-worker1-log/, /var/, /
resource_info/, /usr/, /sys/, /run/, /tmp/, /infer/,
and /opt/

After this parameter is configured, the notebook instance
details page is displayed. Click Storage Storage >
Extended Storage to view or edit the extended storage
information. If the number of storage devices does not
reach the maximum, you can click Add Extended Storage
on the right.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 225

Paramete
r

Description

Remote
SSH

● After you enable this function, you can remotely access
the development environment of the notebook instance
from your local development environment.

● When a notebook instance is stopped, you can update
the SSH configuration on the instance details page.

NOTE
The notebook instances with remote SSH enabled have VS Code
plug-ins (such as Python and Jupyter) and the VS Code server
package pre-installed, which occupy about 1 GB persistent storage
space.

Key Pair Set a key pair after remote SSH is enabled.
Select an existing key pair.
Alternatively, click Create on the right of the text box to
create one on the DEW console. On the displayed Create
Account Key Pair page, configure the parameters.
After a notebook instance is created, you can change the
key pair on the instance details page.
CAUTION

Download the created key pair and properly keep it. When you use
a local IDE to remotely access the notebook development
environment, the key pair is required for authentication.

Whitelist Set a whitelist after remote SSH is enabled. This parameter
is optional.
Add the IP addresses for remotely accessing the notebook
instance to the whitelist, for example, the IP address of
your local PC or the public IP address of the source device.
A maximum of five IP addresses can be added and
separated by commas (,). If the parameter is left blank, all
IP addresses will be allowed for remote SSH access.
If your source device and ModelArts are isolated from each
other in network, obtain the public IP address of your
source device using a mainstream search engine, for
example, by entering "IP address lookup", but not by
running ipconfig or ifconfig/ip locally.
After a notebook instance is created, you can change the
whitelist IP addresses on the instance details page.

c. (Optional) Add tags to the notebook instance. Enter a tag key and value

and click Add.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 226

Table 6-3 Adding a tag

Parameter Description

Tags ModelArts can work with Tag
Management Service (TMS).
When creating resource-
consuming tasks in ModelArts, for
example, training jobs, configure
tags for these tasks so that
ModelArts can use tags to
manage resources by group.
For details about how to use tags,
see How Does ModelArts Use
Tags to Manage Resources by
Group?.
After adding a tag, you can view,
modify, or delete the tag on the
notebook instance details page.

NO TE

You can select a predefined TMS tag from the tag drop-down list or customize a
tag. Predefined tags are available to all service resources that support tags.
Customized tags are available only to the service resources of the user who has
created the tags.

4. Click Next.
5. After confirming the parameter settings, click Submit.

Switch to the notebook instance list. The notebook instance is being created.
It will take several minutes before its status changes to Running. Then, the
notebook instance is created.

6. In the notebook instance list, click the instance name. On the instance details
page that is displayed, view the instance configuration.

If Remote SSH is enabled, you can click the modification icon on the right of
the whitelist to modify it. You can click the modification icon on the right of
Authentication to update the key pair of a stopped notebook instance.
In the Storage tab, click Mount Storage to mount an OBS parallel file system
to the instance for reading data. For details, see Dynamically Mounting an
OBS Parallel File System.
If an EVS disk is used, click Expansion on the right of Storage Capacity to
dynamically expand the EVS disk capacity. For details, see Dynamically
Expanding EVS Disk Capacity.

Accessing a Notebook Instance
Access a notebook instance in the Running state for coding.

● Online access: Use JupyterLab. For details, see Using a Notebook Instance
for AI Development Through JupyterLab.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 227

https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/resmgmt-modelarts_0063.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/resmgmt-modelarts_0063.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/resmgmt-modelarts_0063.html

● Remotely accessed from a local IDE through PyCharm. For details, see Using
Notebook Instances Remotely Through PyCharm.

● Remotely accessed from a local IDE through VS Code. For details, see Using
Notebook Instances Remotely Through VS Code.

● Remotely accessed from a local IDE through SSH. For details, see Using a
Notebook Instance Remotely with SSH .

A ModelArts notebook instance is started as user ma-user. The default working
directory of the instance is /home/ma-user.

Mounting Directories of Notebook Containers

When you use EVS storage when creating a notebook instance, the /home/ma-
user/work directory is used as the workspace for persistent storage.

The data stored in only the work directory is retained after the instance is stopped
or restarted. When you use a development environment, store the data for
persistence in /home/ma-user/work.

For details about directory mounting of a notebook instance, see Table 6-4. The
following mounting points are not saved when images are saved.

Table 6-4 Mounting directories

Mount Point Read Only Remarks

/home/ma-user/work/ No Persistent directory of your data

/data No Mount directory of your PFS

/cache No Used to mount the hard disk of the
host NVMe (supported by bare
metal specifications)

/train-worker1-log No Compatible with training job
debugging

/dev/shm No Used for PyTorch engine
acceleration

Selecting Storage for a Notebook Instance

Storage varies depending on performance, usability, and cost. No storage media
can cover all scenarios. Learn about in-cloud storage application scenarios for
better usage.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 228

Table 6-5 In-cloud storage application scenarios

Storag
e

Application Scenario Advantage Disadvantage

EVS Data and algorithm
exploration only in
the development
environment.

Block storage SSDs feature
better overall I/O
performance than NFS. The
storage capacity can be
dynamically expanded to
up to 4096 GB.
As persistent storage, EVS
disks are mounted to /
home/ma-user/work. The
data in this directory is
retained after the instance
is stopped. The storage
capacity can be expanded
online based on demand.

This type of
storage can
only be used in
a single
development
environment.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 229

Storag
e

Application Scenario Advantage Disadvantage

Parallel
File
System
(PFS)

NOTE
● PFS is a whitelist

function. To use this
function, contact
Huawei technical
support.

● Only OBS PFS in
the same region
can be mounted.

PFS buckets mounted
as persistent storage
for AI development
and exploration.
1. Storage for

datasets. Datasets
stored in the PFS
buckets are
directly mounted
to notebooks for
browsing and data
processing and can
be directly used
during training.
Select PFS when
creating a
notebook instance.
After the instance
is running, the
OBS parallel file
system that carries
the datasets is
dynamically
mounted to the
notebook
instances. For
details, see
Dynamically
Mounting an OBS
Parallel File
System.

2. Storage for code.
After debugging
on a notebook
instance, specify
the OBS path as
the code path for
starting training,
facilitating

PFS is an optimized high-
performance object storage
file system with low
storage costs and large
throughput. It can quickly
process high-performance
computing (HPC)
workloads. PFS mounting is
recommended if OBS is
used.
NOTE

Package or split the data to
be uploaded by 128 MB or 64
MB. Download and
decompress the data in local
storage for better I/O and
throughput performance.

Due to average
performance in
frequent read
and write of
small files, PFS
storage is not
suitable for
large model
training or file
decompression.
NOTE

Before
mounting PFS
storage to a
notebook
instance, grant
ModelArts with
full read and
write
permissions on
the PFS bucket.
The policy will
be retained even
after the
notebook
instance is
deleted.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 230

Storag
e

Application Scenario Advantage Disadvantage

temporary
modification.

3. Storage for
checking training.
Mount storage to
the training output
path such as the
path to training
logs. In this way,
view and check
training on the
notebook instance
in real time. This is
especially suitable
for analyzing the
output of jobs
trained using
TensorBoard.

OBS NOTE
● OBS is a whitelist

function. To use this
function, contact
Huawei technical
support.

● Only OBS objects in
the same region
can be mounted.

When uploading or
downloading a large
amount of data in
the development
environment, you can
use OBS buckets to
transfer data.

Low storage cost and high
throughput, but average
performance in reading
and writing small files. It is
a good practice to package
or split the file by 128 MB
or 64 MB. In this way, you
can download the
packages, decompress
them, and use them locally.

The object
storage
semantics is
different from
the Posix
semantics and
needs to be
further
understood.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 231

Storag
e

Application Scenario Advantage Disadvantage

Scalabl
e File
Service
(SFS)

Available only in
dedicated resource
pools. Use SFS
storage in informal
production scenarios
such as exploration
and experiments. One
SFS device can be
mounted to both a
development
environment and a
training environment.
In this way, you do
not need to
download data each
time your training job
starts. This type of
storage is not suitable
for heavy I/O training
on more than 32
cards.

SFS is implemented as NFS
and can be shared between
multiple development
environments and between
development and training
environments. This type of
storage is preferred for
non-heavy-duty distributed
training jobs, especially for
the ones not requiring to
download data additionally
when the training jobs
start.

The
performance of
the SFS storage
is not as good
as that of the
EVS storage.

OceanS
tor
Pacific
storage
(SFS
capacit
y-
oriente
d 2.0)

Currently, it can be
used only in
Tiangong resource
pools.
It is suitable for the
training jobs that use
the file systems
provided by SFS
capacity-oriented 2.0
for AI model training
and exploration. In
addition, OBS APIs
are provided to
import training data
from outside the
cloud.

It provides a high-
performance file client to
meet the high storage
bandwidth requirements of
heavy-load training jobs. It
also supports access to
OBS. After the training
data is imported to the
storage via OBS APIs, it can
be used to train the model
directly without any
conversion.

It provides the
object storage
semantics,
which is
different from
the Posix
semantics and
needs to be
further
understood.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 232

Storag
e

Application Scenario Advantage Disadvantage

Local
storage

First choice for heavy-
duty training jobs.

High-performance SSDs for
the target VM or BMS,
featuring high file I/O
throughput. For heavy-duty
training jobs, store data in
the target directory and
then start training.
By default, the storage is
mounted to the /cache
directory. For details about
the available space of the /
cache directory, see What
Are Sizes of the /cache
Directories for Different
Notebook Specifications
in DevEnviron?.

The storage
lifecycle is
associated with
the container
lifecycle. Data
needs to be
downloaded
each time the
training job
starts.

1. How do I use EVS in a development environment?
When creating a notebook instance, select a small-capacity EVS disk. You
can scale out the disk as needed. For details, see Dynamically Expanding
EVS Disk Capacity.

2. How do I use an OBS parallel file system in a development environment?
When training data in a notebook instance, you can use the datasets
mounted to a notebook container, and use an OBS parallel file system. For
details, see Dynamically Mounting an OBS Parallel File System.

6.3 Using a Notebook Instance for AI Development
Through JupyterLab

6.3.1 Using JupyterLab to Develop and Debug Code Online
JupyterLab is an interactive development environment, enabling you to compile
notebooks, operate terminals, edit Markdown text, enable interaction, and view
CSV files and images. JupyterLab is the future mainstream development
environment for developers.

ModelArts allows you to access notebook instances online using JupyterLab and
develop AI models based on the PyTorch, TensorFlow, or MindSpore engines.
Figure 6-4 shows the operation process.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 233

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_3151.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_3151.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_3151.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_3151.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_3151.html

Figure 6-4 Using JupyterLab to develop and debug code online

Procedure
1. Create a notebook instance.

On the ModelArts management console, create a notebook instance with a
proper AI engine. For details, see Creating a Notebook Instance.

2. After the notebook instance is created, it is in the Running state. Locate it in
the list and click Open in the Operation column to access JupyterLab.

Figure 6-5 Accessing a notebook instance

3. The Launcher page is automatically displayed. Perform required operations.
For details, see JupyterLab Documentation.

Figure 6-6 JupyterLab homepage

NO TE

The notebook and console kernels and versions displayed on the Launcher page vary
depending on the AI engine based on which a notebook instance is created. Figure
6-6 shows an example only. Obtain the notebook and console kernels and versions on
the management console.

4. Upload training data and code files to JupyterLab. For details, see Uploading
Files from a Local Path to JupyterLab.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 234

https://jupyterlab.readthedocs.io/en/stable/

Figure 6-7 Button for uploading a file

5. In the navigation pane on the left, double-click the uploaded code file,
compile the file in JupyterLab, and debug it. For details about how to use
JupyterLab, see Common Functions of JupyterLab.

NO TE

If your code file is in .py format, open a new .ipynb file and run the %load main.py
command to load the content of the .py file to the .ipynb file for encoding and
debugging.

Figure 6-8 Opening a code file

6. In JupyterLab, call the ModelArts SDK to create a training job for in-cloud
training.
For details, see Creating a Training Job.

6.3.2 Common Functions of JupyterLab

Introduction

To access JupyterLab from a running notebook instance, perform the following
operations:

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose Development Workspace > Notebook.

2. Click Open in the Operation column of a running notebook instance to
access JupyterLab.

3. The Launcher page is automatically displayed. Perform required operations.
For details, see JupyterLab Documentation.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 235

https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0422.html
https://jupyterlab.readthedocs.io/en/stable/

Figure 6-9 JupyterLab homepage

NO TE

The notebook and console kernels and versions displayed on the Launcher page vary
depending on the AI engine based on which a notebook instance is created. Figure
6-9 shows an example only. Obtain the notebook and console kernels and versions on
the management console.

– Notebook: Select a kernel for running notebook, for example, TensorFlow
or Python.

– Console: Call the terminal for command control.
– Other: Edit other files.

Creating a Terminal in JupyterLab

You can run Python commands on the terminal to operate the terminal. The
following describes how to open the terminal of JupyterLab.

1. Create a notebook instance. When the instance is running, click Open in the
Operation column. The JupyterLab page is displayed.

2. Choose File > New > Terminal. The Terminal page is displayed.

Figure 6-10 Terminal

3. You can use pip to install external libraries in the TensorFlow-1.8
environment on the Terminal page. For example, to install Shapely:
Enter the following commands in the code input box to obtain the kernel of
the current environment and activate the Python environment on which the
installation depends:

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 236

cat /home/ma-user/README
source /home/ma-user/anaconda3/bin/activate TensorFlow-1.8

NO TE

To install TensorFlow in another Python environment, replace TensorFlow-1.8 in the
command with the target engine.

Figure 6-11 Activating the environment

Run the following command in the code input box to install Shapely:
pip install Shapely

Creating an IPYNB File in JupyterLab
On the JupyterLab homepage, click a proper AI engine in the Notebook area to
create an IPYNB file.

The AI engines supported by each notebook instance vary depending on the
runtime environment. The following figure is only an example. Select an AI engine
based on site requirements.

Figure 6-12 Selecting an AI engine and creating IPYNB file

The created IPYNB file is displayed in the navigation pane on the left.

Figure 6-13 Created IPYNB file

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 237

Creating a Notebook File and Accessing the Console
A console is a Python terminal, which is similar to the native IDE of Python,
displaying the output after a statement is entered.

On the JupyterLab homepage, click a proper AI engine in the Console area to
create a notebook file.

The AI engines supported by each notebook instance vary depending on the
runtime environment. The following figure is only an example. Select an AI engine
based on site requirements.

Figure 6-14 Selecting an AI engine and creating a console

After the file is created, the console page is displayed.

Figure 6-15 Creating a notebook file (console)

Editing a File in JupyterLab
JupyterLab allows you to open multiple notebook instances or files (such as
HTML, TXT, and Markdown files) in one window and displays them on different
tab pages.

In JupyterLab, you can customize the display of multiple files. In the file display
area on the right, you can drag a file to adjust its position. Multiple files can be
concurrently displayed.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 238

Figure 6-16 Customized display of multiple files

When writing code in a notebook instance, you can create multiple views of a file
to synchronously edit the file and view execution results in real time.

To open multiple views, open an IPYNB file and choose File > New View for
Notebook.

Figure 6-17 Multiple views of a file

Before coding in the code area of an IPYNB file in JupyterLab, add an exclamation
mark (!) before the code.

For example, install an external library Shapely.

!pip install Shapely

For example, obtain PythonPath.

!echo $PYTHONPATH

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 239

Figure 6-18 Running code

Renewing or Automatically Stopping a Notebook Instance
If you enable auto stop when you created or started a notebook instance, the
remaining duration for stopping the instance is displayed in the upper right corner
of JupyterLab. You can click the time for renewal.

Figure 6-19 Remaining duration

Figure 6-20 Renewing an instance

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 240

Common JupyterLab Buttons and Plug-ins

Figure 6-21 Common JupyterLab buttons and plug-ins

Table 6-6 JupyterLab buttons

Button Description

Quickly open notebook instances and terminals. Open the
Launcher page, on which you can quickly create notebook
instances, consoles, or other files.

Create a folder.

Upload files.

Refresh the file directory.

Git plug-in, which can be used to access the GitHub code library
associated with the notebook instance.

Table 6-7 JupyterLab plug-ins

Plug-in Description

List files. Click this button to show all files in the notebook
instance.

Display the terminals and kernels that are running in the
current instance.

Git plug-in, which can be used to quickly access the GitHub
code library.

Property inspector.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 241

Plug-in Description

Show the document organization.

Figure 6-22 Buttons in the navigation bar

Table 6-8 Buttons in the navigation bar

Button Description

File Actions related to files and directories, such as creating, closing,
or saving notebooks.

Edit Actions related to editing documents and other activities in the
IPYNB file, such as undoing, redoing, or cutting cells.

View Actions that alter the appearance of JupyterLab, such as
showing the bar or expanding code.

Run Actions for running code in different activities such as
notebooks and code consoles.

Kernel Actions for managing kernels, such as interrupting, restarting,
or shutting down a kernel.

Git Actions on the Git plug-in, which can be used to quickly access
the GitHub code library.

Tabs A list of the open documents and activities in the dock panel.

Settings Common settings and an advanced settings editor.

Help A list of JupyterLab and kernel help links.

Figure 6-23 Buttons in the menu bar of an IPYNB file

Table 6-9 Buttons in the menu bar of an IPYNB file

Button Description

Save a file.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 242

Button Description

Add a new cell.

Cut the selected cell.

Copy the selected cell.

Paste the selected cell.

Execute the selected cell.

Terminate a kernel.

Restart a kernel.

Restart a kernel and run all code of the current notebook
again.

There are four options in the drop-down list:
Code (Python code), Markdown (Markdown code, typically
used for comments), Raw (a conversion tool), and - (not
modified)

View historical code versions.

Git plug-in. The gray button indicates that the plug-in is
unavailable in the current region.

Instance flavor.

Kernel for you to select.

Code running status. indicates the code is being executed.

Using Code-based Plug-ins
The code parametrization plug-in simplifies notebook cases. You can quickly adjust
parameters and train models based on notebook cases without complex code. This
plug-in can be used to customize notebook cases for competitions and learning.

● The Add Form and Edit Form buttons are available only to the shortcut
menu of code cells, as shown below.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 243

Figure 6-24 Viewing a code cell

● After opening new code, add a form before editing it.

Figure 6-25 Shortcut menu of code cells

● If you click Add Form, a code cell will be split into the code and form edit
area. Click Edit on the right of the form to change the default title.

Figure 6-26 Two edit areas

● If you click Edit Form, four sub-options will be displayed: Add new form
field, Hide code, Hide form, and Show All.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 244

Table 6-10 Edit Form sub-options

Edit-Form Sub-
option

Description

Add new form
field

● The form field types include dropdown, input, and
slider, as shown in Figure 6-27. Each time a field is
added, the corresponding variable is added to the
code and form areas. If a value in the form area is
changed, the corresponding variable in the code
area is also changed.

NOTE
When creating a dropdown form, click ADD Item and add at
least two items, as shown in Figure 6-28.

● If the form field type is set to dropdown, the
supported variable types are raw and string.

● If the form field type is set to input, the supported
variable types are boolean, date, integer, number,
raw, and string.

● If the form field type is set to slider, the minimum
value, maximum value, and step can be set.

Hide code Hide the code.

Hide form Hide the forms.

Show all Display both code and forms.

Figure 6-27 Form field types

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 245

Figure 6-28 Creating a dropdown form

Figure 6-29 Deleting a form

Monitoring Resources

To obtain resource usage, select Resource Monitor in the right pane. The CPU
usage and memory usage can be viewed.

Figure 6-30 Resource usage

6.3.3 Using Git to Clone the Code Repository in JupyterLab
In JupyterLab, you can use the Git plug-in to clone the GitHub open-source code
repository, quickly view and edit data, and submit the modified data.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 246

Prerequisites

The notebook instance is running.

Starting the Git Plug-in of JupyterLab

In the notebook instance list, locate the target instance and click Open in the
Operation column to go to the JupyterLab page.

Figure 6-31 shows the Git plug-in of JupyterLab.

Figure 6-31 Git plug-in

Cloning a GitHub Open-Source Code Repository

Access a GitHub open-source code repository at https://github.com/jupyterlab/
extension-examplesitHub. Click , enter the repository address, and click OK to
start cloning. After the cloning is complete, the code library folder is displayed in
the navigation pane of JupyterLab.

Cloning a GitHub Private Code Repository
1. When you clone a GitHub private code repository, a dialog box will be

displayed, asking you to enter your personal credentials. In this case, enter the
personal access token in GitHub.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 247

2. To obtain a personal access token, perform the following operations:

a. Log in to GitHub and open the configuration page.
b. Click Developer settings.
c. Choose Personal access tokens > Generate new token.
d. Verify the login account.
e. Describe the token, select permissions to access the private repository,

and click Generate token to generate a token.
f. Copy the generated token to CloudBuild.

NO TICE

● Save the token securely once it is generated. It will be unavailable after
you refresh the page. If it is not obtained, generate a new token.

● Enter a valid token description so that it can be easily identified. If the
token is deleted by mistake, the building will fail.

● Delete the token when it is no longer used to prevent information leakage.

Figure 6-32 Cloning a GitHub private code repository (only authorization
using a personal access token is supported)

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 248

https://github.com/join

Figure 6-33 Obtaining a personal access token

Viewing a Code Repository
In the list under Name, double-click the folder you want to use and click the Git
plug-in icon on the left to access the code repository corresponding to the folder.

Figure 6-34 Opening the folder and starting the Git plug-in

You can view the information current code repository, such as the repository
name, branch, and historical submission records.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 249

Figure 6-35 Viewing a code repository

NO TE

By default, the Git plug-in clones the master branch. To switch another branch, click
Current Branch to expand all branches and click the target branch name.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 250

Viewing Modifications
If a file in the code repository has been modified, you can view the modified file
under Changed on the Changes tab page. Click Diff this file on the right of the
file name to view the modifications.

Figure 6-36 Viewing modifications

Committing Modifications
After confirming that the modifications are correct, click Stage this change on the
right of the file name, which is equivalent to running the git add command. The
file enters the Staged state. Enter the message to be committed in the lower left
corner and click Commit that is equivalent to running the git commit command.

Figure 6-37 Committing modifications

On the History tab page, view the committing status.

Figure 6-38 Checking whether the committing is successful

Click the push icon, which is equivalent to running the git push command, to
push the code to the GitHub repository. After the pushing is successful, the

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 251

message "Successfully completed" is displayed. If the token used for OAuth
authentication has expired, a dialog box is displayed asking you to enter the user
token or account information. Enter the information as prompted. This section
describes the authorization using a personal access token. If you use a password
for authorization but the password becomes unavailable, perform the operations
described in What Do I Do If the Git Plug-in Password Is Invalid?

Figure 6-39 Pushing code to the GitHub repository

After the preceding operations are complete, on the History tab page of the
JupyterLab Git plug-in page, you can see that origin/HEAD and origin/master
point to the latest push. In addition, you can find the corresponding information in
the committing records of the GitHub repository.

6.3.4 Creating a Scheduled Job in JupyterLab
You can create a scheduled job in a ModelArts notebook instance. This section
describes how to create a scheduled job and run a notebook file with one click to
improve efficiency.

Highlights
● One-click running: You can run a notebook file with one click.

● Scheduled task: You can set the time and frequency for executing code
blocks. The time can be set by second, minute, hour, day, week, or month.

● Parameter-based execution: You can transfer parameters to a notebook job
during its runtime, so that the notebook job can adjust its behavior as
required.

● Task management GUI: A user-friendly GUI is provided for viewing, adding,
and deleting scheduled tasks.

● Task execution record: The status and output of each job are recorded for
future query and debugging.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 252

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0256.html

Procedure
1. Open ModelArts Notebook.
2. Choose a notebook file (IPYNV file) to create a scheduled job.

Figure 6-40 Opening notebook jobs

3. On the Create Job page, configure the parameters and click Create.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 253

Figure 6-41 Parameters for creating a scheduled job

– Job name: Enter the scheduled job name.
– Environment: Choose a Python environment where the notebook job is

to be run.
– Output formats: Select the output file type of the execution result
– Parameters: Click the plus sign (+) to set the Python variables for

running the job.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 254

– Schedule: Choose Run now or Run on a schedule. The cron expression is
supported.

NO TE

● The cron expression must be in the format supported by Linux OS. Otherwise,
an error will be reported. If the expression contains a question mark (?),
replace it with an asterisk (*).

● After a scheduled job is configured, modify the file name and content. The
created jobs are not affected.

4. Run the job. You can view the job running records in the Notebook Jobs tab.
Click Reload in the upper right corner to get the latest records.

Figure 6-42 Viewing the running records of scheduled jobs

5. After the job is executed, you can download the output files. Click the file
name to view the execution result.

Figure 6-43 Viewing the execution result of a scheduled job

6. In the Notebook Job Definitions tab, view all jobs. Click a job name to access
the Job Definition page. You can start, stop, or delete a scheduled job. You
can also click Edit Job Definition to update the scheduling information or
view the running history of a scheduled job.

Figure 6-44 Notebook Job Definitions tab

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 255

Figure 6-45 Configuring a scheduled job

6.3.5 Uploading Files to JupyterLab

6.3.5.1 Uploading Files from a Local Path to JupyterLab
JupyterLab provides multiple methods for uploading files.

Methods for Uploading a File
● For a file not exceeding 100 MB, directly upload it to the target notebook

instance. Detailed information, such as the file size, upload progress, and
upload speed are displayed.

● For a file that exceeds 100 MB but does not exceed 50 GB, upload the file to
OBS (an object bucket or a parallel file system), and then download the file
from OBS to a notebook instance. After the download is complete, the file is
deleted from OBS.

● For a file that exceeds 50 GB, upload it by calling ModelArts SDK or MoXing.
● For a file that shares the same name with an existing file in the current

directory of a notebook instance, overwrite the existing file or cancel the
upload.

● A maximum of 10 files can be uploaded at a time. The other files are in
awaiting upload state. No folders can be uploaded. If a folder is required,
compress it into a package, upload the package to notebook, and decompress
the package in Terminal.
unzip xxx.zip # Directly decompress the package in the path where the package is stored.

For more details, search for the decompression command in mainstream
search engines.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 256

● When multiple files are uploaded in a batch, the total number of files to be
uploaded and the number of files that have been uploaded are displayed at
the bottom of the JupyterLab window.

Uploading File
Method 1: Use JupyterLab to open a running notebook environment.

Figure 6-46 Dragging the file to JupyterLab

Method 2: Click in the navigation bar on the top of the window. In the
displayed dialog box, drag or select a local file and upload it.

Figure 6-47 Clicking the upload button

Uploading a Local File Smaller Than 100 MB to JupyterLab
For a file not exceeding 100 MB, directly upload it to the target notebook instance.
Detailed information, such as the file size, upload progress, and upload speed are
displayed.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 257

Figure 6-48 Uploading a file less than 100 MB

A message is displayed after the file is uploaded.

Figure 6-49 Uploaded

Uploading a Local File that Is 100 MB to 50 GB to JupyterLab
For a file that exceeds 100 MB but does not exceed 50 GB, upload the file to OBS
(an object bucket or a parallel file system), and then download the file from OBS
to the target notebook instance. After the download is complete, the file is
automatically deleted from OBS.

For example, in the scenario shown in the following figure, upload the file through
OBS.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 258

Figure 6-50 Uploading a large file through OBS

To upload a large file through OBS, set an OBS path.

Figure 6-51 Uploading a file through OBS

NO TE

Set an OBS path for uploading local files to JupyterLab. After the setting, this path is used

by default in follow-up operations. To change the path, click in the lower left corner of
the file upload window, as shown in Figure 6-55.

● Method 1: Enter a valid OBS path in the text box and click OK.

Figure 6-52 Configuring an OBS path

● Method 2: Select an OBS path in OBS File Browser and click OK.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 259

Figure 6-53 OBS File Browser

● Method 3: Use the default path.

Figure 6-54 Using the default path to upload a file

Figure 6-55 Setting an OBS path to upload a local file

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 260

After the OBS path is set, upload a file.

Figure 6-56 Uploading a file

Decompressing a package

After a large file is uploaded to Notebook JupyterLab as a compressed package,
you can decompress the package in Terminal.

unzip xxx.zip # Directly decompress the package in the path where the package is stored.

For more details, search for the decompression command in mainstream search
engines.

Uploading a Local File Larger Than 50 GB to JupyterLab
A file exceeding 50 GB cannot be directly uploaded to JupyterLab.

To upload files exceeding 50 GB, upload them to OBS. Then, call the ModelArts
MoXing or SDK API in the target notebook instance to read and write the files in
OBS.

Figure 6-57 Uploading and downloading large files in a notebook instance

The procedure is as follows:

1. Upload the file from a local path to OBS. For details, see Uploading an
Object.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 261

https://support.huaweicloud.com/intl/en-us/qs-obs/obs_qs_0008.html
https://support.huaweicloud.com/intl/en-us/qs-obs/obs_qs_0008.html

2. Download the file from OBS to the notebook instance by calling the
ModelArts SDK or MoXing API.
– Method 1: Call the ModelArts SDK to download a file from OBS.

Example code:
from modelarts.session import Session
session = Session()
session.obs.copy("obs://bucket-name/obs_file.txt","/home/ma-user/work/")

– Method 2: Call the ModelArts MoXing API for reading an OBS file.
import moxing as mox

Download the OBS folder sub_dir_0 from OBS to a notebook instance.
mox.file.copy_parallel('obs://bucket_name/sub_dir_0', '/home/ma-user/work/sub_dir_0')
Download the OBS file obs_file.txt from OBS to a notebook instance.
mox.file.copy('obs://bucket_name/obs_file.txt', '/home/ma-user/work/obs_file.txt')

If a .zip file is downloaded, run the following command on the terminal
to decompress the package:
unzip xxx.zip # Directly decompress the package in the path where the package is stored.

After the code is executed, open the terminal shown in Figure 6-58 and
run the ls /home/ma-user/work command to view the file downloaded
to the notebook instance. Alternatively, go to JupyterLab. In the
navigation pane on the left, view the downloaded file. If the file is not
displayed, refresh the page, as shown in Figure 6-59.

Figure 6-58 Terminal

Figure 6-59 File downloaded to a notebook instance

Error Handling
If you download a file from OBS to your notebook instance and the system
displays error message "Permission denied", perform the following operations for
troubleshooting:

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 262

● Ensure that the target OBS bucket and notebook instance are in the same
region. If they are in different regions, the access to OBS will be denied.

● In this case, ensure that the notebook account has the permission to read
data in the OBS bucket.

For details, see Incorrect OBS Path on ModelArts.

6.3.5.2 Cloning GitHub Open-Source Repository Files to JupyterLab
Files can be cloned from a GitHub open-source repository to JupyterLab.

1. Use JupyterLab to open a running notebook instance.

2. Click in the navigation bar on the top of the JupyterLab window. In the

displayed dialog box, click on the left to go to the page for cloning files
from a GitHub open-source repository.

Figure 6-60 File upload icon

Figure 6-61 Page for cloning files from a GitHub open-source repository

3. Enter a valid address of a GitHub open-source repository, select files from the
displayed files and folders, and click Clone.
GitHub open-source repository address: https://github.com/jupyterlab/
extension-examples

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 263

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html

Figure 6-62 Entering a valid address of a GitHub open-source repository

4. View the clone process.

Figure 6-63 Process of cloning a repository

5. Complete the clone.

Error Handling
● Failing to clone the repository may be caused by network issues. In this case,

run the git clone https://github.com/jupyterlab/extension-examples.git
command on the Terminal page to test the network connectivity.

● If the repository already exists in the current directory of the notebook
instance, the system displays a message indicating that the repository name
already exists. In this case, you can overwrite the existing repository or click

 to cancel the cloning.

6.3.5.3 Uploading OBS Files to JupyterLab

In JupyterLab, you can download files from OBS to a notebook instance. Ensure
that the file is not larger than 10 GB. Otherwise, the upload will fail.

1. Use JupyterLab to open a running notebook instance.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 264

2. Click in the navigation bar on the top of the JupyterLab window. In the

displayed window, click on the left to go to the OBS file upload page.

Figure 6-64 File upload icon

Figure 6-65 OBS file upload

3. Set an OBS file path in either of the following ways:
– Method 1: Enter a valid OBS file path in the text box and click Upload.

Figure 6-66 Entering a valid OBS file path

NO TE

Enter an OBS file path instead of a folder path. Otherwise, the upload fails.

● Method 2: Open OBS File Browser, select an OBS file path, and click Upload.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 265

Figure 6-67 Uploading an OBS File

Error Handling
There are three typical scenarios in which uploading a file failed.

● Scenario 1
Possible causes:
– The OBS path is set to a folder instead of a file path.
– The file in OBS is encrypted. In this case, go to the OBS console and

ensure that the file is encrypted.

– The OBS bucket and notebook instance are not in the same region.
Ensure that the OBS bucket to be read is in the same region as the
notebook instance. You cannot access an OBS bucket in another region.
For details, see How Do I Check Whether ModelArts and an OBS
Bucket Are in the Same Region?

– The account does not have the permission to access the OBS bucket. In
this case, ensure that the notebook account has the permission to read
data in the OBS bucket. For details, see Check Whether You Have
Permission to Access the OBS Bucket.

– The OBS file has been deleted. In this case, make sure that the OBS file
to be uploaded is available.

● Scenario 2

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 266

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0157.html#section2

Figure 6-68 File uploading failure

Possible causes:
The file name contains special characters such as <>'";\`=#$%^&.

● Scenario 3

Figure 6-69 File uploading failure

Possible causes:
The uploaded file exceeded 50 GB.

6.3.5.4 Uploading Remote Files to JupyterLab

Files can be downloaded through remote file addresses to JupyterLab.

Method: Enter the URL of a remote file in the text box of a browser, and the file is
directly downloaded.

1. Use JupyterLab to open a running notebook instance.

2. Click in the navigation bar on the top of the JupyterLab window. In the

displayed window, click on the left to go to the remote file upload page.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 267

Figure 6-70 File upload icon

Figure 6-71 Remote file upload page

3. Enter a valid remote file URL, and the system automatically identifies the file
name. Then, click Upload.

Figure 6-72 Entering a valid remote file URL

Error Handling
Failing to upload the remote file may be caused by network issues. In this case,
enter the URL of the remote file in the text box of a browser to check whether the
file can be downloaded.

6.3.6 Downloading a File from JupyterLab to a Local PC
Files created in JupyterLab can be downloaded to a local path. For details about
how to upload files to JupyterLab, see Uploading Files to JupyterLab.

● If a file is less than or equal to 100 MB, directly download it from JupyterLab.
For details, see Downloading a File Less Than or Equal to 100 MB.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 268

● If a file is larger than 100 MB, use OBS to transfer it to your local path. For
details, see Downloading a File Larger Than 100 MB.

Downloading a File Less Than or Equal to 100 MB
In the JupyterLab file list, right-click the file to be downloaded and choose
Download from the shortcut menu.

The file is downloaded to your browser's downloads folder.

Figure 6-73 Downloading a file

Downloading a File Larger Than 100 MB
Use OBS to transfer the file from the target notebook instance to the local path.
To do so, perform the following operations:

1. Open the Python runtime environment.
In the Launcher tab, click python-3.7.10 under Notebook, as shown in the
following figure.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 269

Figure 6-74 Opening the Python runtime environment

2. Use MoXing to upload the target file from the notebook instance to OBS.
The following shows the sample Python code for uploading the TXT file and
compressed folder. /home/ma-user/work/xxx indicates the path for storing
the file in the notebook instance. obs://bucket_name/xxx indicates the path
for storing the file on OBS. Replace them with the actual paths.
– Upload the obs_file.txt file from the notebook instance to OBS.

Enter the following code, modify the path as required, and click to
run the code. If the TXT file exists in the OBS bucket, the upload is
successful.
import moxing as mox
mox.file.copy('/home/ma-user/work/obs_file.txt', 'obs://bucket_name/obs_file.txt')

Figure 6-75 Running code example

– Upload the decompressed folder sub_dir_0 from the notebook instance
to OBS.

Enter the following code, modify the path as required, and click to
run the code. If the folder exists in the OBS bucket, the upload is
successful.
import moxing as mox
mox.file.copy_parallel('/home/ma-user/work/sub_dir_0', 'obs://bucket_name/sub_dir_0')

3. Use OBS or ModelArts SDK to download the file from OBS to the local path.
– Method 1: Use OBS to download the file.

Download obs_file.txt from OBS to the local path. If a large amount of
data is to be downloaded, use OBS Browser+ to download. For details,
see Downloading an Object.

– Method 2: Use ModelArts SDK to download the file.

i. Download and install the SDK locally.
ii. Authenticate sessions.
iii. Download the file from OBS to the local path. Example code is as

follows:
from modelarts.session import Session

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 270

https://support.huaweicloud.com/intl/en-us/qs-obs/obs_qs_0009.html
https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0004.html
https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0123.html
https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0220.html

Hardcoded or plaintext AK/SK is risky. For security, encrypt your AK/SK and store them
in the configuration file or environment variables.
In this example, the AK and SK are stored in environment variables for identity
authentication. Before running this example, set environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK.
__AK = os.environ["HUAWEICLOUD_SDK_AK"]
__SK = os.environ["HUAWEICLOUD_SDK_SK"]
Decrypt the password if it is encrypted.
session = Session(access_key=__AK,secret_key=__SK, project_id='***', region_name='***')

session.download_data(bucket_path="/bucket_name/obs_file.txt",path="/home/user/
obs_file.txt")

6.3.7 Using MindInsight Visualization Jobs in JupyterLab
ModelArts notebook supports MindInsight visualization jobs. In a development
environment, use a small dataset to train and debug an algorithm. This is used to
check algorithm convergence and detect training issues, facilitating debugging.

MindInsight visualizes information such as scalars, images, computational graphs,
and model hyperparameters during training. It also provides functions such as
training dashboard, model lineage, data lineage, and performance debugging,
helping you train and debug models efficiently. MindInsight supports MindSpore
training jobs. For more information about MindInsight, see MindSpore official
website.

MindSpore allows you to save data into the summary log file and obtain the data
on the MindInsight GUI.

Prerequisites
When using MindSpore to edit a training script, add the code for collecting the
summary record to the script to ensure that the summary file is generated in the
training result.

For details, see Collecting Summary Record.

Note
● To run a MindInsight training job in a development environment, start

MindInsight and then the training process.
● Only one-card single-node training is supported.
● A running visualization job is not billed separately. When the target notebook

instance is stopped, the billing stops.
● If the summary file is stored in OBS, OBS storage will be billed separately.

After a job is complete, stop the notebook instance and clear OBS data to
stop billing.

Creating a MindInsight Visualization Job in a Development Environment
Step 1 Create a Development Environment and Access It Online

Step 2 Upload the Summary Data

Step 3 Start MindInsight

Step 4 View Visualized Data on the Training Dashboard

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 271

https://www.mindspore.cn/mindinsight/docs/en/master/index.html
https://www.mindspore.cn/mindinsight/docs/en/master/index.html
https://www.mindspore.cn/mindinsight/docs/en/r1.5/summary_record.html

Step 1 Create a Development Environment and Access It Online
Log in to ModelArts management console. In the navigation pane on the left,
choose Development Workspace > Notebook, and create a development
environment instance using the MindSpore engine. After the instance is created,
click Open in the Operation column of the instance to access it online.

Step 2 Upload the Summary Data
Summary data is required for MindInsight visualization in a development
environment.

Upload the summary data to the /home/ma-user/work/ directory in a
development environment or store it in an OBS parallel file system.

● For details about how to upload the summary data to the notebook path /
home/ma-user/work/, see Uploading Files from a Local Path to
JupyterLab.

● To store the summary data in an OBS parallel file system that is mounted to a
notebook instance, upload the summary file generated during model training
to the OBS parallel file system and ensure that the OBS parallel file system
and ModelArts are in the same region. When MindInsight is started in a
notebook instance, the notebook instance automatically reads the summary
data from the mounted OBS parallel file system.

Step 3 Start MindInsight
Open MindInsight in JupyterLab.

Click to go to the MindInsight page.

Data is read from /home/ma-user/work/ by default.

If there are two projects or more, select the target project to view its logs.

Figure 6-76 MindInsight page (2)

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 272

Step 4 View Visualized Data on the Training Dashboard
The training dashboard is important for MindInsight visualization. It allows
visualization for scalars, parameter distribution, computational graphs, dataset
graphs, images, and tensors.

For more information, see Viewing Training Dashboard on the MindSpore official
website.

Disabling MindInsight

Click . The MindInsight instance management page is displayed, which shows
all started MindInsight instances. Click SHUT DOWN next to the target instance
to stop it.

Figure 6-77 Stopping an instance

6.3.8 Using TensorBoard Visualization Jobs in JupyterLab
ModelArts supports TensorBoard for visualizing training jobs. TensorBoard is a
visualization tool package of TensorFlow. It provides visualization functions and
tools required for machine learning experiments.

TensorBoard effectively displays the computational graph of TensorFlow in the
running process, the trend of all metrics in time, and the data used in the training.
For more details about TensorBoard, see TensorBoard official website.

TensorBoard visualization training jobs support only CPU and GPU flavors based
on TensorFlow and PyTorch images. Select images and flavors based on the site
requirements.

Prerequisites
When you write a training script, add the code for collecting the summary record
to the script to ensure that the summary file is generated in the training result.

For details about how to add the code for collecting the summary record to a
TensorFlow-powered training script, see TensorFlow official website.

Precautions
● A running visualization job is not billed separately. When the target notebook

instance is stopped, the billing stops.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 273

https://www.mindspore.cn/mindinsight/docs/en/master/index.html
https://www.tensorflow.org/guide/#tensorboard
https://www.tensorflow.org/tensorboard/get_started

● If the summary file is stored in OBS, you will be charged for the storage. After
a job is complete, stop the notebook instance and clear OBS data to stop
billing.

Process of Creating a TensorBoard Visualization Job in a Development
Environment

Step 1 Create a Development Environment and Access It Online

Step 2 Upload the Summary Data

Step 3 Start TensorBoard

Step 4 View Visualized Data on the Training Dashboard

Step 1 Create a Development Environment and Access It Online
Log in to the ModelArts management console. In the navigation pane on the left,
choose Development Workspace > Notebook. Create an instance using a
TensorFlow or PyTorch image. After the instance is created, click Open in the
Operation column of the instance to access it online.

TensorBoard visualization training jobs support only CPU and GPU flavors based
on TensorFlow and PyTorch images. Select images and flavors based on the site
requirements.

Step 2 Upload the Summary Data
Summary data is required for using TensorBoard visualization functions in
DevEnviron.

You can upload the summary data to the /home/ma-user/work/ directory in the
development environment or store it in the OBS parallel file system.

● For details about how to upload the summary data to the notebook path /
home/ma-user/work/, see Uploading Files from a Local Path to
JupyterLab.

● To store the summary data in an OBS parallel file system that is mounted to a
notebook instance, upload the summary file generated during model training
to the OBS parallel file system and ensure that the OBS parallel file system
and ModelArts are in the same region. When TensorBoard is started in a
notebook instance, the notebook instance automatically mounts the OBS
parallel file system directory and reads the summary data.

Step 3 Start TensorBoard
Choose a way you like to start TensorBoard in JupyterLab.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 274

Figure 6-78 Starting TensorBoard in JupyterLab

1. Open JupyterLab, in the navigation pane on the left, create the summary
folder, and upload data to /home/ma-user/work/summary. The folder name
must be summary.

2. Go to the summary folder and click to go to the
TensorBoard page. See Figure 6-79.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 275

Figure 6-79 TensorBoard page (1)

Step 4 View Visualized Data on the Training Dashboard

For TensorBoard visualization, you need the training dashboard. It lets you
visualize scalars, images, and computational graphs.

For more functions, see Get started with TensorBoard.

Disabling TensorBoard

To stop a TensorBoard instance, use any of the following methods:

Click . The TensorBoard instance management page is displayed, which shows
all started TensorBoard instances. Click SHUT DOWN next to an instance.

Figure 6-80 Clicking SHUT DOWN to stop an instance

6.4 Using Notebook Instances Remotely Through
PyCharm

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 276

https://www.tensorflow.org/tensorboard/get_started

6.4.1 Connecting to a Notebook Instance Through PyCharm
Toolkit

AI developers use PyCharm to develop algorithms or models. ModelArts provides
the PyCharm Toolkit plug-in to help AI developers quickly submit locally
developed code to the ModelArts training environment. With PyCharm Toolkit,
developers can quickly remotely access notebook instances, upload code, submit
training jobs, and obtain training logs for local display so that they can better
focus on local code development.

This section introduces how to connect to a notebook instance through PyCharm
Toolkit.

Constraints
● Currently, only versions between 2019.2 and 2023.2 (including 2019.2 and

2023.2) are supported, including the community edition and professional
edition.

● PyCharm of only the professional edition can be used to access notebook
instances.

● You can use a community or professional edition of PyCharm Toolkit to
submit training jobs. The latest version of PyCharm Toolkit can be used only
to submit training jobs of the new version.

● PyCharm Toolkit supports only PyCharm of the Windows version.

Table 6-11 Toolkit functions of the latest version

Supported
Function

Description Reference

Remote SSH
connection

The notebook development
environment can be accessed
through remote SSH.

Connecting to a
Notebook Instance
Through PyCharm
Toolkit

Model
training

Code developed locally can be
quickly submitted to ModelArts and
a training job of the new version is
automatically created. During the
running of the training job, training
logs can be obtained and displayed
on a local host.

Using PyCharm Toolkit
to Create and Debug a
Training Job

OBS-based
upload and
download

Local files or folders can be
uploaded to OBS and files or folders
can be downloaded from OBS to a
local directory.

Uploading Data to a
Notebook Instance
Through PyCharm

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 277

Prerequisites
PyCharm professional edition of a version between 2019.2 and 2023.2 (including
2019.2 and 2023.2) has been installed on the local PC. Remote SSH applies only to
the PyCharm professional edition. Download PyCharm and install it.

Step 1 Downloading and Installing PyCharm Toolkit
In PyCharm, choose File > Settings > Plugins, search for ModelArts in
Marketplace, and click Install.

Step2 Creating a Notebook Instance
Create a notebook instance with remote SSH enabled and whitelist configured.
Ensure that the instance is running. For details, see Creating a Notebook
Instance.

Step 3 Logging In to the Plug-in
To use the AK/SK pair for login authentication, perform the following steps:

1. Open PyCharm with Toolkit installed. Choose ModelArts > Edit Credential
from the menu bar.

Figure 6-81 Edit Credential

NO TE

If ModelArts > Edit Credential is not displayed on the menu bar, the PyCharm version
may be too high. PyCharm Toolkit is not adapted to PyCharm versions later than
2023.2. Download the PyCharm professional edition of a version between 2019.2 and
2023.2 (including 2019.2 and 2023.2).

2. In the displayed dialog box, select the region where ModelArts is located,
enter the AK and SK, and click OK. For details about how to obtain the AK/SK,
see How Do I Obtain an Access Key?
– Region: Select a region from the drop-down list. It must be the same as

the region of the ModelArts console.
– Project: After the region is selected, the project is automatically filled.
– Access Key ID: Enter the AK.
– Secret Access Key: Enter the SK.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 278

https://www.jetbrains.com/pycharm/download/other.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0004.html

Figure 6-82 Entering the region and access keys

3. View the verification result.
In the Event Log area, if information similar to the following is displayed, the
access key has been successfully added:
16:01Validate Credential Success: The HUAWEI CLOUDcredential is valid.

Step 4 Automatically Configuring PyCharm Toolkit
1. In the local PyCharm development environment, choose ModelArts >

Notebook > Remote Config..., and configure PyCharm Toolkit.

Figure 6-83 Remotely connecting to PyCharm Toolkit

2. Choose the target instance from the drop-down list, where all notebook
instances with remote SSH enabled under the account are displayed.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 279

Figure 6-84 Notebook list

– KeyPair: Select the locally stored key pair of the notebook instance for
authentication. The key pair created during the notebook instance
creation is saved in your browser's default downloads folder.

– PathMappings: Synchronization directory for the local IDE project and
notebook, which defaults to /home/ma-user/work/Project name and is
adjustable.

3. Click Apply. After the configuration is complete, restart the IDE for the
configuration to take effect.
After the restart, it takes about 20 minutes to update the Python interpreter
for the first time.

Step 5 Accessing a Notebook Instance Through PyCharm Toolkit
Click the notebook instance name and connect it to the local IDE as prompted.
The connection is kept for 4 hours by default.

Figure 6-85 Starting the connection

To interrupt the connection, click the notebook name and disconnect it from the
local IDE as prompted.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 280

Figure 6-86 Interrupting the connection

Step 6 Uploading Local Files to a Notebook Instance
Code in a local file can be copied to the local IDE, which will automatically
synchronize the code to the in-cloud development environment.

Initial synchronization

In the Project directory of the local IDE, right-click Deployment and choose
Upload to Notebook name from the shortcut menu to upload the local project file
to the specified notebook instance.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 281

Figure 6-87 Synchronizing local data to a notebook instance

Follow-up synchronization

After modifying the code, press Ctrl+S to save it. The local IDE will automatically
synchronize the modification to the specified notebook instance.

After PyCharm Toolkit is installed, Automatic Upload is automatically enabled in
the local IDE for automatically uploading the files in the local directory to the
target notebook instance. If Automatic Upload is not enabled, enable it by
referring to the following figure.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 282

Figure 6-88 Enabling Automatic Upload

Step 7 Remotely Debugging the Code

Click Interpreter in the lower right corner of the local IDE and select a notebook
Python interpreter.

Figure 6-89 Selecting a Python interpreter

Run the code in the notebook instance. The logs are displayed locally.

Figure 6-90 Runtime logs

Click Run/Debug Configurations in the upper right corner of the local IDE to set
runtime parameters.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 283

Figure 6-91 Setting runtime parameters (1)

Select the Python interpreter that remotely connects to the target notebook
instance.

Figure 6-92 Setting runtime parameters (2)

To debug code, set breakpoints and run the program in debug mode.

Figure 6-93 Running the program in debug mode

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 284

In debug mode, the code execution is suspended in the specified line, and you can
obtain variable values.

Figure 6-94 Viewing variable values in debug mode

6.4.2 Manually Connecting to a Notebook Instance Through
PyCharm

A local IDE supports PyCharm and VS Code. You can use PyCharm or VS Code to
remotely connect the local IDE to the target notebook instance on ModelArts for
running and debugging code.

This section describes how to use PyCharm to access a notebook instance.

Prerequisites
● PyCharm professional 2019.2 or later has been installed locally. The PyCharm

professional edition is available because remote SSH applies only to the
professional edition.

● A notebook instance has been created with remote SSH enabled. Ensure that
the instance is running. For details, see Creating a Notebook Instance.

● The address and port number of the development environment are available.
To obtain this information, go to the notebook instance details page.

Figure 6-95 Instance details page

● The key pair is available.

A key pair is automatically downloaded after you create it. Securely store your
key pair. If an existing key pair is lost, create a new one.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 285

Step 1 Configure SSH
1. In your local PyCharm development environment, choose File > Settings >

Tools > SSH Configurations and click + to add an SSH configuration.
– Host: address for accessing the cloud development environment. Obtain

the address on the page providing detailed information of the target
notebook instance .

– Port: port number for accessing the cloud development environment.
Obtain the port number on the page providing detailed information of
the target notebook instance.

– User name: consistently set to ma-user.
– Authentication type: key pair
– Private key file: locally stored private key file of the cloud development

environment. It is the key pair file automatically downloaded when you
created the notebook instance.

2. Click to rename the connection. Then, click OK.
3. After the configuration is complete, click Test Connection to test the

connectivity.
4. Select Yes. If "Successfully connected" is displayed, the network is accessible.

Then, click OK.
5. Click OK at the bottom to save the configuration.

Figure 6-96 Configuring SSH

Step 2 Obtain the Path to the Virtual Environment Built in the Development
Environment

1. Choose Tools > Start SSH Session to access the cloud development
environment.

2. Run the following command to view the Python virtual environments built in
the current environment in the README file in /home/ma-user/:
cat /home/ma-user/README

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 286

3. Run the source command to switch to a specific Python environment.

4. Run which python to obtain the Python path and copy it for configuring the
Python interpreter on the cloud.

Figure 6-97 Obtaining the path to the virtual environment built in the
development environment

Step 3 Configure a Python Interpreter
1. Choose File > Settings > Project: Python project > Python Interpreter. Then,

click and Add to add an interpreter.

2. Select Existing server configuration, choose the SSH configuration from the
drop-down list, and click Next.

3. Configure the Python interpreter.

– Interpreter: Enter the Python path copied in step 1, for example, /
home/ma-user/anaconda3/envs/Pytorch-1.0.0/bin/python.

If the path is ~/anaconda3/envs/Pytorch-1.0.0/bin/python, replace ~
with /home/ma-user.

– Sync folders: Set this parameter to a directory in the cloud development
environment for synchronizing local project directory files. A directory in /
home/ma-user is recommended, for example, /home/ma-user/work/
projects, because other directories may be prohibited from accessing.

4. Click ! on the right and select Automatically upload so that the locally
modified file can be automatically uploaded to the container.

5. Click Finish.

The local project file has been automatically uploaded to the cloud
environment. Each time a local file is modified, the modification is
automatically synchronized to the cloud environment.

In the lower right corner, the current interpreter is displayed as a remote
interpreter.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 287

Figure 6-98 Configuring a Python interpreter

Step 4 Install the Dependent Library for the Cloud Environment
After accessing the development environment, you can use different virtual
environments, such as TensorFlow and PyTorch. However, in actual development,
you need to install dependency packages. Then, you can access the environment
through the terminal to perform operations.

Choose Tools > Start SSH Session and select the configured development
environment. Run the pip install command to install the required dependency
packages.

Step 5 Debug Code in the Development Environment
You have accessed the cloud development environment. Then, you can write,
debug, and run the code in the local PyCharm. The code is actually executed in
the cloud development environment, and the Ascend AI resources on the cloud are
used. In this way, you compile and modify code locally and run the code in the
cloud.

Run the code in the local IDE. The logs can be displayed locally.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 288

Figure 6-99 Debugging code

Click Run/Debug Configurations in the upper right corner of the local IDE to set
runtime parameters.

Figure 6-100 Setting runtime parameters

To debug code, set breakpoints and run the program in debug mode.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 289

Figure 6-101 Code breakpoint

Figure 6-102 Debugging in debug mode

In debug mode, the code execution is suspended in the specified line, and you can
obtain variable values.

Figure 6-103 Debug mode

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 290

Before debugging code in debug mode, ensure that the local code is the same as
the cloud code. If they are different, the line where a breakpoint is added locally
may be different from the line of the cloud code, leading to errors.

When configuring a Python interpreter in the cloud development environment,
select Automatically upload so that any local file modification can be
automatically uploaded to the cloud. If you do not select Automatically upload,
manually upload the directory or code after you modify the local code. For details,
see Step 6 Uploading Local Files to a Notebook Instance.

6.4.3 Uploading Data to a Notebook Instance Through
PyCharm

If the data is less than or equal to 500 MB, directly copy the data to the local IDE.

If the data is larger than 500 MB, upload it to OBS, and then download it to the
notebook instance.

Figure 6-104 Uploading data to a notebook Instance through OBS

1. Upload data to OBS. For details, see Uploading an Object.
2. Call the mox.file.copy_parallel MoXing API provided by ModelArts in the

terminal of the local IDE to transfer data from OBS to the notebook instance.

a. Open terminal in PyCharm. The operations in Visual Studio Code (VS
Code) are similar.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 291

https://support.huaweicloud.com/intl/en-us/qs-obs/obs_qs_0008.html

Figure 6-105 Enabling the terminal in PyCharm

b. The following shows how to use MoXing in the terminal of the local IDE
to upload files from OBS to a notebook instance:
Manually access the development environment.
cat /home/ma-user/README
Select the source environment.
source /home/ma-user/miniconda3/bin/activate MindSpore-python3.7-aarch64
Enter python and press Enter to enter the Python environment.
python
Use MoXing for access.
import moxing as mox
Download a folder from OBS to EVS.
mox.file.copy_parallel('obs://bucket_name/sub_dir_0', '/tmp/sub_dir_0')

6.5 Using Notebook Instances Remotely Through VS
Code

6.5.1 Connecting to a Notebook Instance Through VS Code
VS Code is a typical code editor that supports multiple programming languages
and development environments. You can connect to and use Jupyter Notebook
through VS Code.

After creating a notebook instance with remote SSH enabled, you can use VS Code
to access the development environment in any of the following ways:

● Connecting to a Notebook Instance Through VS Code Toolkit
In this mode, log in to the ModelArts VS Code Toolkit plug-in and use it to
connect to an instance.

● Manually Connecting to a Notebook Instance Through VS Code

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 292

In this mode, use the VS Code Remote-SSH plug-in to configure connection
information and connect to an instance.

Installing VS Code
Install VS Code first.

● Download URL:
Download address: https://code.visualstudio.com/updates/v1_85

Figure 6-106 VS Code download URL

● VS Code version requirements:
You are advised to use VS Code 1.85.2 or the latest version for remote
connection.

● VS Code installation guide:
In Windows, double-click the installation package to complete the
installation.
In Linux, run the command sudo dpkg -i
code_1.85.2-1705561292_amd64.deb to install VS Code.

NO TE

Linux system users must install VS Code as a non-root user.

6.5.2 Installing VS Code
Download URL:

Download address: https://code.visualstudio.com/updates/v1_85

Figure 6-107 VS Code download URL

VS Code version requirements:

Use VS Code 1.85.2 for remote connection.

VS Code installation guide:

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 293

https://code.visualstudio.com/updates/v1_85
https://code.visualstudio.com/updates/v1_85

In Windows, double-click the installation package to complete the installation.

In Linux, run the command sudo dpkg -i code_1.85.2-1705561292_amd64.deb to
install VS Code.

NO TE

Linux system users must install VS Code as a non-root user.

6.5.3 Connecting to a Notebook Instance Through VS Code
Toolkit

This section describes how to use the ModelArts VS Code Toolkit plug-in to
remotely connect to a notebook instance.

Prerequisites

You have downloaded and installed VS Code. For details, see Installing VS Code.

Step 1 Install the VS Code Plug-in
1. Search for ModelArts-HuaweiCloud in the EXTENSIONS text box and click

Install.

Figure 6-108 Installing the VS Code plug-in

2. Wait for about 1 to 2 minutes.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 294

Figure 6-109 Installation process

3. After the installation is complete, check the message displayed in the lower

right corner. If the ModelArts icon and remote SSH icon are
displayed in the navigation pane on the left, the VS Code plug-in is installed.

Figure 6-110 Installation completion message

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 295

Figure 6-111 Installation completed

Network issues may cause an installation failure. If this occurs, proceed with
follow-up operations. After 1 in Step 4 Access the Notebook Instance is
performed, the system will automatically display a dialog box shown in the
following figure. In this case, click Install and Reload.

Figure 6-112 Reconnecting remote SSH

Step 2 Log In to the VS Code Plug-in

1. In the local VS Code development environment, click and User Settings,
and configure the login information.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 296

Figure 6-113 Logging in to the plug-in

Enter the login information and click Log in.
– Name: Custom username, which is displayed only on the VS Code page

and is not associated with any Huawei Cloud account.
– AK and SK: Access key pair. To create a key pair, choose My Credentials >

API Credentials > Access Keys, and click Create Access Key. For details,
see How Do I Obtain an Access Key?.

– Region: must be the same as that of the notebook instance to be
remotely connected. Otherwise, the connection will fail.

2. After the login, check the notebook instance list.

NO TE

The list displays only notebook instances in the default workspace on the ModelArts
console.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 297

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0004.html

Figure 6-114 Login succeeded

Step 3 Create a Notebook Instance

CA UTION

● Create a notebook instance with remote SSH enabled, and download the key
file to either of the following directories based on your OS:
Windows: C:\Users\{{user}}
macOS/Linux: Users/{{user}}

● A key pair is automatically downloaded after you create it. Securely store your
key pair. If an existing key pair is lost, create a new one.

Create a notebook instance with remote SSH enabled. For details, see Creating a
Notebook Instance.

Step 4 Access the Notebook Instance
1. In the local VS Code development environment, right-click the instance name

and choose Connect to Instance from the shortcut menu to start and
connect to the notebook instance.
The notebook instance can either be running or stopped. If it is stopped, the
VS Code plug-in starts the instance and then connects to it.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 298

Figure 6-115 Connecting to a notebook instance

Alternatively, click the instance name. On the instance details page, click
Connect. Then, the system automatically starts and connects to the notebook
instance.

Figure 6-116 Viewing details about a notebook instance

2. When you connect to a notebook instance for the first time, the system
prompts you in the lower right corner to configure the key file. In this case,
select the local .pem key file and click OK.

Figure 6-117 Configuring the key file

3. Wait for about 1 to 2 minutes until the notebook instance is accessed. After
information similar to the following is displayed in the lower left corner of the
VS Code environment, the connection is succeeded.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 299

Figure 6-118 Connection succeeded

Debugging Code Remotely
1. On the VS Code page, upload local code to the cloud development

environment.

a. Choose File > OpenFolder, select the path to be opened, and click OK.

Figure 6-119 Open Folder

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 300

Figure 6-120 Selecting a file path

b. In the displayed directory structure on the left of the IDE, drag the code
and files you want to upload to the corresponding folders. Then, the code
is uploaded to the cloud development environment.

c. Open the code file to be debugged in VS Code. Before running the code,
click the default Python version in the lower left part and select a version
as required.

Figure 6-121 Selecting a Python version

2. Click the execution button to run the code. The code output is shown in the
TERMINAL tab.
– If a training job takes a long time to execute, run the job at the backend

through the nohup command. This prevents the disconnection of an SSH

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 301

session or a network failure from affecting job execution. The following
shows an example nohup command:
nohup your_train_job.sh > output.log 2>&1 & tail -f output.log

– To debug the code, perform the following operations:

i. Choose Run > Run and Debug on the left.
ii. Select the default Python code file.
iii. Click on the left of the code to set breakpoints.
iv. Debug the code according to the debug procedure which is displayed

above the code, and the debug information is displayed on the left of
the page.

Related Operations

For details about uninstalling the VS Code plug-in, see Figure 6-122.

Figure 6-122 Uninstalling the VS Code plug-in

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 302

6.5.4 Manually Connecting to a Notebook Instance Through
VS Code

A local IDE supports PyCharm and VS Code. You can use PyCharm or VS Code to
remotely connect the local IDE to the target notebook instance on ModelArts for
running and debugging code.

This section describes how to use VS Code to access a notebook instance.

Prerequisites
● You have downloaded and installed VS Code. For details, see Installing VS

Code.
● Python has been installed on your local PC or server. For details, see VS Code

official documentation.
● A notebook instance has been created with remote SSH enabled. Ensure that

the instance is running. For details, see Creating a Notebook Instance.
● The address and port number of the development environment are available.

To obtain the information, go to the notebook instance details page.

Figure 6-123 Instance details page

● The key pair is available.
A key pair is automatically downloaded after you create it. Securely store your
key pair. If an existing key pair is lost, create a new one.

Step 1 Add the Remote-SSH Plug-in

In the local VS Code development environment, click , enter SSH in the
search box, and click install of the Remote-SSH plug-in to install the plug-in.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 303

https://code.visualstudio.com/docs/python/python-tutorial#_prerequisites
https://code.visualstudio.com/docs/python/python-tutorial#_prerequisites

Figure 6-124 Adding the Remote-SSH plug-in

Step 2 Configure SSH

1. In the local VS Code development environment, click on the left, select

SSH Targets from the drop-down list box, and click . The SSH
configuration file path is displayed.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 304

Figure 6-125 Configuring SSH Targets

2. Click the SSH configuration path and configure SSH.

Figure 6-126 SSH configuration file path

HOST remote-dev
 hostname <Instance connection host>
 port <Instance connection port>
 user ma-user
 IdentityFile ~/.ssh/test.pem

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 305

 UserKnownHostsFile=/dev/null
 StrictHostKeyChecking no

– HOST: name of the cloud development environment
– HostName: address for accessing the cloud development environment.

Obtain the address on the page providing detailed information of the
target notebook instance.

– Port: port number for accessing the cloud development environment.
Obtain the port number on the page providing detailed information of
the target notebook instance.

– user: ma-user
– IdentityFile: locally stored private key file of the cloud development

environment. It is the key pair file in Prerequisites.
3. Return to the SSH Targets page, locate the target remote development

environment, and click on the right to connect to host in a new window.

Figure 6-127 Opening the development environment

On the displayed page, click Linux.

Figure 6-128 Selecting a notebook running environment

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 306

Figure 6-129 Remote connection succeeded

Step 3 Install the Python Plug-in in the Cloud Development Environment

On the displayed VS Code page, click on the left, enter Python in the
search box, and click Install.

Figure 6-130 Installing the Python plug-in in the cloud development environment

If the Python plug-in fails to be installed on the cloud, install it using an offline
package.

Step 4 Install the Dependent Library for the Cloud Environment

After accessing the container environment, you can use different virtual
environments, such as TensorFlow and PyTorch. However, in actual development,
you need to install dependency packages. Then, you can access the environment
through the terminal to perform operations.

1. In VS Code, press Ctrl+Shift+P.
2. Search for Python: Select Interpreter and select the target Python.
3. Choose Terminal > New Terminal. The CLI of the remote container is

displayed.
4. Run the following command to install the dependency package:

pip install spacy

6.5.5 Uploading and Downloading Files in VS Code

Uploading Data to a Notebook Instance Using VS Code

If the data is less than or equal to 500 MB, directly copy the data to the local IDE.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 307

If the data is larger than 500 MB, upload it to OBS and then to the notebook
instance.

Procedure

1. Upload data to OBS. For details, see Uploading an Object.
Alternatively, use ModelArts SDK in the terminal of local VS Code to upload
data to OBS. To do so, click Terminal on the top menu bar. Enter python and
press Enter in terminal to access the Python environment.
python

In the terminal of the local VS Code, use ModelArts SDK to upload the target
local file to OBS. For details, Transferring Files.

2. Upload the OBS file to the notebook instance. Use ModelArts SDK in the
terminal of the remote VS Code environment to upload the file from OBS to a
notebook instance.

Figure 6-131 Opening the terminal in the remote VS Code environment

Manually access the development environment using the source command.
cat /home/ma-user/README
Select the target environment.
source /home/ma-user/miniconda3/bin/activate MindSpore-python3.7-aarch64
Enter python and press Enter to access the Python environment.
python

Then, perform OBS transfer operations by referring to Uploading a File to
OBS.

Downloading Files from a Notebook Instance to a Local Directory
Files created in Notebook can be downloaded to a local path. In the Project
directory of the local IDE, right-click the Notebook2.0 project and choose
Download from the shortcut menu to download the project file to the local PC.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 308

https://support.huaweicloud.com/intl/en-us/qs-obs/obs_qs_0008.html
https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0437.html
https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0218.html
https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0218.html

Figure 6-132 Downloading files from a notebook instance to a local directory in
VS Code

6.6 Using a Notebook Instance Remotely with SSH
This section describes how to use PuTTY to remotely log in to a notebook instance
on the cloud in the Windows environment.

Prerequisites
● You have created a notebook instance with remote SSH enabled and whitelist

configured. Ensure that the instance is running. For details, see Creating a
Notebook Instance.

● The address and port number of the development environment are available.
To obtain this information, go to the notebook instance details page.

Figure 6-133 Instance details page

● The key pair is available.
A key pair is automatically downloaded after you create it. Securely store your
key pair. If an existing key pair is lost, create a new one.

Step 1 Install the SSH Tool

Download and install the SSH remote access tool, for example, PuTTY.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 309

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Step 2 Use PuTTYgen to Convert the .pem Key Pair File to a .ppk Key Pair
File

1. Download PuTTYgen and double-click it to run it.

2. Click Load to load the .pem key file created and saved during notebook
instance creation.

3. Click Save private key to save the generated .ppk file. The file name can be
customized, for example, key.ppk.

Figure 6-134 Converting the .pem key pair file to a .ppk key pair file

Step 3 Use SSH to Connect to a Notebook Instance
1. Run PuTTY.

2. Click Session and set the following parameters:

a. Host Name (or IP address): address for accessing the in-cloud notebook
instance. Obtain the address on the page providing detailed information
of the target notebook instance .

b. Port: port number for accessing the in-cloud notebook instance. Obtain
the port number on the page providing detailed information of the target
notebook instance, for example, 32701.

c. Connection type: Choose SSH.

d. Saved Sessions: task name, which can be clicked for remote access when
you use PuTTY next time

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 310

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Figure 6-135 Configuring Session

3. Choose Window > Translation and select UTF-8 from the drop-down list box
in the Remote character set area.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 311

Figure 6-136 Setting the character format

4. Choose Connection > Data and enter ma-user for Auto-login username.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 312

Figure 6-137 Entering a username

5. Choose Connection > SSH > Auth, click Browse, and select the .ppk file
generated in step 2.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 313

6. Click Open. If you are logging in to the instance for the first time, PuTTY
displays a security warning dialog box, asking if you want to accept the
instance security certificate. Click Accept to save the certificate to your local
registry.

Figure 6-138 Asking if you want to accept the instance security certificate

7. Connect to the notebook instance.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 314

Figure 6-139 Connecting to a notebook instance

6.7 Managing Notebook Instances

6.7.1 Searching for a Notebook Instance

Searching for an Instance
All created instances are displayed on the notebook page. To display a specific
instance, search for it based on filter criteria.

● Grant the permission to the IAM user for viewing all notebook instances.
Log in to the ModelArts management console. In the navigation pane on the
left, choose Development Workspace > Notebook. On the displayed page,
enable View all.

● Set search criteria, such as name, ID, status, image, flavor, description, and
creation time.

Assigning the Required Permissions
Any IAM user granted with the listAllNotebooks and listUsers permissions can
click View all on the notebook page to view the instances of all IAM users in the
current IAM project. After the permission is granted, you can access OBS and SWR
of IAM users in a notebook instance.

1. Log in to the ModelArts management console as a tenant user, hover the
cursor over your username in the upper right corner, and choose Identity and
Access Management from the drop-down list to switch to the IAM
management console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
create two policies.
Policy 1: Create a policy that allows users to view all notebook instances of an
IAM project, as shown in Figure 6-140.
– Policy Name: Enter a custom policy name, for example, Viewing all

notebook instances.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 315

– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:notebook:listAllNotebooks, and default resources.

Figure 6-140 Creating a custom policy

Policy 2: Create a policy that allows users to view all users of an IAM project.
– Policy Name: Enter a custom policy name, for example, Viewing all

users of the current IAM project.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, Identity and Access Management,

iam:users:listUsers, and default resources.
3. In the navigation pane, choose User Groups. Then, click Authorize in the

Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.
After the configuration, all users in the user group have the permission to
view all notebook instances created by users in the user group.
If no user group is available, create a user group, add users using the user
group management function, and configure authorization. If the target user is
not in a user group, you can add the user to a user group through the user
group management function.

Starting Notebook Instances of Other IAM Users

If an IAM user wants to access another IAM user's notebook instance through
remote SSH, they need to update the SSH key pair to their own. Otherwise, error
ModelArts.6786 will be reported. For details about how to update a key pair, see
Modifying the SSH Configuration for a Notebook Instance. ModelArts.6789:
Failed to find SSH key pair KeyPair-xxx on the ECS key pair page. Update the key
pair and try again later.

6.7.2 Updating a Notebook Instance

Changing an Image

ModelArts allows you to change images on a notebook instance to flexibly adjust
its AI engine. Images can be changed for only stopped notebook instances.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 316

https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/modelarts_30_0051.html#section2

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose DevEnviron > Notebook.

2. In the notebook list, click More in the Operation column of the target
notebook instance and select Change Image.

3. In the Change Image dialog box, select a new image and click OK. After the
modification, you can view the new image on the notebook list page.

Changing the Specifications of a Notebook Instance
ModelArts allows you to change the node specifications for a notebook instance.
Specifications of a notebook instance can be modified only when the notebook
instance is in the Stopped, Running, or Startup failed state.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose DevEnviron > Notebook.

2. In the notebook instance list, locate the target notebook instance and choose
More > Modify Specifications in the Operation column. In the displayed
Modify Specifications dialog box, select the required specifications.

Figure 6-141 Modifying specifications

NO TE

The instance specifications can be changed only when there are other options in the
cluster. If no other specifications are available, the change cannot be performed.

Modifying the SSH Configuration for a Notebook Instance
ModelArts allows you to modify the SSH configuration only when the notebook
instance is stopped.

If remote SSH connection is not configured when you create the notebook
instance and you want to enable it after the instance is created, go to the
notebook instance details page, and enable SSH configuration. If a whitelist is
configured for remote connection and you need to use another IP address, modify
the IP addresses in the whitelist on the instance details page. If an IAM user needs
to start a notebook instance of another user's, change the key pair.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose DevEnviron > Notebook.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 317

2. Click the target notebook instance. Enable remote SSH and change the key
pair and whitelist.

NO TE

For manually enabled remote SSH, see Figure 6-142. After the SSH configuration is
updated, the remote SSH function cannot be disabled.

If SSH remote development must be configured for the selected image, configure

Whitelist or click next to Authentication.

Figure 6-142 Updating SSH configuration

– Click and choose an existing key pair, or click Create to create one.

– After you change the IP addresses, the existing links are still valid. After
the links are released, the new links only from the changed IP addresses
can be set up.

– Ensure that public IP addresses are set. If your source device and the
Huawei Cloud ModelArts are isolated from each other in network, obtain
the public IP address of your source device using a mainstream search
engine, for example, by entering "IP address lookup", but not by running
ipconfig or ifconfig/ip locally.

6.7.3 Starting, Stopping, or Deleting a Notebook Instance

Starting or Stopping an Instance

Stop the notebook instances that are not needed. You can also restart a stopped
instance.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose Development Workspace > Notebook.

2. Start or stop the target notebook instance.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 318

– To start a notebook instance, click Start in the Operation column of the
target notebook instance. Only stopped notebook instances can be
started.

– To stop a notebook instance, click Stop in the Operation column of the
target notebook instance. Only running notebook instances can be
stopped.

CA UTION

After a notebook instance is stopped:

● Data in the /home/ma-user/work directory and directories
dynamically mounted to /data is saved. Data in other directories will
be deleted. For example, the external dependency packages installed
in other directories in the development environment will be deleted.
Save your development environment settings as an image. For details,
see Saving a Notebook Instance.

● The notebook instance will no longer be billed. However, if the
instance is attached with an EVS disk, the storage space will still be
billed.

Deleting an Instance

Delete the notebook instances that are not needed.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose Development Workspace > Notebook.

2. In the notebook list, locate the target notebook instance, and click Delete in
the Operation column. In the displayed dialog box, confirm the information,
enter DELETE in the text box, and click OK.

CA UTION

Deleted notebook instances cannot be recovered. After a notebook instance is
deleted, the data stored in the mounted directory will be deleted.

6.7.4 Saving a Notebook Instance
To save a notebook environment image, do as follows: Create a notebook instance
using a preset image, install custom software and dependencies on the base
image, and save the running instance as a container image. After the image is
saved, the default working directory is the / path in the root directory.

In the saved image, the installed dependencies are retained. The data stored in
home/ma-user/work for persistent storage will not be stored. When you use VS
Code for remote development, the plug-ins installed on the Server are retained.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 319

NO TE

If the image fails to be saved, view the event on the notebook instance details page. For
details, see Viewing Notebook Events.

The image to be saved should not be larger than 35 GB and there should be no more than
125 layers. Otherwise, the image may fail to be saved. For details, see Space Allocation for
Container Engines.

● If a dedicated resource pool is used, log in to the ModelArts console. In the navigation
pane on the left, choose AI Dedicated Resource Pools > Elastic Clusters. On the
displayed page, configure the container engine size as needed. For details, see Resizing
a Dedicated Resource Pool.

● If the fault persists, contact technical support.

Prerequisites

The notebook instance is in Running state.

Saving an Image
1. In the notebook instance list, select the target notebook instance and choose

Save Image from the More drop-down list in the Operation column. The
Save Image dialog box is displayed.

Figure 6-143 Saving an image

2. In the Save Image dialog box, configure parameters. Click OK to save the
image.

Choose an organization from the Organization drop-down list. If no
organization is available, click Create on the right to create one.
Users in an organization can share all images in the organization.

3. The image will be saved as a snapshot, and it will take about 5 minutes.
During this period of time, do not perform any operations on the instance.

Figure 6-144 Saving as a snapshot

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 320

https://support.huaweicloud.com/intl/en-us/api-cce/cce_01_0341.html#section1
https://support.huaweicloud.com/intl/en-us/api-cce/cce_01_0341.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/resmgmt-modelarts_0006.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/resmgmt-modelarts_0006.html#section2

NO TICE

The time required for saving an image as a snapshot will be counted in the
instance running duration. If the instance running duration expires before the
snapshot is saved, saving the image will fail.

4. After the image is saved, the instance status changes to Running. View the
image on the Image Management page.

5. Click the name of the image to view its details.

Using a Custom Image to Create a Notebook Instance

The images saved from a notebook instance can be viewed on the Image
Management page. You can use these images to create new notebook instances,
which inherit the software configurations of the original notebook instances.

Method 1: On the Create Notebook page, click Private Image and select the
saved image.

Figure 6-145 Selecting a custom image to create a notebook instance

Method 2: On the Image Management page, click the target image to access its
details page. Then, click Create Notebook.

Which Data Can Be Saved When I Save an Image?
● Data that can be saved: Files and directories that are statically added to

images during container building,
for example, dependencies and the /home/ma-user directory are saved in the
image environment.

● Data that cannot be saved: Mounting directories or data volumes that are
dynamically connected to the host during container startup. You can run the
df -h command to view the mounted dynamic directories. Data that is not in
the / path will not be saved.
For example, data that is persistently stored in home/ma-user/work and
data that is dynamically mounted to /data is not saved.

6.7.5 Dynamically Expanding EVS Disk Capacity

Overview

If a notebook instance uses an EVS disk for storage, the disk is mounted to /
home/ma-user/work/ of the notebook container and the disk capacity can be
expanded by up to 100 GB at a time when the instance is running.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 321

Application Scenarios

During notebook development, select a small EVS disk capacity, for example, 5 GB,
when creating a notebook instance because the storage requirements are low at
the initial stage. After the development, a large volume of data must be trained.
Then, expand the disk capacity to cost-effectively meet your service needs.

Restrictions
● The target notebook instance must use EVS for storage.

Figure 6-146 Selecting EVS when creating a notebook instance

● Up to 100 GB can be expanded at a time. Additionally, the total capacity after
expansion cannot exceed 4,096 GB.

● If the original capacity of an EVS disk is 4,096 GB, the disk capacity cannot be
expanded.

● After the instance is stopped, the expanded capacity still takes effect. The
billing is based on the expanded EVS disk capacity.

● An EVS disk is billed as long as it is used. To stop billing an EVS disk, delete
data from the EVS disk and release the disk.

Procedure
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Development Workspace > Notebook.
2. Click the name of a running notebook instance. On the instance details page,

click Expansion.

Figure 6-147 Instance details page

3. Set the capacity to be expanded and click OK. Expanding shows that the
capacity expansion is in progress. After the expansion, the displayed storage
capacity is the expanded capacity.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 322

Figure 6-148 Capacity expansion

Figure 6-149 Expanding

6.7.6 Dynamically Mounting an OBS Parallel File System

Overview

Parallel File System (Parallel File System) is an optimized high-performance file
system provided by Object Storage Service (OBS). For details, see About Parallel
File System.

Dynamic OBS mounting uses a mounting tool to convert the object storage
protocol into the POSIX file protocol. OBS storage is simulated as a local file
system and dynamically mounted to a running notebook container in ModelArts.
After the mounting, you can perform application operations on the OBS objects in
the notebook container.

Application Scenarios

Scenario 1: After you mount the OBS storage in which the target dataset is stored
to your notebook instance, you can preview and perform operations in the dataset
like operating a local file system.

Scenario 2: When training data in a notebook instance, you can use the dataset
mounted to a notebook container.

Restrictions

OBS provides object buckets and PFS for storage.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 323

https://support.huaweicloud.com/intl/en-us/pfsfg-obs/obs_13_0007.html
https://support.huaweicloud.com/intl/en-us/pfsfg-obs/obs_13_0007.html

ModelArts notebook supports only the mounting of an OBS parallel file system
to /data/ of a notebook container.

Procedure

Method 1: Through the ModelArts management console

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose Development Workspace > Notebook.

2. Select a running notebook instance and click its name. On the notebook
instance details page, click the Storage tab. From there, click Mount Storage
and configure mounting parameters.

a. Set a local mounting directory. Enter a folder name in /data/, for
example, demo. The system will automatically create the folder in /data/
of the notebook container to mount the OBS file system.

b. Select the folder for storing the OBS parallel file system and click OK.

Figure 6-150 Dynamically mounting an OBS parallel file system

3. View the mounting result on the notebook instance details page.

Figure 6-151 Successful mounting

6.7.7 Viewing Notebook Events
Instance statuses and key operations such as creating, starting, and stopping an
instance, and changing the instance flavor are recorded in the backend. You can
view the events on the notebook instance details page to monitor the instance
statuses. You can refresh events on the right of the Event tab. You can also set the
interval for automatically refreshing events to 30 seconds, 1 minute, or 5 minutes.

Viewing Events of a Notebook Instance

To view the event details of a notebook, click the notebook name. On the
displayed notebook details page, click the Event tab.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 324

Notebook Instance Events

Table 6-12 Events during instance creation

Event Description Severity

Scheduled The instance has been
scheduled.

Warning

PullingImage The image is being
pulled.

Warning

PulledImage The image has been
pulled.

Warning

NotebookHealthy The instance is running
and healthy.

Major

CreateNotebookFailed Creating an instance
failed.

Critical

PullImageFailed Pulling the image failed. Critical

FailedCreate Failed to create
notebook container.
Please contact SRE to
check node {node_name}

Critical

CreateContainerError Failed to create
container. Please contact
SRE to check node
{node_name}

Critical

FailedAttachVolume Failed to attach volume.
Please contact SRE to
check node {node_name}

Major

MountVolumeFailed Mount volume failed;
Check whether the DEW
secret is correct if the
instance cannot change
to running in five
minutes

Critical

Mount volume failed;
Check if vpc of sfs-turbo
is interconnected if the
instance cannot change
to running in five
minutes

Critical

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 325

Event Description Severity

Mount volume failed;
Please contact SRE to
check node {node_name}
if the instance cannot
change to running in five
minutes

Critical

Table 6-13 Events during instance stopping

Event Description Severity

StopNotebook The instance has been stopped. Major

StopNotebookResourceI-
dle

The notebook instance will
automatically stop or has
automatically stopped because
resources are idle.

Major

Table 6-14 Events during instance update

Event Description Severity

UpdateName Updating the instance name Warning

UpdateDescription Updating the instance
description

Warning

UpdateFlavor Updating the instance flavor Major

UpdateImage Updating the instance image Major

UpdateStorageSize The instance storage size is
being updated.
(User %s is updating storage
size from %s GB to %s GB.)

Major

The instance storage size has
been updated.
(User %s updated the storage
size.)

Major

UpdateKeyPair Configured the instance key
pair.
(User %s updated the instance
key pair to {%s}.)

Major

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 326

Event Description Severity

Updating the instance key pair
(User %s updated the instance
key pair from %s to %s.)

Major

UpdateWhitelist Updating the instance access
whitelist

Major

UpdateHook Updating a custom script Major

UpdateStorageSizeFailed Updating the storage size failed
because the resources are sold
out.
(EVS disks are sold out.)

Critical

Updating the storage size failed
due to an internal error.
(Updating the EVS disk size
failed. The O&M engineers are
handling the fault.)

Critical

Table 6-15 Events during image saving

Event Description Severity

SaveImage The image has been
saved.

Major

SavedImageFailed Saving the image failed
due to processes in D
status.
(There are processes in
'D' status. Check process
status using 'ps -aux' and
kill all the processes in
'D' status.)

Critical

Saving the image failed
because the image is too
large.
(The container size
(%dG) is greater than
the threshold (%dG).)

Critical

Saving the image failed
due to the limit on the
number of layers.
(There are too many
layers in your image.)

Critical

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 327

Event Description Severity

Saving the image failed
due to task timeout.
(The O&M engineers are
handling the fault.)

Critical

Saving the image failed
due to SWR service
issues.

Critical

CheckImageSize The notebook container
image size is
{image_size}G.
{image_size} indicates
the image size, which is
a variable.

Warning

CheckImageLayer The number of original
notebook image layers is
{layer_number}.
{layer_number}
indicates the number of
image layers, which is a
variable.

Warning

ContainerCommitStarted Start to commit
notebook container.

Warning

ContainerCommitSuccess Notebook container
commit successfully.

Warning

ImagePushStarted Start to push notebook
image.

Warning

ImagePushSuccess Notebook image push
successfully.

Warning

ContainerCommitFailed Failed to commit
notebook container.
Please contact SRE to
check node
{node_name}.
{node_name} indicates
the node name, which is
a variable and is
generally in the format
of an IP address, for
example,
192.168.225.161.

Warning

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 328

Event Description Severity

ImagePushFailed Failed to push Notebook
image. Please contact
SRE to check node
{node_name}.

Warning

Table 6-16 Events during instance running

Event Name Description Severity

NotebookUnhealthy The instance is
unhealthy.

Critical

OutOfMemory The instance is out of
memory.

Critical

JupyterProcessKilled The Jupyter process has
been stopped.

Critical

CacheVolumeExceed-
Quota

The /cache file size has
exceeded the upper limit.

Critical

NotebookHealthy The instance has been
restored to the healthy
state.

Major

EVSSoldOut EVS disks are sold out. Critical

Table 6-17 Events for dynamic OBS mounting

Event Description Severity

DynamicMountStorage The OBS storage is
mounted.

Major

DynamicUnmountStor-
age

The OBS storage is
unmounted.

Major

Table 6-18 Events triggered on the user side

Event Description Severity

RefreshCredentialsFailed Authentication failed. Critical

6.7.8 Notebook Cache Directory Alarm Reporting
When creating a notebook instance, you can select CPU, GPU, or Ascend resources
based on the service data volume. If you select GPU or Ascend resources,

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 329

ModelArts mounts hard disks to the cache directory. You can use this directory to
store temporary files.

Capacity alarms are not generated for the cache directory of the notebook
instance by default. Exceeding the capacity limit will restart the notebook instance.
After the restart, multiple configurations are reset, discarding your data and losing
the environment. This will affect your experience. You are advised to enable the
monitoring and alarms for the cache directory usage and report the data to AOM.

Configuration Process
1. Enter the basic alarm information.
2. Set an alarm rule.

a. Configure monitoring metrics.
b. Set alarm triggering conditions.

3. Configure alarm notifications.

a. Create a topic, configure the topic policy, and subscribe to the topic.
b. Create an alarm action rule.
c. Select the created action rule.

Configuring Alarm Settings
1. Log in to the AOM console.
2. Choose Alarm Center > Alarm Rules and click Create Alarm Rule.
3. Enter the basic alarm information.

4. Set an alarm rule.
Rule Type: Select Threshold alarm.
Monitored Object: Select Select resource objects. Click Select Resource
Object. A new dialog box is displayed.
– Add By: Select Dimension.
– Metric Name: Click Custom Metrics and select the cache metrics to be

monitored. Example: ma_container_notebook_cache_dir_size_bytes
(total size of the cache directory) and
ma_container_notebook_cache_dir_util (usage of the cache directory)

– Dimension: Select a metric dimension, for example, service_id:xxx, and
click Confirm.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 330

After setting the monitored object, set Statistic and Statistical Period.
Alarm Condition: Set this parameter based on your needs.

Figure 6-152 Select Monitored Object

Figure 6-153 Configuring statistics method

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 331

Figure 6-154 Configuring alarm conditions

5. Configure alarm notifications and click Create Now.
Alarm Mode: Select Direct Alarm Reporting.
Action Rule: Enable it and select the created action rule. If the existing alarm
action rules cannot meet your requirements, click Create Rule to create an
action rule. For details, see Creating an Alarm Action Rule.
Notification: Enable it.

Figure 6-155 Configuring alarm notifications

Create a topic in SMN to configure alarm notification rules.
– Creating a Topic

i. Go to the SMN console. In the navigation pane, choose Topic
Management > Topics.

ii. Click Create Topic. Enter a topic name, select an enterprise project,
and click OK.

iii. Locate the target topic and choose More > Configure Topic Policy in
the Operation column.
Select APM to allow AOM alarms to trigger SMN.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 332

Figure 6-156 Configure Topic Policy

iv. Click Add Subscription in the Operation column of the topic. After
the subscription is successful, a notification is received once the
alarm conditions are met.

Select a protocol, such as email or SMS, and enter the endpoints,
such as email addresses or mobile numbers. Click OK.

A record is displayed in the subscription list, but the record is in the
Unconfirmed state.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 333

After receiving the email, confirm the subscription.

Then, the subscription is in the confirmed state.

– Creating an Alarm Action Rule
An action rule specifies how AOM notifies you when an alarm is
triggered. After an alarm action rule is enabled, the system sends
notifications based on the associated SMN topic and message template.
Enter the action rule name, select the action rule type, select the topic
created in the previous step, select a message template, and click
Confirm.

Figure 6-157 Create Alarm Action Rule

In the Alarm Notification area of the Create Alarm Rule page, set Action Rule
to the newly created alarm action rule and click Create Now.

After the configuration is complete, you will receive an email notification once the
alarm conditions are met.

6.8 ModelArts CLI Command Reference

6.8.1 ModelArts CLI Commands

Description
ModelArts CLI, also called ma-cli, is a cross-platform command line tool used to
connect to ModelArts and run management commands on ModelArts resources.
You can use the interactive command prompt or script to run commands on a
terminal. ma-cli allows you to interact with cloud services through ModelArts
notebook and on-premises VMs. You can run ma-cli commands for command
autocomplete and authentication, as well as creating images, submitting
ModelArts training jobs and DLI Spark jobs, and copying OBS data.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 334

Application Scenarios
● ma-cli has been integrated into ModelArts notebook and can be directly used.

Log in to the ModelArts console, choose Development Workspace >
Notebook, create a notebook instance, start a terminal, and run ma-cli
commands.

● In local Windows or Linux, install ma-cli and then use it on a local terminal.
For details, see (Optional) Installing ma-cli Locally.

NO TE

● ma-cli cannot be used in Git Bash.
● Terminals such as Linux Bash, Zsh, Fish, WSL, and PowerShell are recommended. To

ensure the security of your sensitive information, it is important to prevent any
potential leakage when using terminals.

Command Preview
$ ma-cli -h
Usage: ma-cli [OPTIONS] COMMAND [ARGS]...

Options:
 -V, -v, --version 1.2.1
 -C, --config-file TEXT Configure a file path for authorization.
 -D, --debug Debugging mode, in which the full stack trace will be displayed when an error occurs.
 -P, --profile TEXT CLI connection profile to be used. The default profile is DEFAULT.
 -h, -H, --help Show the help information and exit.

Commands:
 configure Configure authentication and endpoints for the CLI.
 image Obtain registered images, register or unregister images, debug images, and create images in
Notebook.
 obs-copy Copy files or directories between OBS and a local path.
 ma-job Submit ModelArts jobs and obtain jod details.
 dli-job Submit DLI spark jobs and obtain jod details.
 auto-completion Auto complete ma-cli command in terminal, support "bash(default)/zsh/fish".

Among the preceding parameters, parameters -C, -D, -P, and -h are globally
optional.

● -C indicates that you can manually specify the authentication configuration
file when running this command. By default, the ~/.modelarts/ma-cli-
profile.yaml configuration file is used.

● -P indicates a group of authentication information in the authentication file.
The default value is DEFAULT.

● -D indicates whether to enable the debugging mode (disabled by default).
After the debugging mode is enabled, the error stack information of the
command will be printed. If this mode is disabled, only the error information
will be printed.

● -h indicates that the help information about the command will be displayed.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 335

Commands

Table 6-19 ma-cli commands

Command Description

configure ma-cli authentication using a username and password or an
SK/SK

image ModelArts image creation, registration, and registered image
query

obs-copy Copying files or folders between a local path and OBS

ma-job Managing ModelArts training jobs, including job submission and
resource query

dli-job DLI Spark job submission and resource management

auto-
completion

Command autocomplete

6.8.2 (Optional) Installing ma-cli Locally

Application Scenarios
This document describes how to install ma-cli on Windows.

Step 1: Install ModelArts SDKs
Install ModelArts SDKs by referring to Installing the ModelArts SDK Locally.

Step 2: Download ma-cli
1. Download the ma-cli software package.
2. Verify the software package signature.

a. Download the signature verification file of the software package.
b. Install OpenSSL and run the following command to verify the signature:

openssl cms -verify -binary -in D:\ma_cli-latest-py3-none-any.whl.cms -inform DER -content
D:\ma_cli-latest-py3-none-any.whl -noverify > ./test

NO TE

In this example, the software package is stored in D:\. Replace it with the actual
path.

Step 3: Install ma-cli
1. Run python --version in the command prompt of your local environment to

check whether Python has been installed. The Python version must be later
than 3.7.x and earlier than 3.10.x. Version 3.7.x is recommended.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 336

https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0004.html
https://ap-southeast1-modelarts-sdk.obs.ap-southeast-1.myhuaweicloud.com/modelarts/ma-cli/ma_cli-latest-py3-none-any.whl
https://ap-southeast1-modelarts-sdk.obs.ap-southeast-1.myhuaweicloud.com/modelarts/ma-cli/ma_cli-latest-py3-none-any.whl.cms

C:\Users\xxx>python --version
Python *.*.*

2. Run pip --version to check whether the general package management tool
pip is available.
C:\Users\xxx>pip --version
pip **.*.* from c:\users\xxx\appdata\local\programs\python\python**\lib\site-packages\pip (python *.*)

3. Install ma-cli.
pip install {Path to the ma-cli software package}\ma_cli-latest-py3-none-
any.whl
C:\Users\xxx>pip install C:\Users\xxx\Downloads\ma_cli-latest-py3-none-any.whl
......
Successfully installed ma_cli.*.*.*

When ma-cli is installed, dependency packages are installed by default. If
message "Successfully installed" is displayed, ma-cli has been installed.

NO TE

If an error message is displayed during the installation, indicating that a dependency
package is missing, run the following command to install the dependency package as
prompted:

pip install xxxx

xxxx is the name of the dependency package.

6.8.3 Autocompletion for ma-cli Commands
CLI autocomplete enables you to get a list of supported ma-cli commands by
typing a command prefix and pressing Tab on your terminal. Autocomplete for
ma-cli commands needs to be enabled in Terminal. After running the ma-cli
auto-completion command, you can copy and run the commands as prompted
on the current terminal to automatically complete the ma-cli commands. Bash,
Fish, and Zsh shells are supported. The default shell is Bash.

Take the Bash command as an example. Run the eval "$
(_MA_CLI_COMPLETE=bash_source ma-cli)" command in Terminal to enable
autocomplete.
eval "$(_MA_CLI_COMPLETE=bash_source ma-cli)"

Run the ma-cli auto-completion Zsh or ma-cli auto-completion Fish command
to view the autocomplete command in Zsh or Fish.

Available Commands
$ ma-cli auto-completion -h
Usage: ma-cli auto-completion [OPTIONS] [[Bash|Zsh|Fish]]

 Auto complete ma-cli command in terminal.

 Example:

 # print bash auto complete command to terminal
 ma-cli auto-completion Bash

Options:
 -H, -h, --help Show this message and exit.

By default, the autocomplete command for Bash is displayed.

$ ma-cli auto-completion

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 337

Tips: please paste following shell command to your terminal to activate auto complation.

[OK] eval "$(_MA_CLI_COMPLETE=bash_source ma-cli)"

After the preceding command is executed, autocomplete has been enabled on the terminal.

$ eval "$(_MA_CLI_COMPLETE=bash_source ma-cli)"

The autocomplete command for Fish is displayed.
$ ma-cli auto-completion Fish
Tips: please paste following shell command to your terminal to activate auto complation.

[OK] eval (env _MA_CLI_COMPLETE=fish_source ma-cli)

6.8.4 ma-cli Authentication

Overview
● VMs and personal computers require the configuration of authentication.

Both a username and password (default) and an AK/SK can be used for
authentication.

● When using an account for authentication, specify a username and password.
When using an IAM account for authentication, specify an account, username,
and password.

● In ModelArts notebook, you do not need to manually configure
authentication because an agency is used for authentication by default.

● If you have configured authentication in ModelArts notebook, the specified
authentication is preferentially used.

NO TE

To ensure the security of your sensitive information, it is important to prevent any
potential leakage during authentication.

CLI Parameters
$ ma-cli configure -h
Usage: ma-cli configure [OPTIONS]

Options:
 -auth, --auth [PWD|AKSK|ROMA] Authentication type.
 -rp, --region-profile PATH ModelArts region file path.
 -a, --account TEXT Account of an IAM user.
 -u, --username TEXT Username of an IAM user.
 -p, --password TEXT Password of an IAM user
 -ak, --access-key TEXT User access key.
 -sk, --secret-key TEXT User secret key.
 -r, --region TEXT The region you want to visit.
 -pi, --project-id TEXT User project id.
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -h, -H, --help Show this message and exit.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 338

Table 6-20 Authentication CLI parameters

Parameter Type Man
dator
y

Description

-auth / --
auth

String No Authentication mode, which can be PWD
(username and password) or AKSK (AK/SK).
The default value is PWD.

-rp / --
region-
profile

String No ModelArts region configuration file

-a / --
account

String No IAM tenant account, which needs to be
specified when authentication using an IAM
account is used. It is required in
authentication using a username and
password.

-u / --
username

String No Username, which is a username or an IAM
username for authentication using an account
or an IAM account. It is required in
authentication using a username and
password.

-p / --
password

String No Password, which is required in authentication
using a username and password

-ak / --
access-key

String No Access key, which is required in authentication
using an AK/SK

-sk / --
secret-key

String No Secret key, which is required in authentication
using an AK/SK

-r / --region String No Region name. If this parameter is left blank,
the value of the REGION_NAME environment
variable will be used by default.

-pi / --
project-id

String No Project ID. If this parameter is left blank, the
region value (default) or the value of the
PROJECT_ID environment variable will be
used.

-P / --profile String No Authentication configuration, which defaults
to DEFAULT

-C / --config-
file

String No Local path to the configuration file, which
defaults to ~/.modelarts/ma-cli-profile.yaml

Authentication Using Username and Password
The following describes how to use the ma-cli configure command on a VM to
configure authentication using the user name and password.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 339

NO TE

In the following example, any string with ${} is a variable. You can specify a value.

For example, ${your_password} indicates that you need to type your password.
The DEFAULT authentication configuration is used by default. You need to type the account, username,
and password one by one. If the account and username are not required, press Enter to skip them.
$ ma-cli configure --auth PWD --region ${your_region}
account: ${your_account}
username: ${your_username}
password: ${your_password} # The input is not displayed on the console.

Authentication Using an AK/SK

This command uses an AK/SK for authentication, which means you have to enter
them interactively. Your AK/SK will not be visible on the console.

CA UTION

In the following example, any string with ${} is a variable. You can specify a value.

For example, you need to replace ${access key} with your access key.

ma-cli configure --auth AKSK
access key [***]: ${access key}
secret key [***]: ${secret key}

After the authentication command is executed, the authentication information will
be saved in the ~/.modelarts/ma-cli-profile.yaml configuration file.

6.8.5 ma-cli image Commands for Building Images
The ma-cli image command can be used to obtain registered images, obtain or
load image creation templates, create images using Dockerfiles, obtain or clear
image creation caches, register or deregister images, and debug whether images
can be used in notebook instances. For details, run the ma-cli image -h
command.

Commands for Creating an Image
$ ma-cli image -h
Usage: ma-cli image [OPTIONS] COMMAND [ARGS]...
 Obtain registered images, register or unregister images, debug images, and create images in Notebook.

Options:
 -H, -h, --help Show this message and exit.

Commands:
 add-template, at List build-in dockerfile templates.
 build Build docker image in Notebook.
 debug Debug SWR image as a Notebook in ECS.
 df Query disk usage.
 get-image, gi Query registered image in ModelArts.
 get-template, gt List build-in dockerfile templates.
 prune Prune image build cache.
 register Register image to ModelArts.
 unregister Unregister image from ModelArts.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 340

Table 6-21 Commands for creating an image

Comma
nd

Description

get-
templat
e

Obtain an image creation template.

add-
templat
e

Load an image creation template.

get-
image

Obtain registered ModelArts images.

register Register SWR images with ModelArts image management.

unregist
er

Deregister a registered image from ModelArts image management.

build Build an image using a Dockerfile (only supported in ModelArts
Notebook).

df Obtain image creation cache, which can only be used in ModelArts
notebook.

prune Clear image creation cache, which can only be used in ModelArts
notebook.

debug Debug an SWR image on an ECS to check whether the image can be
used in ModelArts notebook. (Only the ECSs with Docker installed
can be used.)

Using ma-cli image get-template to Query an Image Building Template
ma-cli provides some common image building templates, which contain the
guidance for developing Dockerfiles on ModelArts notebook.

$ ma-cli image get-template -h
Usage: ma-cli image get-template [OPTIONS]

 List build-in dockerfile templates.

 Example:

 # List build-in dockerfile templates
 ma-cli image get-template [--filer <filter_info>] [--page-num <yourPageNum>] [--page-size
<yourPageSize>]

Options:
 --filter TEXT filter by keyword.
 -pn, --page-num INTEGER RANGE Specify which page to query. [x>=1]
 -ps, --page-size INTEGER RANGE The maximum number of results for this query. [x>=1]
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.
(PyTorch-1.4) [ma-user work]$

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 341

Table 6-22 Parameters

Parameter Data Type Mandatory Description

--filter String No Template name keyword for
filtering templates.

-pn / --page-
num

Int No Image page index. The
default value is page 1.

-ps / --page-
size

Int No Number of images displayed
on each page. The default
value is 20.

Example: Obtain an image building template.

ma-cli image get-template

Using ma-cli image add-template to Load an Image Building Template
The add-template command is used to load image templates to a specified
folder. By default, the path where the current command is located is used,

for example, ${current_dir}/.ma/${template_name}/. You can also use --dest to
specify the path. If a template folder with the same name already exists in the
target path, use the --force | -f parameter to forcibly overwrite the existing
template folder.

$ ma-cli image add-template -h
Usage: ma-cli image add-template [OPTIONS] TEMPLATE_NAME

 Add buildin dockerfile templates into disk.

 Example:

 # List build-in dockerfile templates
 ma-cli image add-template customize_from_ubuntu_18.04_to_modelarts --force

Options:
 --dst TEXT target save path.
 -f, --force Override templates that has been installed.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -h, -H, --help Show this message and exit.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 342

Table 6-23 Parameters

Paramete
r

Data Type Mandat
ory

Description

--dst String No Target path for loading a template.
The current path is used by default.

-f / --
force

Bool No Whether to forcibly overwrite an
existing template with the same name.
By default, the template is not
overwritten.

Example: Load the customize_from_ubuntu_18.04_to_modelarts image building
template.

ma-cli image add-template customize_from_ubuntu_18.04_to_modelarts

Using ma-cli image get-image to Query Registered ModelArts Images

A path to a base image is provided in a Dockerfile typically. Public images and
SWR public or private images can be obtained from open-source image
repositories such as Docker Hub. ma-cli allows you to obtain ModelArts preset
images, registered images, and their SWR addresses.

$ma-cli image get-image -h
Usage: ma-cli image get-image [OPTIONS]

 Get registered image list.

 Example:

 # Query images by image type and only image id, show name and swr_path
 ma-cli image get-image --type=DEDICATED

 # Query images by image id
 ma-cli image get-image --image-id ${image_id}

 # Query images by image type and show more information
 ma-cli image get-image --type=DEDICATED -v

 # Query images by image name
 ma-cli image get-image --filter=torch

Options:
 -t, --type [BUILD_IN|DEDICATED|ALL]
 Image type(default ALL)
 -f, --filter TEXT Image name to filter
 -v, --verbose Show detailed information on image.
 -i, --image-id TEXT Get image details by image id
 -n, --image-name TEXT Get image details by image name
 -wi, --workspace-id TEXT The workspace where you want to query image(default "0")
 -pn, --page-num INTEGER RANGE Specify which page to query [x>=1]
 -ps, --page-size INTEGER RANGE The maximum number of results for this query [x>=1]
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 343

Table 6-24 Parameters

Parameter Data
Type

Man
dato
ry

Description

-t / --type String No Type of the images to be obtained. The options are
BUILD_IN, DEDICATED, and ALL.
● BUILD_IN: preset images
● DEDICATED: custom images registered with

ModelArts
● ALL: all images

-f / --filter String No Image name keyword for filtering images.

-v / --
verbose

Bool No Whether to display detailed information. It is
disabled by default.

-i / --
image-id

String No ID of the image whose details are to be obtained.

-n / --
image-
name

String No Name of the image whose details are to be
obtained.

-wi / --
workspace
-id

String No Workspace in which the image information is to be
obtained.

-pn / --
page-num

Int No Image page index. The default value is page 1.

-ps / --
page-size

Int No Number of images displayed on each page. The
default value is 20.

Example: Obtain custom images registered with ModelArts.

ma-cli image get-image --type=DEDICATED

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 344

Using ma-cli image build to Build an Image in ModelArts Notebook
Run the ma-cli image build command to build an image based on a specified
Dockerfile. This command is available only on ModelArts notebook instances.

$ ma-cli image build -h
Usage: ma-cli image build [OPTIONS] FILE_PATH

 Build docker image in Notebook.

 Example:

 # Build a image and push to SWR
 ma-cli image build .ma/customize_from_ubuntu_18.04_to_modelarts/Dockerfile -swr my_organization/
my_image:0.0.1

 # Build a image and push to SWR, dockerfile context path is current dir
 ma-cli image build .ma/customize_from_ubuntu_18.04_to_modelarts/Dockerfile -swr my_organization/
my_image:0.0.1 -context .

 # Build a local image and save to local path and OBS
 ma-cli image build .ma/customize_from_ubuntu_18.04_to_modelarts/Dockerfile --target ./build.tar --
obs_path obs://bucket/object --swr-path my_organization/my_image:0.0.1

Options:
 -t, --target TEXT Name and optionally a tag in the 'name:tag' format.
 -swr, --swr-path TEXT SWR path without swr endpoint, eg:organization/image:tag. [required]
 --context DIRECTORY build context path.
 -arg, --build-arg TEXT build arg for Dockerfile.
 -obs, --obs-path TEXT OBS path to save local built image.
 -f, --force Force to overwrite the existing swr image with the same name and tag.
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 345

Table 6-25 Parameters

Parameter Data
Type

Ma
nda
tory

Description

FILE_PATH String Yes Path where the Dockerfile is stored.

-t / --
target

String No Local path for storing the generated TAR
package. The current directory is used by
default.

-swr / --
swr-path

String Yes SWR image name, which is in the format of
"organization/image_name:tag". This parameter
can be omitted when a TAR package is saved for
building an image.

--context String No Context used for copying data when a Dockerfile
is used.

-arg / --
build-arg

String No Parameter for building an image. If there are
multiple parameters, run --build-arg
VERSION=18.04 --build-arg ARCH=X86_64.

-obs / --
obs-path

String No OBS path for automatically uploading the
generated TAR package.

-f / --force Bool No Whether to forcibly overwrite an existing SWR
image with the same name. By default, the SWR
image is not overwritten.

Example: Build an image in ModelArts notebook.

ma-cli image build .ma/customize_from_ubuntu_18.04_to_modelarts/Dockerfile -swr
notebook_test/my_image:0.0.1

In this command, .ma/customize_from_ubuntu_18.04_to_modelarts/Dockerfile
is the path where the Dockerfile is stored, and notebook_test/my_image:0.0.1 is
the SWR path of the new image.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 346

Using ma-cli image df to Obtain Image Building Caches in ModelArts
Notebook

Run the ma-cli image df command to obtain image creation caches. This
command is available only on ModelArts notebook instances.

$ ma-cli image df -h
Usage: ma-cli image df [OPTIONS]

 Query disk usage used by image-building in Notebook.

 Example:

 # Query image disk usage
 ma-cli image df

Options:
 -v, --verbose Show detailed information on disk usage.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.

 -h, -H, --help Show this message and exit.

Table 6-26 Parameters

Parameter Data Type Mandator
y

Description

-v / --verbose Bool No Whether to display detailed
information. It is disabled by
default.

Example: View all image caches in ModelArts notebook.
ma-cli image df

Example: Obtain details about the disk space occupied by image caches.
ma-cli image df --verbose

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 347

Using ma-cli image prune to Clear Image Building Caches in ModelArts
Notebook

Run the ma-cli image prune command to clear image creation caches. This
command is available only on ModelArts notebook instances.

$ ma-cli image prune -h
Usage: ma-cli image prune [OPTIONS]

 Prune image build cache by image-building in Notebook.

 Example:

 # Prune image build cache
 ma-cli image prune

Options:
 -ks, --keep-storage INTEGER Amount of disk space to keep for cache below this limit (in MB) (default: 0).
 -kd, --keep-duration TEXT Keep cache newer than this limit, support second(s), minute(m) and hour(h)
(default: 0s).
 -v, --verbose Show more verbose output.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -h, -H, --help Show this message and exit.

Table 6-27 Parameters

Parameter Data
Type

Mand
atory

Description

-ks / --keep-
storage

Int No Size of the cache to be retained, in MB. The
default value is 0, indicating that all caches
will be cleared.

-kd / --keep-
duration

String No Duration in which the caches are to be
retained. The unit can be s (second), m
(minute), or h (hour). The default value is 0s,
indicating that all caches will be cleared.

-v / --
verbose

Bool No Whether to display detailed information. It is
disabled by default.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 348

Example: Retain 1 MB of image caches not to be cleared.

ma-cli image prune -ks 1

Using ma-cli image register to Register an SWR Image with ModelArts
Image Management

After an image is debugged, run the ma-cli image register command to register
it with ModelArts image management so that it can be used in ModelArts.

$ma-cli image register -h
Usage: ma-cli image register [OPTIONS]

 Register image to ModelArts.

 Example:

 # Register image into ModelArts service
 ma-cli image register --swr-path=xx

 # Share SWR image to DLI service
 ma-cli image register -swr xx -td

 # Register image into ModelArts service and specify architecture to be 'AARCH64'
 ma-cli image register --swr-path=xx --arch AARCH64

Options:
 -swr, --swr-path TEXT SWR path without swr endpoint, eg:organization/image:tag. [required]
 -a, --arch [X86_64|AARCH64] Image architecture (default: X86_64).
 -s, --service [NOTEBOOK|MODELBOX]
 Services supported by this image(default NOTEBOOK).
 -rs, --resource-category [CPU|GPU|ASCEND]
 The resource category supported by this image (default: CPU and GPU).
 -wi, --workspace-id TEXT The workspace to register this image (default: "0").
 -v, --visibility [PUBLIC|PRIVATE]
 PUBLIC: every user can use this image. PRIVATE: only image owner can use this
image (Default: PRIVATE).
 -td, --to-dli Register swr image to DLI, which will share SWR image to DLI service.
 -d, --description TEXT Image description (default: "").
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -h, -H, --help Show this message and exit.

Table 6-28 Parameters

Parameter Data
Type

Mand
atory

Description

-swr / --swr-
path

String Yes SWR path to the image to be registered.

-a / --arch Sring No Architecture of the image to be registered.
The value can be X86_64 or AARCH64.
The default value is X86_64.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 349

Parameter Data
Type

Mand
atory

Description

-s / --service String No Service type of the image to be registered.
The value can be NOTEBOOK or
MODELBOX. The default value is
NOTEBOOK.
You can also specify multiple values, for
example, -s NOTEBOOK -s MODELBOX.

-rs / --resource-
category

String No Resource type that can be used by the
image to be registered. The default values
are CPU and GPU.

-wi / --
workspace-id

String No Workspace to which the image is to be
registered. The default workspace ID is 0.

-v / --visibility Bool No Visibility of the image to be registered. The
value can be PRIVATE (visible only to the
image owner) or PUBLIC (visible to all
users). The default value is PRIVATE.

-td / --to-dli Bool No Whether to register the image with DLI.

-d/ --
description

String No Description of the image. By default, this
parameter is left blank.

Example: Register an SWR image with ModelArts.

ma-cli image register --swr-path=xx

Using ma-cli image unregister to Deregister an Image
Run the ma-cli image unregister command to deregister an image from
ModelArts.

$ ma-cli image unregister -h
Usage: ma-cli image unregister [OPTIONS]

 Unregister image from ModelArts.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 350

 Example:

 # Unregister image
 ma-cli image unregister --image-id=xx

 # Unregister image and delete it from swr
 ma-cli image unregister --image-id=xx -d

Options:
 -i, --image-id TEXT Unregister image details by image id. [required]
 -d, --delete-swr-image Delete the image from swr.
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -h, -H, --help Show this message and exit.

Table 6-29 Parameters

Parameter Data Type Manda
tory

Description

-i / -image-id String Yes ID of the image to be deregistered.

-d / --delete-swr-
image

Bool No Whether to delete a deregistered
SWR image. It is disabled by
default.

Debugging an SWR Image on an ECS
ma-cli allows you to debug an SWR image on an ECS to determine whether the
image can be used in a ModelArts development workspace.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 351

Table 6-30 Parameters

Paramet
er

Data
Type

Manda
tory

Description

-swr / --
swr-path

String Yes SWR path to the image to be debugged.

-r / --
region

String Yes Region where the image to be debugged is
located.

-s / --
service

String No Service type of the image to be debugged. The
value can be NOTEBOOK or MODELBOX. The
default value is NOTEBOOK.

-a / --
arch

Sring No Architecture of the image to be debugged. The
value can be X86_64 or AARCH64. The default
value is X86_64.

-g / --gpu Bool No Whether to use GPUs for debugging. It is
disabled by default.

6.8.6 ma-cli ma-job Commands for Training Jobs
Run the ma-cli ma-job command to submit training jobs, obtain training job logs,
events, used AI engines, and resource specifications, and stop training jobs.

$ ma-cli ma-job -h
Usage: ma-cli ma-job [OPTIONS] COMMAND [ARGS]...

 ModelArts job submission and query job details.

Options:
 -h, -H, --help Show this message and exit.

Commands:
 delete Delete training job by job id.
 get-engine Get job engines.
 get-event Get job running event.
 get-flavor Get job flavors.
 get-job Get job details.
 get-log Get job log details.
 get-pool Get job engines.
 stop Stop training job by job id.
 submit Submit training job.

Table 6-31 Commands supported by training jobs

Command Description

get-job Obtain ModelArts training jobs and their details.

get-log Obtain runtime logs of a ModelArts training job.

get-engine Obtain ModelArts AI engines for training.

get-event Obtain ModelArts training job events.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 352

Command Description

get-flavor Obtain ModelArts resource specifications for training.

get-pool Obtain ModelArts resource pools dedicated for training.

stop Stop a ModelArts training job.

submit Submit a ModelArts training job.

delete Delete a training job with a specified job ID.

Using ma-cli ma-job get-job to Obtain a ModelArts Training Job
Run the ma-cli ma-job get-job command to obtain training jobs or details about
a specific job.

$ ma-cli ma-job get-job -h
Usage: ma-cli ma-job get-job [OPTIONS]

 Get job details.

 Example:

 # Get train job details by job name
 ma-cli ma-job get-job -n ${job_name}

 # Get train job details by job id
 ma-cli ma-job get-job -i ${job_id}

 # Get train job list
 ma-cli ma-job get-job --page-size 5 --page-num 1

Options:

 -i, --job-id TEXT Get training job details by job id.
 -n, --job-name TEXT Get training job details by job name.
 -pn, --page-num INTEGER Specify which page to query. [x>=1]
 -ps, --page-size INTEGER RANGE The maximum number of results for this query. [1<=x<=50]
 -v, --verbose Show detailed information about training job details.
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -h, -H, --help Show this message and exit.

Table 6-32 Parameters

Parameter Data Type Mandato
ry

Description

-i / --job-id String No ID of the job whose details are to be
obtained.

-n / --job-
name

String No Name of the job to be queried or name
keyword used to filter training jobs.

-pn / --page-
num

Int No Page number. The default value is 1.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 353

Parameter Data Type Mandato
ry

Description

-ps / --page-
size

Int No Number of training jobs displayed on
each page. The default value is 10.

-v / --
verbose

Bool No Whether to display detailed
information. It is disabled by default.

● Example: Obtain a training job with a specified job ID.
ma-cli ma-job get-job -i b63e90xxx

● Example: Filter training jobs by job name keyword auto.
ma-cli ma-job get-job -n auto

Using ma-cli ma-job submit to Submit a ModelArts Training Job
Run the ma-cli ma-job submit command to submit a ModelArts training job.

When running this command, use the YAML_FILE parameter to specify the path to
the configuration file of the target job. If this parameter is not specified, the
configuration file is empty. The configuration file is in YAML format, and its
parameters are values of OPTIONS in the command. If you specify both the
YAML_FILE and the OPTIONS parameters, the OPTIONS value will overwrite the
same items in the configuration file.

$ma-cli ma-job submit -h
Usage: ma-cli ma-job submit [OPTIONS] [YAML_FILE]...

 Submit training job.

 Example:

 ma-cli ma-job submit --code-dir obs://your_bucket/code/
 --boot-file main.py
 --framework-type PyTorch

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 354

 --working-dir /home/ma-user/modelarts/user-job-dir/code
 --framework-version pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64
 --data-url obs://your_bucket/dataset/
 --log-url obs://your_bucket/logs/
 --train-instance-type modelarts.vm.cpu.8u
 --train-instance-count 1

Options:
 --name TEXT Job name.
 --description TEXT Job description.
 --image-url TEXT Full swr custom image path.
 --uid TEXT Uid for custom image (default: 1000).
 --working-dir TEXT ModelArts training job working directory.
 --local-code-dir TEXT ModelArts training job local code directory.
 --user-command TEXT Execution command for custom image.
 --pool-id TEXT Dedicated pool id.
 --train-instance-type TEXT Train worker specification.
 --train-instance-count INTEGER Number of workers.
 --data-url TEXT OBS path for training data.
 --log-url TEXT OBS path for training log.
 --code-dir TEXT OBS path for source code.
 --output TEXT Training output parameter with OBS path.
 --input TEXT Training input parameter with OBS path.
 --env-variables TEXT Env variables for training job.
 --parameters TEXT Training job parameters (only keyword parameters are supported).
 --boot-file TEXT Training job boot file path behinds `code_dir`.
 --framework-type TEXT Training job framework type.
 --framework-version TEXT Training job framework version.
 --workspace-id TEXT The workspace where you submit training job(default "0")
 --policy [regular|economic|turbo|auto]
 Training job policy, default is regular.
 --volumes TEXT Information about the volumes attached to the training job.
 -q, --quiet Exit without waiting after submit successfully.
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Table 6-33 Parameters

Parameter Data
Type

Ma
nd
ato
ry

Description

YAML_FILE Strin
g

No Configuration file of a training job. If this
parameter is not specified, the configuration file is
empty.

--code-dir Strin
g

Yes OBS path to the training source code.

--data-url Strin
g

Yes OBS path to the training data.

--log-url Strin
g

Yes OBS path to training logs.

--train-
instance-
count

Strin
g

Yes Number of compute nodes in a training job. The
default value is 1, indicating a standalone node.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 355

Parameter Data
Type

Ma
nd
ato
ry

Description

--boot-file Strin
g

No Boot file specified when you use a preset command
to submit a training job. This parameter can be
omitted when you use a custom image or a custom
command to submit a training job.

--name Strin
g

No Name of a training job.

--description Strin
g

No Description of a training job.

--image-url Strin
g

No SWR URL of a custom image, which is in the
format of "organization/image_name:tag".

--uid Strin
g

No UID of the custom image. The default value is
1000.

--working-
dir

Strin
g

No Work directory where an algorithm is executed.

--local-code-
dir

Strin
g

No Local directory of the training container to which
the algorithm code directory is downloaded.

--user-
command

Strin
g

No Command for executing a custom image. The
directory must be under /home. When code-dir is
prefixed with file://, this parameter does not take
effect.

--pool-id Strin
g

No Resource pool ID selected for a training job. You
can log in to the ModelArts console, choose
Dedicated Resource Pools in the navigation pane
on the left, and view the resource pool ID in the
dedicated resource pool list.

--train-
instance-
type

Strin
g

No Resource flavor selected for a training job.

--output Strin
g

No Training output. After this parameter is specified,
the training job will upload the output directory of
the training container corresponding to the
specified output parameter in the training script to
a specified OBS path. To specify multiple
parameters, use --output output1=obs://bucket/
output1 --output output2=obs://bucket/output2.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 356

Parameter Data
Type

Ma
nd
ato
ry

Description

--input Strin
g

No Training input. After this parameter is specified, the
training job will download the data from OBS to
the training container and transfer the data
storage path to the training script through the
specified parameter. To specify multiple
parameters, use --input data_path1=obs://
bucket/data1 --input data_path2=obs://bucket/
data2.

--env-
variables

Strin
g

No Environment variables input during training. To
specify multiple parameters, use --env-variables
ENV1=env1 --env-variables ENV2=env2.

--
parameters

Strin
g

No Training input parameters. To specify multiple
parameters, use --parameters "--epoch 0 --
pretrained".

--
framework-
type

Strin
g

No Framework type selected for a training job.

--
framework-
version

Strin
g

No Framework version selected for a training job.

-q / --quiet Bool No Whether to exit directly without printing the job
status synchronously after a training job is
submitted.

--
workspace-
id

Strin
g

No Workspace where a training job is deployed. The
default value is 0.

--policy Strin
g

No Training resource flavor mode. The options are
regular, economic, turbo, and auto.

--volumes Strin
g

No EFS disks to be mounted. To specify multiple
parameters, use --volumes.
"local_path=/xx/yy/
zz;read_only=false;nfs_server_path=xxx.xxx.xxx.xxx:/
" -volumes "local_path=/xxx/yyy/
zzz;read_only=false;nfs_server_path=xxx.xxx.xxx.xxx:
/"

Example: Submitting a Training Job Based on a Preset ModelArts Image
Submit a training job by specifying the OPTIONS parameter.
ma-cli ma-job submit --code-dir obs://your-bucket/mnist/code/ \
 --boot-file main.py \

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 357

 --framework-type PyTorch \
 --working-dir /home/ma-user/modelarts/user-job-dir/code \
 --framework-version pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 \
 --data-url obs://your-bucket/mnist/dataset/MNIST/ \
 --log-url obs://your-bucket/mnist/logs/ \
 --train-instance-type modelarts.vm.cpu.8u \
 --train-instance-count 1 \
 -q

Example of train.yaml using a preset image:

Example .ma/train.yaml (preset image)
pool_id: pool_xxxx
train-instance-type: modelarts.vm.cpu.8u
train-instance-count: 1
data-url: obs://your-bucket/mnist/dataset/MNIST/
code-dir: obs://your-bucket/mnist/code/
working-dir: /home/ma-user/modelarts/user-job-dir/code
framework-type: PyTorch
framework-version: pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64
boot-file: main.py
log-url: obs://your-bucket/mnist/logs/

##[Optional] Uncomment to set uid when use custom image mode
uid: 1000

##[Optional] Uncomment to upload output file/dir to OBS from training platform
output:
 - name: output_dir
 obs_path: obs://your-bucket/mnist/output1/

##[Optional] Uncomment to download input file/dir from OBS to training platform
input:
 - name: data_url
 obs_path: obs://your-bucket/mnist/dataset/MNIST/

##[Optional] Uncomment pass hyperparameters
parameters:
 - epoch: 10
 - learning_rate: 0.01
 - pretrained:

##[Optional] Uncomment to use dedicated pool
pool_id: pool_xxxx

##[Optional] Uncomment to use volumes attached to the training job
volumes:
 - efs:
 local_path: /xx/yy/zz
 read_only: false
 nfs_server_path: xxx.xxx.xxx.xxx:/

Example: Using a Custom Image to Create a Training Job
Submit a training job by specifying the OPTIONS parameter.

ma-cli ma-job submit --image-url atelier/pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-
x86_64-20220926104358-041ba2e \
 --code-dir obs://your-bucket/mnist/code/ \
 --user-command "export LD_LIBRARY_PATH=/usr/local/cuda/compat:$LD_LIBRARY_PATH &&
cd /home/ma-user/modelarts/user-job-dir/code && /home/ma-user/anaconda3/envs/PyTorch-1.8/bin/
python main.py" \
 --data-url obs://your-bucket/mnist/dataset/MNIST/ \
 --log-url obs://your-bucket/mnist/logs/ \
 --train-instance-type modelarts.vm.cpu.8u \
 --train-instance-count 1 \
 -q

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 358

Example of train.yaml using a custom image:

Example .ma/train.yaml (custom image)
image-url: atelier/pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-
x86_64-20220926104358-041ba2e
user-command: export LD_LIBRARY_PATH=/usr/local/cuda/compat:$LD_LIBRARY_PATH && cd /home/ma-
user/modelarts/user-job-dir/code && /home/ma-user/anaconda3/envs/PyTorch-1.8/bin/python main.py
train-instance-type: modelarts.vm.cpu.8u
train-instance-count: 1
data-url: obs://your-bucket/mnist/dataset/MNIST/
code-dir: obs://your-bucket/mnist/code/
log-url: obs://your-bucket/mnist/logs/

##[Optional] Uncomment to set uid when use custom image mode
uid: 1000

##[Optional] Uncomment to upload output file/dir to OBS from training platform
output:
 - name: output_dir
 obs_path: obs://your-bucket/mnist/output1/

##[Optional] Uncomment to download input file/dir from OBS to training platform
input:
 - name: data_url
 obs_path: obs://your-bucket/mnist/dataset/MNIST/

##[Optional] Uncomment pass hyperparameters
parameters:
 - epoch: 10
 - learning_rate: 0.01
 - pretrained:

##[Optional] Uncomment to use dedicated pool
pool_id: pool_xxxx

##[Optional] Uncomment to use volumes attached to the training job
volumes:
 - efs:
 local_path: /xx/yy/zz
 read_only: false
 nfs_server_path: xxx.xxx.xxx.xxx:/

Using ma-cli ma-job get-log to Obtain ModelArts Training Job Logs
Run the ma-cli ma-job get-log command to obtain ModelArts training job logs.

$ ma-cli ma-job get-log -h
Usage: ma-cli ma-job get-log [OPTIONS]

 Get job log details.

 Example:

 # Get job log by job id
 ma-cli ma-job get-log --job-id ${job_id}

Options:
 -i, --job-id TEXT Get training job details by job id. [required]
 -t, --task-id TEXT Get training job details by task id (default "worker-0").
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -h, -H, --help Show this message and exit.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 359

Parameter Data Type Mandatory Description

-i / --job-id String Yes ID of the job whose logs are to be
obtained.

-t / --task-
id

String No ID of the task whose logs are to be
obtained. The default value is
work-0.

Example: Obtain logs of a specified training job.

ma-cli ma-job get-log --job-id b63e90baxxx

Using ma-cli ma-job get-event to Obtain ModelArts Training Job Events
Run the ma-cli ma-job get-event command to obtain ModelArts training job
events.

$ ma-cli ma-job get-event -h
Usage: ma-cli ma-job get-event [OPTIONS]

 Get job running event.

 Example:

 # Get training job running event
 ma-cli ma-job get-event --job-id ${job_id}

Options:
 -i, --job-id TEXT Get training job event by job id. [required]
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Parameter Data Type Mandatory Description

-i / --job-id String Yes ID of the job whose events
are to be obtained.

Example: Obtain events of a specified training job.

ma-cli ma-job get-event --job-id b63e90baxxx

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 360

Using ma-cli ma-job get-engine to Obtain the AI Engines Used by ModelArts
Training Jobs

Run the ma-cli ma-job get-engine command to obtain the AI engines used by
ModelArts training jobs.

$ ma-cli ma-job get-engine -h
Usage: ma-cli ma-job get-engine [OPTIONS]

 Get job engine info.

 Example:

 # Get training job engines
 ma-cli ma-job get-engine

Options:
 -v, --verbose Show detailed information about training engines.
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Table 6-34 Parameters

Parameter Data Type Mandatory Description

-v / --verbose Bool No Whether to
display detailed
information. It is
disabled by
default.

Example: Obtain the AI engines used by training jobs.

ma-cli ma-job get-engine

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 361

Using ma-cli ma-job get-flavor to Obtain the Resource Flavors Used by
ModelArts Training Jobs

Run the ma-cli ma-job get-flavor command to obtain the resource flavors used
by ModelArts training jobs.

$ ma-cli ma-job get-flavor -h
Usage: ma-cli ma-job get-flavor [OPTIONS]

 Get job flavor info.

 Example:

 # Get training job flavors
 ma-cli ma-job get-flavor

Options:
 -t, --flavor-type [CPU|GPU|Ascend]
 Type of training job flavor.
 -v, --verbose Show detailed information about training flavors.
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 362

Table 6-35 Parameters

Parameter Data Type Mandatory Description

-t / --flavor-
type

String No Resource flavor type. If this
parameter is not specified,
all resource flavors are
returned by default.

-v / --verbose Bool No Whether to display
detailed information. It is
disabled by default.

Example: Obtain the resource flavors and types of training jobs.

ma-cli ma-job get-flavor

Using ma-cli ma-job stop to Stop a ModelArts Training Job
Run the ma-cli ma-job stop command to stop a training job with a specified job
ID.

$ ma-cli ma-job stop -h
Usage: ma-cli ma-job stop [OPTIONS]

 Stop training job by job id.

 Example:

 Stop training job by job id
 ma-cli ma-job stop --job-id ${job_id}

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 363

Options:
 -i, --job-id TEXT Get training job event by job id. [required]
 -y, --yes Confirm stop operation.
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Table 6-36 Parameters

Parameter Data Type Mandatory Description

-i / --job-id String Yes ID of a ModelArts
training job

-y / --yes Bool No Whether to
forcibly stop a
training job

Example: Stop a running training job.

ma-cli ma-job stop --job-id efd3e2f8xxx

6.8.7 ma-cli dli-job Commands for Submitting DLI Spark Jobs
$ma-cli dli-job -h
Usage: ma-cli dli-job [OPTIONS] COMMAND [ARGS]...

 DLI spark job submission and query job details.

Options:
 -h, -H, --help Show this message and exit.

Commands:
 get-job Get DLI spark job details.
 get-log Get DLI spark log details.
 get-queue Get DLI spark queues info.
 get-resource Get DLI resources info.
 stop Stop DLI spark job by job id.
 submit Submit dli spark batch job.
 upload Upload local file or OBS object to DLI resources.

Table 6-37 Commands for submitting DLI Spark jobs

Command Description

get-job Obtain DLI Spark jobs and their details.

get-log Obtain runtime logs of a DLI Spark job.

get-queue Obtain DLI queues.

get-resource Obtain DLI group resources.

stop Stop a DLI Spark job.

submit Submit a DLI Spark job.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 364

Command Description

upload Upload local files or OBS files to a DLI group.

Using ma-cli dli-job get-job to Obtain a DLI Spark Job
Run the ma-cli dli-job get-job command to obtain the DLI Spark jobs or details
about a job.

ma-cli dli-job get-job -h
Usage: ma-cli dli-job get-job [OPTIONS]

 Get DLI Spark details.

 Example:

 # Get DLI Spark job details by job name
 ma-cli dli-job get-job -n ${job_name}

 # Get DLI Spark job details by job id
 ma-cli dli-job get-job -i ${job_id}

 # Get DLI Spark job list
 ma-cli dli-job get-job --page-size 5 --page-num 1

Options:
 -i, --job-id TEXT Get DLI Spark job details by job id.
 -n, --job-name TEXT Get DLI Spark job details by job name.
 -pn, --page-num INTEGER RANGE Specify which page to query. [x>=1]
 -ps, --page-size INTEGER RANGE The maximum number of results for this query. [x>=1]
 -v, --verbose Show detailed information about DLI Spark job details.
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Table 6-38 Parameters

Parameter Data
Type

Mandato
ry

Description

-i / --job-id String No ID of the DLI Spark job whose details are
to be obtained.

-n / --job-
name

String No Name of the DLI Spark job to be queried
or name keyword used to filter DLI Spark
jobs.

-pn / --
page-num

Int No Page number. The default value is 1.

-ps / --
page-size

Int No Number of jobs displayed on each page.
The default value is 20.

-v / --
verbose

Bool No Whether to display detailed information.
It is disabled by default.

Example: Obtain all DLI Spark jobs.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 365

ma-cli dli-job get-job

Using ma-cli dli-job submit to Submit a DLI Spark Job

Run the ma-cli dli-job submit command to submit a DLI Spark job.

When running this command, use the YAML_FILE parameter to specify the path to
the configuration file of the target job. If this parameter is not specified, the
configuration file is empty. The configuration file is in YAML format, and its
parameters are values of OPTIONS in the command. If you specify both the
YAML_FILE and the OPTIONS parameters, the OPTIONS value will overwrite the
same items in the configuration file.

Command parameters preview

ma-cli dli-job submit -h
Usage: ma-cli dli-job submit [OPTIONS] [YAML_FILE]...

 Submit DLI Spark job.

 Example:

 ma-cli dli-job submit --name test-spark-from-sdk
 --file test/sub_dli_task.py
 --obs-bucket dli-bucket
 --queue dli_test
 --spark-version 2.4.5
 --driver-cores 1
 --driver-memory 1G
 --executor-cores 1
 --executor-memory 1G
 --num-executors 1

Options:
 --file TEXT Python file or app jar.
 -cn, --class-name TEXT Your application's main class (for Java / Scala apps).

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 366

 --name TEXT Job name.
 --image TEXT Full swr custom image path.
 --queue TEXT Execute queue name.
 -obs, --obs-bucket TEXT DLI obs bucket to save logs.
 -sv, --spark-version TEXT Spark version.
 -st, --sc-type [A|B|C] Compute resource type.
 --feature [basic|custom|ai] Type of the Spark image used by a job (default: basic).
 -ec, --executor-cores INTEGER Executor cores.
 -em, --executor-memory TEXT Executor memory (eg. 2G/2048MB).
 -ne, --num-executors INTEGER Executor number.
 -dc, --driver-cores INTEGER Driver cores.
 -dm, --driver-memory TEXT Driver memory (eg. 2G/2048MB).
 --conf TEXT Arbitrary Spark configuration property (eg. <PROP=VALUE>).
 --resources TEXT Resources package path.
 --files TEXT Files to be placed in the working directory of each executor.
 --jars TEXT Jars to include on the driver and executor class paths.
 -pf, --py-files TEXT Python files to place on the PYTHONPATH for Python apps.
 --groups TEXT User group resources.
 --args TEXT Spark batch job parameter args.
 -q, --quiet Exit without waiting after submit successfully.
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

YAML file preview

dli-demo.yaml
name: test-spark-from-sdk
file: test/sub_dli_task.py
obs-bucket: ${your_bucket}
queue: dli_notebook
spark-version: 2.4.5
driver-cores: 1
driver-memory: 1G
executor-cores: 1
executor-memory: 1G
num-executors: 1

[Optional]
jars:
 - ./test.jar
 - obs://your-bucket/jars/test.jar
 - your_group/test.jar

[Optional]
files:
 - ./test.csv
 - obs://your-bucket/files/test.csv
 - your_group/test.csv

[Optional]
python-files:
 - ./test.py
 - obs://your-bucket/files/test.py
 - your_group/test.py

[Optional]
resources:
 - name: your_group/test.py
 type: pyFile
 - name: your_group/test.csv
 type: file
 - name: your_group/test.jar
 type: jar
 - name: ./test.py
 type: pyFile
 - name: obs://your-bucket/files/test.py
 type: pyFile

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 367

[Optional]
groups:
 - group1
 - group2

Example of submitting a DLI Spark job by specifying OPTIONS:

$ ma-cli dli-job submit --name test-spark-from-sdk \
 --file test/sub_dli_task.py \
 --obs-bucket ${your_bucket} \
 --queue dli_test \
 --spark-version 2.4.5 \
 --driver-cores 1 \
 --driver-memory 1G \
 --executor-cores 1 \
 --executor-memory 1G \
 --num-executors 1

Table 6-39 Parameters

Parameter Data
Type

Man
dator
y

Description

YAML_FILE String No Local path to the configuration file of a DLI
Spark job. If this parameter is not specified,
the configuration file is empty.

--file String Yes Program entry file. It can be a local file path,
an OBS path, or the name of a JAR or PyFile
package that has been uploaded to the DLI
resource management system.

-cn / --
class_name

String Yes Java/Spark main class of the batch processing
job.

--name String No Specified job name. The value consists of a
maximum of 128 characters.

--image String No Path to a custom image in the format of
"Organization name/Image name:Image
version". This parameter is valid only when
feature is set to custom. You can use this
parameter with the feature parameter to
specify a custom Spark image for running a
job.

-obs / --obs-
bucket

String No OBS bucket for storing a Spark job. Configure
this parameter when you need to save jobs. It
can also be used as a transit station for
submitting local files to resources.

-sv/ --spark-
version

String No Spark version used by a job.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 368

Parameter Data
Type

Man
dator
y

Description

-st / `--sc-
type

String No If the current Spark version is 2.3.2, leave this
parameter blank. If the current Spark version
is 2.3.3, configure this parameter when
feature is set to basic or ai. If this parameter
is not specified, the default Spark version 2.3.2
will be used.

--feature String No Job feature, indicating the type of the Spark
image used by a job. The default value is
basic.
● basic: A base Spark image provided by DLI

is used.
● custom: A custom Spark image is used.
● ai: An AI image provided by DLI is used.

--queue String No Queue name. Set this parameter to the name
of a created DLI queue. The queue must be of
the common type. For details about how to
obtain a queue name, see Table 6-41.

-ec / --
executor-
cores

String No Number of CPU cores of each Executor in a
Spark application. This configuration will
replace the default setting in sc_type.

-em / --
executor-
memory

String No Executor memory of a Spark application, for
example, 2 GB or 2048 MB. This configuration
will replace the default setting in sc_type. The
unit must be provided. Otherwise, the startup
fails.

-ne / --num-
executors

String No Number of Executors in a Spark application.
This configuration will replace the default
setting in sc_type.

-dc / --driver-
cores

String No Number of CPU cores of the Spark application
driver. This configuration will replace the
default setting in sc_type.

-dm / --
driver-
memory

String No Driver memory of a Spark application, for
example, 2 GB or 2048 MB. This configuration
will replace the default setting in sc_type. The
unit must be provided. Otherwise, the startup
fails.

--conf Array
of
String

No batch configuration. For details, see Spark
Configuration. To specify multiple
parameters, use --conf conf1 --conf conf2.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 369

https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/latest/configuration.html

Parameter Data
Type

Man
dator
y

Description

--resources Array
of
String

No Name of a resource package, which can be a
local file, OBS path, or a file that has been
uploaded to the DLI resource management
system. To specify multiple parameters, use --
resources resource1 --resources resource2.

--files Array
of
String

No Name of the file package that has been
uploaded to the DLI resource management
system. You can also specify an OBS path, for
example, obs://Bucket name/Package name.
Local files are also supported. To specify
multiple parameters, use --files file1 --files
file2.

--jars Array
of
String

No Name of the JAR package that has been
uploaded to the DLI resource management
system. You can also specify an OBS path, for
example, obs://Bucket name/Package name.
Local files are also supported. To specify
multiple parameters, use --jars jar1 --jars
jar2.

-pf /--
python-files

Array
of
String

No Name of the PyFile package that has been
uploaded to the DLI resource management
system. You can also specify an OBS path, for
example, obs://Bucket name/Package name.
Local files are also supported. To specify
multiple parameters, use --python-files py1
--python-files py2.

--groups Array
of
String

No Resource group name. To specify multiple
parameters, use --groups group1 --groups
group2.

--args Array
of
String

No Parameters passed to the main class, that is,
program parameters. To specify multiple
parameters, use --args arg1 --args arg2.

-q / --quiet Bool No Whether to exit directly without printing the
job status synchronously after a DLI Spark job
is submitted.

Example

● Submit a DLI Spark job using YAML_FILE.
$ma-cli dli-job submit dli_job.yaml

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 370

● Submit a DLI Spark job by specifying the OPTIONS parameter.
$ma-cli dli-job submit --name test-spark-from-sdk \
> --file test/jumpstart-trainingjob-gallery-pytorch-sample.ipynb \
> --queue dli_ma_notebook \
> --spark-version 2.4.5 \
> --driver-cores 1 \
> --driver-memory 1G \
> --executor-cores 1 \
> --executor-memory 1G \
> --num-executors 1

Using ma-cli dli-job get-log to Obtain Run Logs of a DLI Spark Job
Run the ma-cli dli-job get-log command to obtain the run logs of a DLI Spark
job.

$ ma-cli dli-job get-log -h
Usage: ma-cli dli-job get-log [OPTIONS]

 Get DLI spark job log details.

 Example:

 # Get job log by job id
 ma-cli dli-job get-log --job-id ${job_id}

Options:
 -i, --job-id TEXT Get DLI spark job details by job id. [required]
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Table 6-40 Parameters

Parameter Data Type Mandator
y

Description

-i / --job-id String Yes ID of the DLI Spark job whose
logs are to be obtained.

Example: Obtain the run logs of a specified DLI Spark job.

ma-cli dli-job get-log --job-id ${your_job_id}

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 371

Using ma-cli dli-job get-queue to Obtain a DLI Queue

Run the ma-cli dli-job get-queue command to obtain a DLI queue.

ma-cli dli-job get-queue -h
Usage: ma-cli dli-job get-queue [OPTIONS]

 Get DLI queues info.

 Example:

 # Get DLI queue details by queue name
 ma-cli dli-job get-queue --queue-name $queue_name}

Options:
 -pn, --page-num INTEGER RANGE Specify which page to query. [x>=1]
 -ps, --page-size INTEGER RANGE The maximum number of results for this query. [x>=1]
 -n, --queue-name TEXT Get DLI queue details by queue name.
 -t, --queue-type [sql|general|all]
 DLI queue type (default "all").
 -tags, --tags TEXT Get DLI queues by tags.
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Table 6-41 Parameters

Parameter Data
Type

Mandato
ry

Description

-n / --queue-
name

String No Name of the DLI queue to be
obtained.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 372

Parameter Data
Type

Mandato
ry

Description

-t / --queue-type String No Type of the DLI queue to be
obtained. The value can be sql,
general, or all. The default value
is all.

-tags / --tags String No Tags of the DLI queue to be
obtained.

-pn / --page-num Int No DLI queue page number. The
default value is 1.

-ps / --page-size Int No Number of DLI queues displayed
on each page. The default value is
20.

Example: Query information about the queue named dli_ma_notebook.

ma-cli dli-job get-queue --queue-name dli_ma_notebook

Using ma-cli dli-job get-resource to Obtain DLI Group Resources
Run the ma-cli dli-job get-resource command to obtain details about DLI
resources, such as the resource name and resource type.

$ ma-cli dli-job get-resource -h
Usage: ma-cli dli-job get-resource [OPTIONS]

 Get DLI resource info.

 Example:

 # Get DLI resource details by resource name
 ma-cli dli-job get-resource --resource-name ${resource_name}

Options:
 -n, --resource-name TEXT Get DLI resource details by resource name.
 -k, --kind [jar|pyFile|file|modelFile]
 DLI resources type.
 -g, --group TEXT Get DLI resources by group.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 373

 -tags, --tags TEXT Get DLI resources by tags.
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Table 6-42 Parameters

Parameter Data
Type

Mandat
ory

Description

-n / --resource-
name

String No Resource name of the DLI group
resources to be queried.

-k / --kind String No Resource type of the DLI group
resources to be queried. The type can
be JAR, PyFile, file, or modelFile.

-g / --group String No Group name of the DLI group
resources to be queried.

-tags / --tags String No Tags of the DLI group resources to be
queried.

Example: Obtain information about all DLI group resources.

ma-cli dli-job get-resource

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 374

Using ma-cli dli-job upload to Upload Files to a DLI Group
Run the ma-cli dli-job upload command to upload local files or OBS files to a DLI
group.

$ ma-cli dli-job upload -h
Usage: ma-cli dli-job upload [OPTIONS] PATHS...

 Upload DLI resource.

 Tips: --obs-path is need when upload local file.

 Example:

 # Upload an OBS path to DLI resource
 ma-cli dli-job upload obs://your-bucket/test.py -g test-group --kind pyFile

 # Upload a local path to DLI resource
 ma-cli dli-job upload ./test.py -g test-group -obs ${your-bucket} --kind pyFile

 # Upload local path and OBS path to DLI resource
 ma-cli dli-job upload ./test.py obs://your-bucket/test.py -g test-group -obs ${your-bucket}

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 375

Options:
 -k, --kind [jar|pyFile|file] DLI resources type.
 -g, --group TEXT DLI resources group.
 -tags, --tags TEXT DLI resources tags, follow --tags `key1`=`value1`.
 -obs, --obs-bucket TEXT OBS bucket for upload local file.
 -async, --is-async whether to upload resource packages in asynchronous mode. The default value is
False.
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Table 6-43 Parameters

Parameter Data
Type

Mandat
ory

Description

PATHS String Yes Paths to the local files or OBS files to be
uploaded to a DLI group. Multiple paths
can be specified at a time.

-k / --kind String No Type of the file to be uploaded, which can
be JAR, PyFile, or file.

-g / --group String No Name of the DLI group to which files are
to be uploaded.

-tags / --tags String No Tag of the files to be uploaded.

-obs / --obs-
bucket

String No If the files to be uploaded contain a local
path, specify an OBS bucket for transit.

-async / --is-
async

Bool No Whether to asynchronously upload files.
This method is recommended.

Example

● Upload local files to a DLI group.
ma-cli dli-job upload ./test.py -obs ${your-bucket} --kind pyFile

● Upload OBS files to a DLI group.
ma-cli dli-job upload obs://your-bucket/test.py --kind pyFile

Using ma-cli dli-job stop to Stop a DLI Spark Job
Run the ma-cli dli-job stop command to stop a DLI Spark job.

$ ma-cli dli-job stop -h
Usage: ma-cli dli-job stop [OPTIONS]

 Stop DLI spark job by job id.

 Example:

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 376

 Stop training job by job id
 ma-cli dli-job stop --job-id ${job_id}

Options:
 -i, --job-id TEXT Get DLI spark job event by job id. [required]
 -y, --yes Confirm stop operation.
 -C, --config-file TEXT Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

Table 6-44 Parameters

Parameter Data Type Mandatory Description

-i / --job-id String Yes DLI Spark job ID

-y / --yes Bool No Whether to forcibly stop a
specified DLI Spark job

Example

ma-cli dli-job stop -i ${your_job_id}

6.8.8 Using ma-cli to Copy OBS Data
Run the ma-cli obs-copy [SRC] [DST] command to copy a local file to an OBS
folder or an OBS file or folder to a local path.

$ma-cli obs-copy -h
Usage: ma-cli obs-copy [OPTIONS] SRC DST

 Copy file or directory between OBS and local path. Example:

 # Upload local file to OBS path
 ma-cli obs-copy ./test.zip obs://your-bucket/copy-data/

 # Upload local directory to OBS path
 ma-cli obs-copy ./test/ obs://your-bucket/copy-data/

 # Download OBS file to local path
 ma-cli obs-copy obs://your-bucket/copy-data/test.zip ./test.zip

 # Download OBS directory to local path
 ma-cli obs-copy obs://your-bucket/copy-data/ ./test/

Options:
 -d, --drop-last-dir Whether to drop last directory when copy folder. if True, the last directory of the
source folder will not copy to the destination folder. [default: False]
 -C, --config-file PATH Configure file path for authorization.
 -D, --debug Debug Mode. Shows full stack trace when error occurs.
 -P, --profile TEXT CLI connection profile to use. The default profile is "DEFAULT".
 -H, -h, --help Show this message and exit.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 377

Table 6-45 Parameters

Parameter Type Mandat
ory

Description

-d / --drop-last-
dir

Bool No If you specify this parameter, the last-
level directory of the source folder will
not be copied to the destination folder.
This parameter is valid only for copying
folders.

Examples
Upload a file to OBS.

$ ma-cli obs-copy ./test.csv obs://${your_bucket}/test-copy/
[OK] local src path: [/home/ma-user/work/test.csv]
[OK] obs dst path: [obs://${your_bucket}/test-copy/]

Upload a folder to obs://${your_bucket}/test-copy/data/.

$ ma-cli obs-copy /home/ma-user/work/data/ obs://${your_bucket}/test-copy/
[OK] local src path: [/home/ma-user/work/data/]
[OK] obs dst path: [obs://${your_bucket}/test-copy/]

Upload a folder to obs://${your_bucket}/test-copy/ with --drop-last-dir
specified.

$ ma-cli obs-copy /home/ma-user/work/data/ obs://${your_bucket}/test-copy/ --drop-last-dir
[OK] local src path: [/home/ma-user/work/data]
[OK] obs dst path: [obs://${your_bucket}/test-copy/]

Download a folder from OBS to a local disk.

$ ma-cli obs-copy obs://${your_bucket}/test-copy/ ~/work/test-data/
[OK] obs src path: [obs://${your_bucket}/test-copy/]
[OK] local dst path: [/home/ma-user/work/test-data/]

6.9 Using Moxing Commands in a Notebook Instance

6.9.1 MoXing Framework Functions
MoXing Framework provides basic common components for MoXing. For example,
it facilitates access to Huawei Cloud OBS. Importantly, MoXing Framework is
decoupled from specific AI engines and can be seamlessly integrated with all
major AI engines (including TensorFlow, MXNet, PyTorch, and MindSpore)
supported by ModelArts. MoXing Framework allows you to interact with OBS
components using the mox.file APIs described in this section.

NO TE

MoXing primarily serves to streamline the process of reading and downloading data from
OBS buckets. However, it is not suitable for OBS parallel file systems. You are advised to call
the OBS Python SDK to develop production service code. For details, see API Overview of
OBS SDK for Python.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 378

https://support.huaweicloud.com/intl/en-us/sdk-python-devg-obs/obs_22_0100.html
https://support.huaweicloud.com/intl/en-us/sdk-python-devg-obs/obs_22_0100.html

Why mox.file
Use Python to open a local file.

with open('/tmp/a.txt', 'r') as f:
 print(f.read())

An OBS directory starts with obs://, for example, obs://bucket/XXX.txt. You
cannot directly use the open function to open an OBS file. The preceding code for
opening a local file will report an error.

With OBS, you can access various tools like SDK, API, OBS console, and OBS
Browser. ModelArts mox.file offers a set of APIs that mimic a local file system,
enabling easy management of OBS files. For example, you can use the following
code to open a file on OBS:

import moxing as mox
with mox.file.File('obs://bucket_name/a.txt', 'r') as f:
 print(f.read())

The following Python code lists a local path:

import os
os.listdir('/tmp/my_dir/')

To list an OBS path, add the following code in mox.file:

import moxing as mox
mox.file.list_directory('obs://bucket_name/my_dir/')

Importing MoXing Framework
To use the MoXing Framework, first add the MoXing Framework module to the
beginning of your code.

Import the MoXing Framework module:

import moxing as mox

Related Notes
After the MoXing module is introduced, the standard logging module of Python is
set to the INFO level, and the version number is printed. You can use the following
API to reset the logging level:

import logging

from moxing.framework.util import runtime
runtime.reset_logger(level=logging.WARNING)

Before introducing MoXing, you can set the MOX_SILENT_MODE environment
variable to 1 to prevent MoXing from printing the version number. Before
importing MoXing, set the environment variables using the following Python code.

import os
os.environ['MOX_SILENT_MODE'] = '1'
import moxing as mox

Data Downloading Acceleration
You can use MoXing Framework to accelerate data downloading for training jobs
created using ModelArts preset images. This is suitable when the number of files

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 379

ranges from 1 million to 10 million, a single large file, or the file size is greater
than 20 GB.

1. Log in to the ModelArts console and choose Model Training > Training Jobs
in the navigation pane on the left.

2. In the upper right corner of the page, click Create Training Job, and set
MA_MOXING_FWVER=2.2.8.0aa484aa in Environment Variable to install
the latest MoXing Framework. For details about other parameters, see
Creating a Training Job. Then, you can use moxing.file.copy_parallel in the
training job script to accelerate data downloading.

3. Set MOX_C_ACCELERATE=0 in Environment Variable to disable data
downloading acceleration if it is not needed.

6.9.2 Using MoXing in Notebook
This document describes how to call MoXing Framework APIs in ModelArts.

Logging In to ModelArts and Creating a Notebook Instance
1. Log in to the ModelArts console. In the navigation pane, choose

Development Workspace > Notebook to access the Notebook page.
2. Click Create. On the Create Notebook page that is displayed, create a

notebook instance by referring to Creating a Notebook Instance.
3. After a notebook instance is created and enters the Running status, click

Open in the Operation column to go to the JupyterLab Notebook page.
4. On the Launcher page of JupyterLab, for example, click TensorFlow to create

a file for encoding.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 380

Figure 6-158 Selecting an AI engine

After the file is created, the JupyterLab page is displayed by default.

Figure 6-159 Encoding page

Calling mox.file.
Enter the following code to implement the following simple functions:

1. Introduce MoXing Framework.
2. Create the test01 folder in the existing modelarts-test08/moxing directory.
3. Check whether the test01 folder exists. If the folder exists, the preceding

operation is successful.
import moxing as mox

mox.file.make_dirs('obs://modelarts-test08/moxing/test01')
mox.file.exists('obs://modelarts-test08/moxing/test01')

Figure 6-160 shows the result. Note that each time you enter a line of code, click
Run. You can also go to OBS Console and check whether the test01 folder has

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 381

been created in the modelarts-test08/moxing directory. For more common
MoXing operations, see Sample Code for Common Operations.

Figure 6-160 Example

Copying Data to OBS

On the Notebook JupyterLab page, copy the yolov8_train_ascend.zip file to an
OBS bucket. The sample code is as follows:

import os
import zipfile
import moxing as mox
mox.file.copy('yolov8_train_ascend.zip','obs://pcb-data-me/pcb.zip')

6.9.3 Mapping Between mox.file and Local APIs and
Switchover

API Mapping
● Python: local file operation APIs of Python. The APIs can be shifted to the

corresponding MoXing file operation APIs (mox.file) by one click.

● mox.file: file operation APIs of MoXing Framework. The APIs correspond to
the Python APIs.

● tf.gfile: TensorFlow APIs with the same functions as MoXing file operation
APIs. In MoXing, file operation APIs cannot be automatically switched to
TensorFlow APIs. The following table lists only the APIs with similar functions.

Table 6-46 API mapping

Python (Local File
Operation API)

mox.file (MoXing File
Operation API)

tf.gfile (TensorFlow
File Operation API)

glob.glob mox.file.glob tf.gfile.Glob

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 382

Python (Local File
Operation API)

mox.file (MoXing File
Operation API)

tf.gfile (TensorFlow
File Operation API)

os.listdir mox.file.list_directory(...,
recursive=False)

tf.gfile.ListDirectory

os.makedirs mox.file.make_dirs tf.gfile.MakeDirs

os.mkdir mox.file.mk_dir tf.gfile.MkDir

os.path.exists mox.file.exists tf.gfile.Exists

os.path.getsize mox.file.get_size -

os.path.isdir mox.file.is_directory tf.gfile.IsDirectory

os.remove mox.file.remove(...,
recursive=False)

tf.gfile.Remove

os.rename mox.file.rename tf.gfile.Rename

os.scandir mox.file.scan_dir -

os.stat mox.file.stat tf.gfile.Stat

os.walk mox.file.walk tf.gfile.Walk

open mox.file.File tf.gfile.FastGFile(tf.gfil
e.Gfile)

shutil.copyfile mox.file.copy tf.gfile.Copy

shutil.copytree mox.file.copy_parallel -

shutil.rmtree mox.file.remove(...,
recursive=True)

tf.gfile.DeleteRecursive
ly

6.9.4 Sample Code for Common Operations

Data Reads and Writes
● Read an OBS file.

For example, if you read the obs://bucket_name/obs_file.txt file, the content
is returned as strings.
import moxing as mox
file_str = mox.file.read('obs://bucket_name/obs_file.txt')

You can also open the file object and read data from it. Both methods are the
same.
import moxing as mox
with mox.file.File('obs://bucket_name/obs_file.txt', 'r') as f:
 file_str = f.read()

● Read a line from a file. A string that ends with a newline character is
returned. You can also open the file object in OBS.
import moxing as mox
with mox.file.File('obs://bucket_name/obs_file.txt', 'r') as f:
 file_line = f.readline()

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 383

● Read all lines from a file. A list is returned, in which each element is a line
and ends with a newline character.
import moxing as mox
with mox.file.File('obs://bucket_name/obs_file.txt', 'r') as f:
 file_line_list = f.readlines()

● Read an OBS file in binary mode.
For example, if you read the obs://bucket_name/obs_file.bin file, the content
is returned as bytes.
import moxing as mox
file_bytes = mox.file.read('obs://bucket_name/obs_file.bin', binary=True)

You can also open the file object and read data from it. Both methods are the
same.
import moxing as mox
with mox.file.File('obs://bucket_name/obs_file.bin', 'rb') as f:
 file_bytes = f.read()

One or all lines in a file opened in binary mode can be read with the same
method.

● Write a string to a file.
For example, write Hello World! into the obs://bucket_name/obs_file.txt
file.
import moxing as mox
mox.file.write('obs://bucket_name/obs_file.txt', 'Hello World!')

You can also open the file object and write data into it. Both methods are the
same.
import moxing as mox
with mox.file.File('obs://bucket_name/obs_file.txt', 'w') as f:
 f.write('Hello World!')

NO TE

When you open a file in write mode or call mox.file.write, if the file to be written
does not exist, the file will be created. If the file to be written already exists, the file is
overwritten.

● Append content to an OBS file.
For example, append Hello World! to the obs://bucket_name/obs_file.txt
file.
import moxing as mox
mox.file.append('obs://bucket_name/obs_file.txt', 'Hello World!')

You can also open the file object and append content to it. Both methods are
the same.
import moxing as mox
with mox.file.File('obs://bucket_name/obs_file.txt', 'a') as f:
 f.write('Hello World!')

When you open a file in append mode or call mox.file.append, if the file to
be appended does not exist, the file will be created. If the file to be appended
already exists, the content is directly appended.
If the size of the source file to be appended is large, for example, the obs://
bucket_name/obs_file.txt file exceeds 5 MB, the append performance is low.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 384

NO TE

If the file object is opened in write or append mode, when the write function is called,
the content to be written is temporarily stored in the cache until the file object is
closed (the file object is automatically closed when the with statement exits).
Alternatively, you can call the close() or flush() function of the file object to write the
file content.

List
● List an OBS directory. Only the top-level result (relative path) is returned.

Recursive listing is not performed.
For example, if you list obs://bucket_name/object_dir, all files and folders in
the directory are returned, but recursive queries are not performed.
Assume that obs://bucket_name/object_dir is in the following structure:
bucket_name
 |- object_dir
 |- dir0
 |- file00
 |- file1

Call the following code:
import moxing as mox
mox.file.list_directory('obs://bucket_name/object_dir')

The following list is returned:
['dir0', 'file1']

● Recursively list an OBS directory. All files and folders (relative paths) in the
directory are returned, and recursive queries are performed.
Assume that obs://bucket_name/object_dir is in the following structure:
bucket_name
 |- object_dir
 |- dir0
 |- file00
 |- file1

Call the following code:
import moxing as mox
mox.file.list_directory('obs://bucket_name/object_dir', recursive=True)

The following list is returned:
['dir0', 'dir0/file00', 'file1']

Create a Folder

Create an OBS directory, that is, an OBS folder. Recursive creation is supported.
That is, if the sub_dir_0 folder does not exist, it is automatically created. If the
sub_dir_0 folder exists, no folder will be created.

import moxing as mox
mox.file.make_dirs('obs://bucket_name/sub_dir_0/sub_dir_1')

Query
● Check whether an OBS file exists. If the file exists, True is returned. If the file

does not exist, False is returned.
import moxing as mox
mox.file.exists('obs://bucket_name/sub_dir_0/file.txt')

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 385

● Check whether an OBS folder exists. If the folder exists, True is returned. If the
folder does not exist, False is returned.
import moxing as mox
mox.file.exists('obs://bucket_name/sub_dir_0/sub_dir_1')

NO TE

OBS allows files and folders with the same name exist (not allowed in UNIX). If a file
or folder with the same name exists, for example, obs://bucket_name/sub_dir_0/abc,
when mox.file.exists is called, True is returned regardless of whether abc is a file or
folder.

● Check whether an OBS path is a folder. If it is a folder, True is returned. If it is
not a folder, False is returned.
import moxing as mox
mox.file.is_directory('obs://bucket_name/sub_dir_0/sub_dir_1')

NO TE

OBS allows files and folders with the same name exist (not allowed in UNIX). If a file
or folder with the same name exists, for example, obs://bucket_name/sub_dir_0/abc,
when mox.file.is_directory is called, True is returned.

● Obtain the size of an OBS file, in bytes.

For example, obtain the size of obs://bucket_name/obs_file.txt.
import moxing as mox
mox.file.get_size('obs://bucket_name/obs_file.txt')

● Recursively obtain the size of all files in an OBS folder, in bytes.

For example, obtain the total size of all files in the obs://bucket_name/
object_dir directory.
import moxing as mox
mox.file.get_size('obs://bucket_name/object_dir', recursive=True)

● Obtain the stat information about an OBS file or folder. The stat information
contains the following:

– length: file size

– mtime_nsec: creation timestamp

– is_directory: whether the path is a folder

For example, if you want to query the OBS file obs://bucket_name/
obs_file.txt, you can replace the file path with a folder path.
import moxing as mox
stat = mox.file.stat('obs://bucket_name/obs_file.txt')
print(stat.length)
print(stat.mtime_nsec)
print(stat.is_directory)

Delete
● Delete an OBS file.

For example, delete obs://bucket_name/obs_file.txt.
import moxing as mox
mox.file.remove('obs://bucket_name/obs_file.txt')

● Delete an OBS folder and recursively delete all content in the folder. If the
folder does not exist, an error is reported.

For example, delete all content in obs://bucket_name/sub_dir_0.
import moxing as mox
mox.file.remove('obs://bucket_name/sub_dir_0', recursive=True)

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 386

Move and Copy
● Move an OBS file or folder. The move operation is implemented by copying

and deleting data.
– Move an OBS file to another OBS file. For example, move obs://

bucket_name/obs_file.txt to obs://bucket_name/obs_file_2.txt.
import moxing as mox
mox.file.rename('obs://bucket_name/obs_file.txt', 'obs://bucket_name/obs_file_2.txt')

NO TE

The move and copy operation must be performed in the same bucket.

– Move an OBS file to a local file. For example, move obs://bucket_name/
obs_file.txt to /tmp/obs_file.txt.
import moxing as mox
mox.file.rename('obs://bucket_name/obs_file.txt', '/tmp/obs_file.txt')

– Move a local file to an OBS file. For example, move /tmp/obs_file.txt to
obs://bucket_name/obs_file.txt.
import moxing as mox
mox.file.rename('/tmp/obs_file.txt', 'obs://bucket_name/obs_file.txt')

– Move a local file to another local file. For example, move /tmp/
obs_file.txt to /tmp/obs_file_2.txt. This operation is equivalent to
os.rename.
import moxing as mox
mox.file.rename('/tmp/obs_file.txt', '/tmp/obs_file_2.txt')

You can move folders in the same way. If you move a folder, all content in the
folder is moved recursively.

● Copy a file. mox.file.copy can be used to perform operations only on files. To
perform operations on folders, use mox.file.copy_parallel.
– Copy an OBS file to another OBS path. For example, copy obs://

bucket_name/obs_file.txt to obs://bucket_name/obs_file_2.txt.
import moxing as mox
mox.file.copy('obs://bucket_name/obs_file.txt', 'obs://bucket_name/obs_file_2.txt')

– Copy an OBS file to a local path, that is, download an OBS file. For
example, download obs://bucket_name/obs_file.txt to /tmp/
obs_file.txt.
import moxing as mox
mox.file.copy('obs://bucket_name/obs_file.txt', '/tmp/obs_file.txt')

– Copy a local file to OBS, that is, upload an OBS file. For example,
upload /tmp/obs_file.txt to obs://bucket_name/obs_file.txt.
import moxing as mox
mox.file.copy('/tmp/obs_file.txt', 'obs://bucket_name/obs_file.txt')

– Copy a local file to another local path. This operation is equivalent to
shutil.copyfile. For example, copy /tmp/obs_file.txt to /tmp/
obs_file_2.txt.
import moxing as mox
mox.file.copy('/tmp/obs_file.txt', '/tmp/obs_file_2.txt')

● Copy a folder. mox.file.copy_parallel can be used to perform operations only
on folders. To perform operations on files, use mox.file.copy.
– Copy an OBS file to another OBS path. For example, copy obs://

bucket_name/sub_dir_0 to obs://bucket_name/sub_dir_1.
import moxing as mox
mox.file.copy_parallel('obs://bucket_name/sub_dir_0', 'obs://bucket_name/sub_dir_1')

– Copy an OBS folder to a local path, that is, download an OBS folder. For
example, download obs://bucket_name/sub_dir_0 to /tmp/sub_dir_0.

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 387

import moxing as mox
mox.file.copy_parallel('obs://bucket_name/sub_dir_0', '/tmp/sub_dir_0')

– Copy a local folder to OBS, that is, upload an OBS folder. For example,
upload /tmp/sub_dir_0 to obs://bucket_name/sub_dir_0.
import moxing as mox
mox.file.copy_parallel('/tmp/sub_dir_0', 'obs://bucket_name/sub_dir_0')

– Copy a local folder to another local path. This operation is equivalent to
shutil.copytree. For example, copy /tmp/sub_dir_0 to /tmp/sub_dir_1.
import moxing as mox
mox.file.copy_parallel('/tmp/sub_dir_0', '/tmp/sub_dir_1')

6.9.5 Sample Code for Advanced MoXing Usage
If you are familiar with common operations, the MoXing Framework API
document, and common Python code, you can refer to this section to use
advanced MoXing Framework functions.

Closing a File After File Reading Is Completed

When you read an OBS file, you are establishing an HTTP connection to access the
network stream. Once done, close the file immediately. To prevent you from
forgetting to close a file, you are advised to use the with statement. When the
with statement exits, the close() function of the mox.file.File object is
automatically called.

import moxing as mox
with mox.file.File('obs://bucket_name/obs_file.txt', 'r') as f:
 data = f.readlines()

Reading or Writing an OBS File Using pandas
● Use pandas to read an OBS file.

import pandas as pd
import moxing as mox
with mox.file.File("obs://bucket_name/b.txt", "r") as f:
 csv = pd.read_csv(f)

● Use pandas to write an OBS file.
import pandas as pd
import moxing as mox
df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
with mox.file.File("obs://bucket_name/b.txt", "w") as f:
 df.to_csv(f)

Reading an Image Using a File Object

When OpenCV is used to open an image, the OBS path cannot be passed and the
image must be read using a file object. The following code cannot read the image:

import cv2
cv2.imread('obs://bucket_name/xxx.jpg', cv2.IMREAD_COLOR)

Modify the code as follows:

import cv2
import numpy as np
import moxing as mox
img = cv2.imdecode(np.fromstring(mox.file.read('obs://bucket_name/xxx.jpg', binary=True), np.uint8),
cv2.IMREAD_COLOR)

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 388

Reconstructing an API That Does Not Support OBS Paths to One That Does
In pandas, to_hdf and read_hdf used to read and write H5 files do not support
OBS paths, nor do they support file objects to be entered. The following code may
cause errors:

import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}, index=['a', 'b', 'c'])
df.to_hdf('obs://wolfros-net/hdftest.h5', key='df', mode='w')
pd.read_hdf('obs://wolfros-net/hdftest.h5')

The API compiled using the pandas source code is rewritten to support OBS paths.

● Write H5 to OBS = Write H5 to the local cache + Upload the local cache to
OBS + Delete the local cache

● Read H5 from OBS = Download H5 to the local cache + Read the local cache
+ Delete the local cache

That is, write the following code at the beginning of the script to enable to_hdf
and read_hdf to support OBS paths:

import os
import moxing as mox
import pandas as pd
from pandas.io import pytables
from pandas.core.generic import NDFrame

to_hdf_origin = getattr(NDFrame, 'to_hdf')
read_hdf_origin = getattr(pytables, 'read_hdf')

def to_hdf_override(self, path_or_buf, key, **kwargs):
 tmp_dir = '/cache/hdf_tmp'
 file_name = os.path.basename(path_or_buf)
 mox.file.make_dirs(tmp_dir)
 local_file = os.path.join(tmp_dir, file_name)
 to_hdf_origin(self, local_file, key, **kwargs)
 mox.file.copy(local_file, path_or_buf)
 mox.file.remove(local_file)

def read_hdf_override(path_or_buf, key=None, mode='r', **kwargs):
 tmp_dir = '/cache/hdf_tmp'
 file_name = os.path.basename(path_or_buf)
 mox.file.make_dirs(tmp_dir)
 local_file = os.path.join(tmp_dir, file_name)
 mox.file.copy(path_or_buf, local_file)
 result = read_hdf_origin(local_file, key, mode, **kwargs)
 mox.file.remove(local_file)
 return result

setattr(NDFrame, 'to_hdf', to_hdf_override)
setattr(pytables, 'read_hdf', read_hdf_override)
setattr(pd, 'read_hdf', read_hdf_override)

Use MoXing to Enable h5py.File to Support OBS
import os
import h5py
import numpy as np
import moxing as mox

h5py_File_class = h5py.File

class OBSFile(h5py_File_class):
 def __init__(self, name, *args, **kwargs):

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 389

 self._tmp_name = None
 self._target_name = name
 if name.startswith('obs://'):
 self._tmp_name = name.replace('/', '_')
 if mox.file.exists(name):
 mox.file.copy(name, os.path.join('cache', 'h5py_tmp', self._tmp_name))
 name = self._tmp_name

 super(OBSFile, self).__init__(name, *args, **kwargs)

 def close(self):
 if self._tmp_name:
 mox.file.copy(self._tmp_name, self._target_name)

 super(OBSFile, self).close()

setattr(h5py, 'File', OBSFile)

arr = np.random.randn(1000)
with h5py.File('obs://bucket/random.hdf5', 'r') as f:
 f.create_dataset("default", data=arr)

with h5py.File('obs://bucket/random.hdf5', 'r') as f:
 print(f.require_dataset("default", dtype=np.float32, shape=(1000,)))

ModelArts
User Guide (ModelArts Standard) 6 Development Environments

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 390

7 Data Management

7.1 Introduction to Data Preparation
NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management functions, you are advised to submit a service
ticket to obtain the permissions.

The driving forces behind AI are computing power, algorithms, and data. Data
quality affects model precision. Generally, a large amount of high-quality data is
more likely to train a high-precision AI model. Models trained using normal data
achieves 85% to 90% accuracy, while commercial applications have higher
requirements. If you want to improve the model accuracy to 96% or even 99%, a
large amount of high-quality data is required. In this case, the data must be more
refined, scenario-based, and professional. The preparation of a large amount of
high-quality data has become a challenging issue in AI development.

ModelArts is a one-stop AI development platform that supports AI lifecycle
development, including data processing, algorithm development, model training,
and model deployment. In addition, ModelArts provides AI Gallery that can be
used to share data, algorithms, and models. ModelArts data management
provides end-to-end data preparation, processing, and labeling.

ModelArts data management provides the following functions for you to obtain
high-quality AI data:

● Data acquisition
– Allows you to import data from OBS, MRS, DLI, and GaussDB(DWS).
– Provides 18+ data augmentation operators to increase data volume for

training.
● Improved data quality

– Allows you to preview various formats of data including images, text,
audios, and videos, helping you identify data quality.

– Allows you to filter data by multiple search criteria, such as sample
attributes and labeling information.

– Provides 12+ labeling tools for refined, scenario-based, and professional
data labeling.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 391

– Performs feature analysis based on samples and labeling results, helping
you understand data quality.

● More efficient data preparation
– Allows you to manage data by version for more efficient data

management.
– Provides capabilities such as interactive labeling and auto labeling for

more efficient data labeling.
– Enables team labeling and team labeling management for labeling a

large amount of data.

7.2 Getting Started
This section uses preparing data for training an object detection model as an
example to describe how to analyze and label sample data. During actual service
development, you can select one or more data management functions to prepare
data based on service requirements. The operation process is as follows:

● Making Preparations
● Creating a Dataset
● Analyzing Data
● Labeling Data
● Publishing Data
● Exporting Data

Preparations

Before using data management of ModelArts, complete the following
preparations:

When using data management, ModelArts needs to access dependent services
such as OBS. Therefore, grant permissions on the Global Configuration page. For
details, see Configuring Agency Authorization (Recommended).

Creating a Dataset

In this example, an OBS path is used as the input path to create a dataset.
Perform the following operations to create an object detection dataset and import
the data to the dataset:

Step 1 Log in to the ModelArts management console.. In the navigation pane, choose
Data Management > Datasets.

Step 2 Click Create. On the Create Dataset page, create a dataset based on the data
type and data labeling requirements.

1. Set the basic information, the name and description of the dataset. Set Data
Type to Images and Data Source to OBS.

2. Select an OBS path as Input Dataset PathImport Path, and select another
OBS path as Output Dataset Path.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 392

https://support.huaweicloud.com/intl/en-us/prepare-modelarts/modelarts_08_0007.html
https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard

Figure 7-1 Data import and output paths

3. After setting the parameters, click CreateSubmit in the lower right corner to
create a dataset.

----End

Analyzing Data

After a dataset is created, you can perform data analysis based on image features,
such as blurs and brightness, to better understand the data quality and determine
whether the dataset meets your algorithm and model requirements.

1. Create a feature analysis task.

a. Before performing feature analysis, publish a dataset version. On the
dataset details page, click Publish in the upper right corner to publish a
new version of the dataset.

b. After the version is published, click the View Data Feature tab and click
Analyze Features. In the dialog box that is displayed, select the published
dataset version and click Yes to start the feature analysis task.

Figure 7-2 Starting feature analysis

c. View the task progress.
You can click View Task History to view the task progress. When the task
status changes to Successful, the task is complete.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 393

Figure 7-3 Feature analysis progress

2. View feature analysis results.
After the feature analysis is complete, you can select Version, Type, and Data
Feature Metric on the View Data Feature tab page. Then, the selected
versions and metrics are displayed on the page. The displayed chart helps you
understand data distribution for a better understanding of your data.
– Version: Select one or more versions for comparison.
– Type: Select types to be analyzed. The values all, train, eval, and

inference are available for you to select. They indicate all, training,
evaluation, and inference, respectively.

– Data Feature Metric: Select the metrics to be displayed. For details
about the metrics, see Data feature metrics.

In feature analysis results, for example, image brightness distribution is
uneven, which means images of a certain brightness are lacking. This greatly
affects model training. In this case, increase images of that brightness to
make data more even for subsequent model building.

Labeling Data
● Manual labeling

a. On the Unlabeled tab page, click an image. The system automatically
directs you to the page for labeling the image.

b. On the toolbar of the labeling page, select a proper labeling tool. In this
example, a rectangle is used for labeling.

Figure 7-4 Labeling tools

c. Drag the mouse to select an object, enter a new label name in the
displayed text box. If labels already exist, select one from the drop-down
list box. Click Add.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 394

Figure 7-5 Adding an object detection label

d. Click Back to Data Labeling Preview in the upper left part of the page
to view the labeling information. In the dialog box that is displayed, click
Yes to save the labeling settings. The selected image is automatically
moved to the Labeled tab page. On the Unlabeled and All tab pages,
the labeling information is updated along with the labeling process,
including the added label names and the number of images for each
label.

● Auto labeling
Auto labeling allows you to automatically label remaining data after a small
amount of data is manually labeled.

a. On the dataset details page, click Auto Label in the upper right corner.
b. In the Enable Auto Labeling dialog box, set the following parameters

and click Submit.

▪ Auto Labeling Type: Active learning

▪ Algorithm Type: Fast

Retain the default values of other parameters.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 395

Figure 7-6 Starting auto labeling

c. View auto labeling progress.
After auto labeling is started, you can view the task progress on the To
Be Confirmed tab page. After a task is complete, you can view the
automatically labeled data on the To Be Confirmed tab page.

Figure 7-7 Viewing auto labeling progress

d. Confirm auto labeling results.
After auto labeling is complete, click the image on the To be confirmed
tab page. On the labeling details page, you can view or modify the auto
labeling result.
For correct labeling, click Labeled on the right. For wrong labeling,
correct wrong labels. For auto labeling of object detection datasets,
confirm images one by one. Ensure that all images are confirmed and go
to the next step.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 396

Figure 7-8 Confirming auto labeling results

Publishing Data

ModelArts training management allows you to create training jobs using
ModelArts datasets or files in an OBS directory. If a dataset is used as the data
source of a training job, specify a dataset and version. Therefore, you must have
published a dataset version. For details, see Publishing a Data Version.

NO TE

Data that is from the same source and labeled in different batches are differentiated by
version. This facilitates subsequent model building and development. You can select
specified versions.

Exporting Data

ModelArts training management allows you to create training jobs using
ModelArts datasets or files in an OBS directory. If you create a training job using
an OBS directory, export the prepared data to OBS.

1. Export data to OBS.

a. On the dataset details page, select or filter the data to be exported, and
click Export in the upper right corner.

b. Set Data Source to OBS, enter related information, and click OK.
Storage Path: path where the data to be exported is stored. You are
advised not to save data to the input or output path of the current
dataset.

Figure 7-9 Exporting data to OBS

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 397

c. After the data is exported, view it in the specified path.

2. View task history.

After exporting data, you can view the export task details in Export History.

a. On the dataset details page, click Export History in the upper right
corner.

b. In the View Task History dialog box, view the export task history of the
current dataset. You can view the task ID, creation time, export type,
export path, total number of exported samples, and export status.

Figure 7-10 Export history

7.3 Creating a Dataset
Before using ModelArts to prepare data, create a dataset. Then, you can perform
operations on the dataset, such as importing data, analyzing data, and labeling
data.

7.3.1 Dataset Overview

Dataset Types

ModelArts supports the following types of datasets:

● Images: in .jpg, .png, .jpeg, or .bmp format for image classification, image
segmentation, and object detection

● Audio: in .wav format for sound classification, speech labeling, and speech
paragraph labeling

● Text: in .txt or .csv format for text classification, named entity recognition, and
text triplet labeling

● Video: in .mp4 format for video labeling

● Free format: allows data in any format. Labeling is not available for free
format data. The free format applies if labeling is not required or needs to be
customized. Select this format if your data is in multiple formats or your data
is not in any of the preceding formats.

● Tables

Table: applies to structured data processing such as tables. The file format can
be CSV. Tables cannot be labeled but you can preview up to 100 data records
in a table.

Dataset Functions

Different types of datasets support different functions, such as auto labeling and
team labeling. For details, see Table 7-1.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 398

Table 7-1 Functions supported by different types of datasets

Data
set
Type

Label
ing
Type

Creat
ing a
Datas
et

Impo
rting
Data

Expo
rting
Data

Publi
shing
a
Datas
et

Modi
fying
a
Data
set

Mana
ging
Datas
et
Versi
ons

Auto
Grou
ping

Data
Featu
res

Imag
e

Imag
e
classif
icatio
n

Supp
orted

Supp
orted

Supp
orted

Suppo
rted

Supp
orted

Supp
orted

Supp
orted

Supp
orted

Objec
t
detec
tion

Supp
orted

Supp
orted

Supp
orted

Suppo
rted

Supp
orted

Supp
orted

Supp
orted

Supp
orted

Imag
e
segm
entati
on

Supp
orted

Supp
orted

Supp
orted

Suppo
rted

Supp
orted

Supp
orted

Supp
orted

N/A

Audio Soun
d
classif
icatio
n

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Speec
h
labeli
ng

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Speec
h
parag
raph
labeli
ng

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Text Text
classif
icatio
n

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Name
d
entity
recog
nition

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 399

Data
set
Type

Label
ing
Type

Creat
ing a
Datas
et

Impo
rting
Data

Expo
rting
Data

Publi
shing
a
Datas
et

Modi
fying
a
Data
set

Mana
ging
Datas
et
Versi
ons

Auto
Grou
ping

Data
Featu
res

Text
triplet

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Video Video
labeli
ng

Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Free
form
at

Free
forma
t

Supp
orted

N/A _ Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Table Table Supp
orted

Supp
orted

N/A Suppo
rted

Supp
orted

Supp
orted

N/A N/A

Specifications Restrictions
● The maximum numbers of samples and labels in a single text, video, or audio

database other than a table dataset are 1,000,000 and 10,000, respectively.
● The maximum size of a sample in a single text, video, or audio database other

than an image dataset is 5 GB.
● The maximum size of an image for object detection, image segmentation, or

image classification is 25 MB.
● The maximum size of a manifest file is 5 GB.
● The maximum size of a text file in a line is 100 KB.
● The maximum size of a labeling result file is 100 MB.

7.3.2 Creating a Dataset
Before using ModelArts to manage data, create a dataset. Then, you can perform
operations on the dataset, such as labeling data, importing data, and publishing
the dataset. This section describes how to create a dataset of the non-table type
(image, audio, text, video, and free format) and table type.

Prerequisites
● You have been authorized to access OBS. To do so, click the Settings page in

the navigation pane of the ModelArts management console and add access
authorization using an agency.

● OBS buckets and folders for storing data are available. In addition, the OBS
buckets and ModelArts are in the same region. OBS parallel file systems are
not supported. Select object storage.

● OBS buckets are not encrypted. ModelArts does not support encrypted OBS
buckets. When creating an OBS bucket, do not enable bucket encryption.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 400

Image, Audio, Text, Video, and Free Format
1. Log in to the ModelArts management console. In the navigation pane,

choose Data Management > Datasets.
2. Click Create. On the Create Dataset page, create a dataset based on the data

type and data labeling requirements.

Figure 7-11 Parameter settings

– Name: name of the dataset, which is customizable
– Description: details about the dataset
– Data Type: Select a data type based on your needs.
– Data Source

i. Importing data from OBS
If data is available in OBS, select OBS for Data Source, and set
Import Mode, Import Path, Labeling Status, and Labeling Format
(mandatory when Labeling Status is set to Labeled). The labeling
formats of the input data vary depending on the dataset type. For
details about the labeling formats supported by ModelArts, see
Importing Data.

ii. Importing data from a local path
If data is not stored in OBS and the required data cannot be
downloaded from AI Gallery, ModelArts enables you to upload the
data from a local path. Before uploading data, configure Storage
Path and Labeling Status. Click Upload data to select the local file
for uploading. Select a labeling format when the labeling status is
Labeled. The labeling formats of the input data vary depending on
the dataset type. For details about the labeling formats supported by
ModelArts, see Importing Data.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 401

https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard
https://support.huaweicloud.com/intl/en-us/dataprepare-modelarts/dataprepare-modelarts-0008.html
https://support.huaweicloud.com/intl/en-us/datalabel-modelarts/datalabel-modelarts_0002.html

Figure 7-12 Selecting Local file

– For more details about parameters, see Table 7-2.

Table 7-2 Dataset parameters

Parameter Description

Import
Path

OBS path from which your data is to be imported. This
path is used as the data storage path of the dataset.
NOTE

OBS parallel file systems are not supported. Select an OBS
bucket.
When you create a dataset, data in the OBS path will be
imported to the dataset. If you modify data in OBS, the data in
the dataset will be inconsistent with that in OBS. As a result,
certain data may be unavailable. To modify data in a dataset,
follow the operations provided in Import Mode or Importing
Data from an OBS Path.
If the numbers of samples and labels of the dataset exceed
quotas, importing the samples and labels will fail.

Labeling
Status

Labeling status of the selected data, which can be
Unlabeled or Labeled.
If you select Labeled, specify a labeling format and
ensure the data file complies with format specifications.
Otherwise, the import may fail.
Only image (object detection, image classification, and
image segmentation), audio (sound classification), and
text (text classification) labeling tasks support the import
of labeled data.

Output
Dataset
Path

OBS path where your labeled data is stored.
NOTE

● Ensure that your OBS path name contains letters, digits, and
underscores (_) and does not contain special characters, such
as ~'@#$%^&*{}[]:;+=<>/ and spaces.

● The dataset output path cannot be the same as the data
input path or subdirectory of the data input path.

● It is a good practice to select an empty directory as the
dataset output path.

● OBS parallel file systems are not supported. Select an OBS
bucket.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 402

3. After setting the parameters, click Submit.

Table
1. Log in to the ModelArts management console. In the navigation pane,

choose Data Management > Datasets.
2. Click Create. On the Create Dataset page, create a table dataset based on

the data type and data labeling requirements.

Figure 7-13 Parameters of a table dataset

– Name: name of the dataset, which is customizable
– Description: details about the dataset
– Data Type: Select a data type based on your needs.
– For more details about parameters, see Table 7-3.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 403

https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard

Table 7-3 Dataset parameters

Parameter Description

Data Source
(OBS)

● File Path: Browse all OBS buckets of the account
and select the directory where the data file to be
imported is located.

● Contain Table Header: This setting is enabled by
default, indicating that the imported file contains
table headers.
– If the original table contains table headers and

this setting is enabled, first rows (table header)
of the imported file are used as column names.
You do not need to modify the schema
information.

– If the original table does not contain table
headers, you need to disable this setting and
change column names in Schema to attr_1,
attr_2, ..., and attr_n. attr_n is the last column,
indicating the prediction column.

For details about OBS functions, see Object Storage
Service Console Operation Guide.

Data Source
(DWS)

● Cluster Name: All DWS clusters of the current
account are automatically displayed. Select the
required DWS cluster from the drop-down list.

● Database Name: Enter the name of the database
where the data is located based on the selected
DWS cluster.

● Table Name: Enter the name of the table where the
data is located based on the selected database.

● User Name: Enter the username of the DWS cluster
administrator.

● Password: Enter the password of the DWS cluster
administrator.

For details about DWS functions, see Data Warehouse
Service User Guide.
NOTE

To import data from DWS, use DLI functions. If you do not
have the permission to access DLI, create a DLI agency as
prompted.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 404

https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0054.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0054.html
https://support.huaweicloud.com/intl/en-us/dws/index.html
https://support.huaweicloud.com/intl/en-us/dws/index.html

Parameter Description

Data Source
(DLI)

● Queue Name: All DLI queues of the current account
are automatically displayed. Select the required
queue from the drop-down list.

● Database Name: All databases are displayed based
on the selected queue. Select the required database
from the drop-down list.

● Table Name: All tables in the selected database are
displayed. Select the required table from the drop-
down list.

For details about DLI functions, see Data Lake Insight
User Guide.

Data Source
(MRS)

● Cluster Name: All MRS clusters of the current
account are automatically displayed. However,
streaming clusters do not support data import.
Select the required cluster from the drop-down list.

● File Path: Enter the HDFS file path based on the
selected cluster.

● Contain Table Header: If this setting is enabled, the
imported file contains table headers.

For details about MRS functions, see MapReduce
Service User Guide.

Local file Storage Path: Select an OBS path.

Schema Names and types of table columns, which must be the
same as those of the imported data. Set the column
name based on the imported data and select the
column type. For details about the supported types, see
Table 7-4.
Click Add Schema to add a new record. When creating
a dataset, you must specify a schema. Once created,
the schema cannot be modified.
When data is imported from OBS, the schema of the
CSV file in the file path is automatically obtained. If the
schemas of multiple CSV files are inconsistent, an error
will be reported.
NOTE

After you select data from OBS, column names in Schema are
automatically displayed, which is the first-row data of the
table by default. To ensure the correct prediction code, you
need to change column names in Schema to attr_1, attr_2, ...,
and attr_n. attr_n is the last column, indicating the prediction
column.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 405

https://support.huaweicloud.com/intl/en-us/dli/index.html
https://support.huaweicloud.com/intl/en-us/dli/index.html
https://support.huaweicloud.com/intl/en-us/mrs/index.html
https://support.huaweicloud.com/intl/en-us/mrs/index.html

Parameter Description

Output
Dataset Path

OBS path for storing table data. The data imported
from the data source is stored in this path. The path
cannot be the same as the file path in the OBS data
source or subdirectories of the file path.
After a table dataset is created, the following four
directories are automatically generated in the storage
path:
● annotation: version publishing directory. Each time

a version is published, a subdirectory with the same
name as the version is generated in this directory.

● data: data storage directory. Imported data is stored
in this directory.

● logs: directory for storing logs.
● temp: temporary working directory.

Table 7-4 Schema data types

Type Description Stora
ge
Space

Range

String String type N/A N/A

Short Signed integer 2
bytes

-32768 to 32767

Int Signed integer 4
bytes

-2147483648 to
2147483647

Long Signed integer 8
bytes

-9223372036854775808
to
9223372036854775807

Double Double-precision
floating point

8
bytes

N/A

Float Single-precision floating
point

4
bytes

N/A

Byte Signed integer 1 byte -128 to 127

Date Date type in the format
of "yyyy-MM-dd", for
example, 2014-05-29

N/A N/A

Timesta
mp

Timestamp that
represents date and
time in the format of
"yyyy-MM-dd
HH:mm:ss"

N/A N/A

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 406

Type Description Stora
ge
Space

Range

Boolean Boolean type 1 byte TRUE/FALSE

NO TE

When using a CSV file, pay attention to the following:

● When the data type is set to String, the data in the double quotation marks
is regarded as one record by default. Ensure the double quotation marks in
the same row are closed. Otherwise, the data will be too large to display.

● If the number of columns in a row of the CSV file is different from that
defined in the schema, the row will be ignored.

3. After setting the parameters, click Submit.

7.3.3 Modifying a Dataset
The basic information of a created dataset can be modified to keep pace with
service changes.

Prerequisites

A created dataset is available.

Modifying the Basic Information of a Dataset
1. Log in to the ModelArts management console.. In the navigation pane,

choose Data Management > Datasets.

2. In the dataset list, choose More > Modify in the Operation column of the
target dataset. Modify the basic information and click OK.

Table 7-5 Parameters

Parameter Description

Name Name of a dataset, which must be 1 to 64 characters
long and start with a letter. Only letters, digits,
underscores (_), and hyphens (-) are allowed. The
name must start with a letter.

Description Brief description of the dataset.

7.4 Importing Data

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 407

https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard

7.4.1 Introduction to Data Importing
After a dataset is created, you can import more data. ModelArts allows you to
import data from different data sources.

● Importing Data from OBS

● Importing Data from DLI

● Importing Data from MRS

● Importing Data from DWS

● Importing Data from Local Files

ModelArts AI Gallery provides a large number of built-in datasets. You can
download and use the built-in datasets from AI Gallery. You can also import your
data to ModelArts.

File Data Sources

You can import data by downloading built-in datasets from AI Gallery, or from
OBS or a local file. After the import, the data from the import path is
automatically synchronized to the data source path of the dataset.

● OBS: Import data from an OBS path or a manifest file.

● Local file: Import local data that has been uploaded to an OBS path.

Table Data Sources

You can import data by downloading built-in datasets from AI Gallery, or from
OBS, DWS, DLI, MRS, and local files.

Import Mode

There are five modes for importing data to a dataset.

● When you create a dataset, select an import path. The data is automatically
synchronized from the import path.

● After a dataset is created, click Import in the Operation column on the
dataset list page.

Figure 7-14 Importing data on the dataset list page

● On the dataset list page, click a dataset. On the dataset details page, choose
Import > Import.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 408

Figure 7-15 Importing data on the dataset details page

● On the dataset list page, click a dataset. On the dataset details page, click
Synchronize Data Source to synchronize data from OBS.

Figure 7-16 Synchronizing data sources on the dataset details page

● Add data on the labeling job details page.

Figure 7-17 Adding data on the labeling job details page

7.4.2 Importing Data from OBS

7.4.2.1 Introduction to Importing Data from OBS

Import Modes
You can import data from OBS through an OBS path or a manifest file.

● OBS path: indicates that the dataset to be imported has been stored in an
OBS path. In this case, select an OBS path that you can access. In addition,
the directory structure in the OBS path must comply with the specifications.
For details, see Specifications for Importing Data from an OBS Directory.
This import mode is available only for the following types of datasets: Image
classification, Object detection, Text classification, Table, and Sound

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 409

classification. For other types of datasets, data can be imported only through
a manifest file.

● Manifest file: indicates that the dataset file is in the manifest format and the
manifest file has been uploaded to OBS. The manifest file defines the
mapping between labeling objects and content. For details about the
specifications of manifest files, see Specifications for Importing a Manifest
File.

NO TE

Before importing an object detection dataset, ensure that the labeling range of the labeling
file does not exceed the size of the original image. Otherwise, the import may fail.

Table 7-6 Import modes supported by datasets

Dat
aset
Typ
e

Labeling
Type

From an OBS Path From a Manifest File

Ima
ges

Image
classificati
on

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Image
Classification

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Image
Classification

Object
detection

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Object
Detection

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Object
Detection

Image
segmenta
tion

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Image
Segmentation

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Image
Segmentation

Aud
io

Sound
classificati
on

Supported
You can import unlabeled or
labeled data.
Follow the format
specifications described in
Sound Classification.

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Sound
Classification

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 410

Dat
aset
Typ
e

Labeling
Type

From an OBS Path From a Manifest File

Speech
labeling

Supported
You can import unlabeled
data.

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Speech
Labeling

Speech
paragrap
h labeling

Supported
You can import unlabeled
data.

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Speech
Paragraph Labeling

Text Text
classificati
on

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Text
Classification

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Text
Classification

Named
entity
recognitio
n

Supported
You can import unlabeled
data.

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Named Entity
Recognition

Text
triplet

Supported
You can import unlabeled
data.

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Text Triplet

Vide
o

Video
labeling

Supported
You can import unlabeled
data.

Supported
You can import unlabeled or
labeled data.
Format specifications of
labeled data: Video Labeling

Oth
er

Free
format

Supported
You can import unlabeled
data.

N/A

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 411

Dat
aset
Typ
e

Labeling
Type

From an OBS Path From a Manifest File

Tabl
e

Table Supported
You can also import data
from DWS, DLI, or MRS.
Follow the format
specifications described in
Tables.

N/A

7.4.2.2 Importing Data from an OBS Path

Prerequisites
● A dataset is available.
● The data to be imported is stored in OBS. The manifest file is stored in OBS.
● The OBS bucket and ModelArts are in the same region and you can operate

the bucket.

Importing File Data from an OBS Path
The parameters on the GUI for data import vary according to the dataset type.
The following uses a dataset of the image classification type as an example.

1. Log in to the ModelArts management console.. In the navigation pane,
choose Data Management > Datasets.

2. Locate the row that contains the desired dataset and click Import in the
Operation column. Alternatively, click the dataset name to go to the
Dashboard tab page of the dataset, and click Import in the upper right
corner.

3. In the Import dialog box, configure parameters as follows and click OK.
– Data Source: OBS
– Import Mode: Path
– Import Path: OBS path for storing data
– Labeling Status: Labeled
– Advanced Feature Settings: disabled by default

Import by Tag enables the system to automatically obtain the labels of
the current dataset. Click Add Label to add a label. This parameter is
optional. If Import by Tag is disabled, you can add or delete labels for
imported data when labeling data.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 412

https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard

Figure 7-18 Importing data from an OBS path

After the data is imported, it will be automatically synchronized to the
dataset. On the Datasets page, click the dataset name to view its details and
create a labeling job to label the data.

Labeling Status of File Data

The labeling status can be Unlabeled or Labeled.

● Unlabeled: Only the labeling object (such as unlabeled images or texts) is
imported.

● Labeled: Both the labeling object and content are imported. Labeling content
importing is not supported for datasets in free format.
To ensure that the labeling content can be correctly read, you must store data
in strict accordance with the specifications.
If Import Mode is set to Path, store the data to be imported according to the
labeling file specifications. For details, see Specifications for Importing Data
from an OBS Directory.
If Import Mode is set to manifest, the manifest file specifications must be
met.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 413

NO TE

● If the labeling status is set to Labeled, ensure that the folder or manifest file
complies with the format specifications. Otherwise, the import may fail.

● After the import of labeled data, check whether the imported data is in the labeled
state.

Importing a Table Dataset from OBS
ModelArts allows you to import table data (CSV files) from OBS.

Import description:

● The prerequisite for successful import is that the schema of the data source
must be the same as that specified during dataset creation. The schema
indicates column names and types of a table. Once specified during dataset
creation, the values cannot be changed.

● When a CSV file is imported from OBS, the data type is not validated, but the
number of columns must be the same as that in the schema of the dataset. If
the data format is invalid, the data is set to null. For details, see Table 7-4.

● You must select the directory where the CSV file is stored. The number of
columns in the CSV file must be the same as that in the dataset schema. The
schema of the CSV file can be automatically obtained.

├─dataset-import-example
│ table_import_1.csv
│ table_import_2.csv
│ table_import_3.csv
│ table_import_4.csv

7.4.2.3 Specifications for Importing Data from an OBS Directory
When importing data from OBS, the data storage directory and file name must
comply with the ModelArts specifications.

Only the following labeling types of data can be imported by Labeling Format:
image classification, object detection, image segmentation, text classification, and
sound classification.

A table dataset can import data from sources such as OBS, GaussDB(DWS), DLI,
and MRS.

NO TE

● To import data from an OBS directory, you must have the read permission on the OBS
directory.

● The OBS buckets and ModelArts must be in the same region.

Image Classification
Data for image classification can be stored in two formats:

● Format 1: ModelArts imageNet 1.0 (supporting a single label)
Images with the same label must be stored in the same directory, with the
label name as the directory name. If there are multiple levels of directories,
the last level is used as the label name.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 414

In the following example, Cat and Dog are label names.
dataset-import-example
├─Cat
│ 10.jpg
│ 11.jpg
│ 12.jpg
│
└─Dog
 1.jpg
 2.jpg
 3.jpg

● Format 2: ModelArts image classification 1.0 (supporting multiple labels)
The image and label files must be stored in the same directory, with the
content in the label file used as the label of the image.
In the following example, import-dir-1 and import-dir-2 are the imported
subdirectories:
dataset-import-example
├─import-dir-1
│ 10.jpg
│ 10.txt
│ 11.jpg
│ 11.txt
│ 12.jpg
│ 12.txt
└─import-dir-2
 1.jpg
 1.txt
 2.jpg
 2.txt

– The following shows a label file for a single label, for example, the 1.txt
file:
Cat

– The following shows a label file for multiple labels, for example, the 2.txt
file:
Cat
Dog

Only images in JPG, JPEG, PNG, and BMP formats are supported. The size of a
single image cannot exceed 5 MB, and the total size of all images uploaded at
a time cannot exceed 8 MB.

Object Detection
Data for object detection can be stored in two formats:

● ModelArts PASCAL VOC 1.0
The simple mode of object detection requires you to store labeled objects and
your label files (in one-to-one relationship with the labeled objects) in the
same directory. For example, if the name of the labeled object file is
IMG_20180919_114745.jpg, the name of the label file must be
IMG_20180919_114745.xml.
The label files must be in PASCAL VOC format. For details about the format,
see Table 7-14.
Example:
├─dataset-import-example
│ IMG_20180919_114732.jpg
│ IMG_20180919_114732.xml
│ IMG_20180919_114745.jpg

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 415

│ IMG_20180919_114745.xml
│ IMG_20180919_114945.jpg
│ IMG_20180919_114945.xml

A label file example is as follows:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<annotation>
 <folder>NA</folder>
 <filename>bike_1_1593531469339.png</filename>
 <source>
 <database>Unknown</database>
 </source>
 <size>
 <width>554</width>
 <height>606</height>
 <depth>3</depth>
 </size>
 <segmented>0</segmented>
 <object>
 <name>Dog</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <difficult>0</difficult>
 <occluded>0</occluded>
 <bndbox>
 <xmin>279</xmin>
 <ymin>52</ymin>
 <xmax>474</xmax>
 <ymax>278</ymax>
 </bndbox>
 </object>
 <object>
 <name>Cat</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <difficult>0</difficult>
 <occluded>0</occluded>
 <bndbox>
 <xmin>279</xmin>
 <ymin>198</ymin>
 <xmax>456</xmax>
 <ymax>421</ymax>
 </bndbox>
 </object>
</annotation>

Only images in JPG, JPEG, PNG, and BMP formats are supported. A single
image cannot exceed 5 MB, and the total size of all images uploaded at a
time cannot exceed 8 MB.

● YOLO:
A YOLO dataset must comply with the following structure:
For a YOLO dataset, all file names in the dataset cannot contain special
characters such as underscores (_). Otherwise, the training task may fail.
└─ yolo_dataset/
 │
 ├── obj.names # Label set file
 ├── obj.data # Files and relative paths for recording dataset information
 ├── train.txt # Relative path of images in the training set
 ├── valid.txt # Relative path of images in the validation set
 │
 ├── obj_train_data/ # Directory where the images in the training set and the corresponding label
files are stored
 │ ├── image1.txt # BBox label list for image 1
 │ ├── image1.jpg
 │ ├── image2.txt
 │ ├── image2.jpg
 │ ├── ...

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 416

 │
 ├── obj_valid_data/ # Directory where the images in the validation set and the corresponding
label files are stored
 │ ├── image101.txt
 │ ├── image101.jpg
 │ ├── image102.txt
 │ ├── image102.jpg
 │ ├── ...

A YOLO dataset supports only training sets and validation sets. If other sets
are imported, they will be invalid in the YOLO dataset.
– obj.data contains the following content and at least one of the train and

valid subsets must be contained. The file paths are relative paths.
classes = 5 # Optional
names = <path/to/obj.names># For example, obj.names
train = <path/to/train.txt># For example, train.txt
valid = <path/to/valid.txt># Optional, for example, valid.txt
backup = backup/ # Optional

– The obj.names file records the label list. Each row label is used as the file
index.
label1 # index of label 1: 0
label2 # index of label 2: 1
label3
...

– The file paths in train.txt and valid.txt are relative paths, and the file list
must be in one-to-one relationship with the files in the directories. The
file structures of the two files are as follows:
<path/to/image1.jpg># For example, obj_train_data/image.jpg
<path/to/image2.jpg># For example, obj_train_data/image.jpg
...

– The .txt files in the obj_train_data/ and obj_valid_data/ directories
contain the BBox label information of the corresponding images. Each
line indicates a BBox label.
image1.txt:
<label_index> <x_center> <y_center> <width> <height>
0 0.250000 0.400000 0.300000 0.400000
3 0.600000 0.400000 0.400000 0.266667

x_center, y_center, width, and height indicate the normalized
parameters for the target bounding box: the x-coordinate and y-
coordinate of the center point, width, and height.

Only images in JPG, JPEG, PNG, and BMP formats are supported. A single
image cannot exceed 5 MB, and the total size of all images uploaded at a
time cannot exceed 8 MB.

Image Segmentation
ModelArts image segmentation 1.0:

● Labeled objects and their label files (in one-to-one relationship with the
labeled objects) must be in the same directory. For example, if the name of
the labeled object file is IMG_20180919_114746.jpg, the name of the label
file must be IMG_20180919_114746.xml.
Fields mask_source and mask_color are added to the label file in PASCAL
VOC format. For details about the format, see Table 7-10.
Example:
├─dataset-import-example
│ IMG_20180919_114732.jpg
│ IMG_20180919_114732.xml

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 417

│ IMG_20180919_114745.jpg
│ IMG_20180919_114745.xml
│ IMG_20180919_114945.jpg
│ IMG_20180919_114945.xml

A label file example is as follows:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<annotation>
 <folder>NA</folder>
 <filename>image_0006.jpg</filename>
 <source>
 <database>Unknown</database>
 </source>
 <size>
 <width>230</width>
 <height>300</height>
 <depth>3</depth>
 </size>
 <segmented>1</segmented>
 <mask_source>obs://xianao/out/dataset-8153-Jmf5ylLjRmSacj9KevS/annotation/V001/
segmentationClassRaw/image_0006.png</mask_source>
 <object>
 <name>bike</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <difficult>0</difficult>
 <mask_color>193,243,53</mask_color>
 <occluded>0</occluded>
 <polygon>
 <x1>71</x1>
 <y1>48</y1>
 <x2>75</x2>
 <y2>73</y2>
 <x3>49</x3>
 <y3>69</y3>
 <x4>68</x4>
 <y4>92</y4>
 <x5>90</x5>
 <y5>101</y5>
 <x6>45</x6>
 <y6>110</y6>
 <x7>71</x7>
 <y7>48</y7>
 </polygon>
 </object>
</annotation>

Text Classification
txt and csv files can be imported for text classification, with the text encoding
format of UTF-8 or GBK.

Labeled objects and labels for text classification can be stored in two formats:

● ModelArts text classification combine 1.0: The labeled objects and labels for
text classification are in the same text file. You can specify a separator to
separate the labeled objects and labels, as well as multiple labels.
For example, the following shows an example text file. The Tab key is used to
separate the labeled objects from the labels.
It touches good and responds quickly. I don't know how it performs in the future. positive
Three months ago, I bought a very good phone and replaced my old one with it. It can operate longer
between charges. positive
Why does my phone heat up if I charge it for a while? The volume button stuck after being pressed
down. negative
It's a gift for Father's Day. The delivery is fast and I received it in 24 hours. I like the earphones
because the bass sounds feel good and they would not fall off. positive

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 418

● ModelArts text classification 1.0: The labeled objects and labels for text
classification are text files, and correspond to each other based on the rows.
For example, the first row in a label file indicates the label of the first row in
the file of the labeled object.
For example, the content of the labeled object
COMMENTS_20180919_114745.txt is as follows:
It touches good and responds quickly. I don't know how it performs in the future.
Three months ago, I bought a very good phone and replaced my old one with it. It can operate longer
between charges.
Why does my phone heat up if I charge it for a while? The volume button stuck after being pressed
down.
It's a gift for Father's Day. The delivery is fast and I received it in 24 hours. I like the earphones
because the bass sounds feel good and they would not fall off.

The content of the label file COMMENTS_20180919_114745_result.txt is as
follows:
positive
negative
negative
positive

This data format requires you to store labeled objects and your label files (in
one-to-one relationship with the labeled objects) in the same directory. For
example, if the name of the labeled object file is
COMMENTS_20180919_114745.txt, the name of the label file must be
COMMENTS _20180919_114745_result.txt.
Example of data files:
├─dataset-import-example
│ COMMENTS_20180919_114732.txt
│ COMMENTS _20180919_114732_result.txt
│ COMMENTS _20180919_114745.txt
│ COMMENTS _20180919_114745_result.txt
│ COMMENTS _20180919_114945.txt
│ COMMENTS _20180919_114945_result.txt

Sound Classification
ModelArts audio classification dir 1.0: Sound files with the same label must be
stored in the same directory, and the label name is the directory name.

Example:

dataset-import-example
├─Cat
│ 10.wav
│ 11.wav
│ 12.wav
│
└─Dog
 1.wav
 2.wav
 3.wav

Tables
CSV files can be imported from OBS. Select the directory where the files are
stored. The number of columns in the CSV file must be the same as that in the
dataset schema. The schema of the CSV file can be automatically obtained.

├─dataset-import-example
│ table_import_1.csv

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 419

│ table_import_2.csv
│ table_import_3.csv
│ table_import_4.csv

7.4.2.4 Importing a Manifest File

Prerequisites
● You have created a dataset.
● You have stored the data to be imported in OBS. You have stored the manifest

file in OBS.
● The OBS bucket and ModelArts are in the same region and you can operate

the bucket.

Importing File Data from a Manifest File
The parameters for data import vary according to the dataset type. The following
uses an image dataset as an example.

1. Log in to the ModelArts management console.. In the navigation pane,
choose Data Management > Datasets.

2. Locate the row that contains the desired dataset and click Import in the
Operation column. Alternatively, you can click the dataset name to go to the
Dashboard tab page of the dataset, and click Import in the upper right
corner.

3. In the Import dialog box, set the parameters as follows and click OK.
– Data Source: OBS
– Import Mode: manifest
– Manifest File: OBS path for storing the manifest file
– Labeling Status: Labeled
– Advanced Feature Settings: disabled by default

Import by Tag The system automatically obtains the labels of the
dataset. You can click Add Label to add a label. This parameter is
optional. If Import by Tag is disabled, you can add or delete labels for
imported data when labeling data.
Import Only Hard Examples: If this parameter is selected, only the hard
attribute data of the manifest file is imported.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 420

https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard

Figure 7-19 Importing a manifest file

After the data is imported, it will be automatically synchronized to the
dataset. On the Datasets page, click the dataset name to view its details and
create a labeling job to label the data.

Labeling Status of File Data

The labeling status can be Unlabeled or Labeled.

● Unlabeled: Only the labeling object (such as unlabeled images or texts) is
imported.

● Labeled: Both the labeling object and content are imported. Labeling content
importing is not supported for datasets in free format.
To ensure that the labeling content can be correctly read, you must store data
in strict accordance with the specifications.
– If Import Mode is set to Path, store the data to be imported according to

the labeling file specifications.
– If Import Mode is set to manifest, the manifest file specifications must

be met. For details, see Specifications for Importing a Manifest File.

NO TE

If the labeling status is set to Labeled, ensure that the folder or manifest file complies
with the format specifications. Otherwise, the import may fail.

7.4.2.5 Specifications for Importing a Manifest File

The manifest file defines the mapping between labeled objects and content. The
manifest file import mode means that the manifest file is used for dataset import.
The manifest file can be imported from OBS. When importing a manifest file from

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 421

OBS, ensure that you have the permissions to access the directory where the
manifest file is stored.

NO TE

There are many requirements on the manifest file compilation. Import new data from OBS.
Generally, manifest file import is used for data migration of ModelArts in different regions
or using different accounts. If you have labeled data in a region using ModelArts, you can
obtain the manifest file of the published dataset from the output path. Then you can
import the dataset using the manifest file to ModelArts of other regions or accounts. The
imported data carries the labeling information and does not need to be labeled again,
improving development efficiency.

The manifest file that contains information about the original file and labeling can
be used in labeling, training, and inference scenarios. The manifest file that
contains only information about the original file can be used in inference scenarios
or used to generate an unlabeled dataset. The manifest file must meet the
following requirements:

● The manifest file uses the UTF-8 encoding format.
● The manifest file uses the JSON Lines format (jsonlines.org). A line contains

one JSON object.
{"source": "/path/to/image1.jpg", "annotation": ... }
{"source": "/path/to/image2.jpg", "annotation": ... }
{"source": "/path/to/image3.jpg", "annotation": ... }

In the preceding example, the manifest file contains multiple lines of JSON
object.

● The manifest file can be generated by you, third-party tools, or ModelArts
Data Labeling. The file name can be any valid file name. To facilitate the
internal use of the ModelArts system, the file name generated by the
ModelArts data labeling function consists of the following strings:
DatasetName-VersionName.manifest. For example, animal-
v201901231130304123.manifest.

Image Classification
{
 "source":"s3://path/to/image1.jpg",
 "usage":"TRAIN",
 "hard":"true",
 "hard-coefficient":0.8,
 "id":"0162005993f8065ef47eefb59d1e4970",
 "annotation": [
 {
 "type": "modelarts/image_classification",
 "name": "cat",
 "property": {
 "color":"white",
 "kind":"Persian cat"
 },
 "hard":"true",
 "hard-coefficient":0.8,
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 },
 {
 "type": "modelarts/image_classification",
 "name":"animal",
 "annotated-by":"modelarts/active-learning",
 "confidence": 0.8,
 "creation-time":"2019-01-23 11:30:30"

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 422

 }],
 "inference-loc":"/path/to/inference-output"
}

Table 7-7 Parameters

Parameter Manda
tory

Description

source Yes URI of an object to be labeled. For details about data
source types and examples, see Table 7-8.

usage No By default, the parameter value is left blank. Possible
values are as follows:
● TRAIN: The object is used for training.
● EVAL: The object is used for evaluation.
● TEST: The object is used for testing.
● INFERENCE: The object is used for inference.
If the parameter value is left blank, you decide how
to use the object.

id No Sample ID exported from the system. You do not
need to set this parameter when importing the
sample.

annotation No If the parameter value is left blank, the object is not
labeled. The value of annotation consists of an
object list. For details about the parameters, see
Table 7-9.

inference-loc No This parameter is available when the file is
generated by the inference service, indicating the
location of the inference result file.

Table 7-8 Data source types

Type Example

OBS "source":"s3://path-to-jpg"

Content "source":"content://I love machine learning"

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 423

Table 7-9 annotation objects

Parameter Mandat
ory

Description

type Yes Label type. Possible values are as follows:
● image_classification: image classification
● text_classification: text classification
● text_entity: named entity recognition
● object_detection: object detection
● audio_classification: sound classification
● audio_content: speech labeling
● audio_segmentation: speech paragraph labeling

name Yes/No This parameter is mandatory for the classification
type but optional for other types. This example uses
the image classification type.

id Yes/No Label ID. This parameter is mandatory for triplets
but optional for other types. The entity label ID of a
triplet is in E+number format, for example, E1 and
E2. The relationship label ID of a triplet is in R
+number format, for example, R1 and R2.

property No Labeling property. In this example, the cat has two
properties: color and kind.

hard No Indicates whether the example is a hard example.
True indicates that the labeling example is a hard
example, and False indicates that the labeling
example is not a hard example.

annotated-by No The default value is human, indicating manual
labeling.
● human

creation-time No Time when the labeling job was created. It is the
time when labeling information was written, not
the time when the manifest file was generated.

confidence No Confidence score of machine labeling. The value
ranges from 0 to 1.

Image Segmentation
{
 "annotation": [{
 "annotation-format": "PASCAL VOC",
 "type": "modelarts/image_segmentation",
 "annotation-loc": "s3://path/to/annotation/image1.xml",
 "creation-time": "2020-12-16 21:36:27",
 "annotated-by": "human"
 }],
 "usage": "train",

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 424

 "source": "s3://path/to/image1.jpg",
 "id": "16d196c19bf61994d7deccafa435398c",
 "sample-type": 0
}

● The parameters such as source, usage, and annotation are the same as
those described in Image Classification. For details, see Table 7-7.

● annotation-loc indicates the path for saving the label file. This parameter is
mandatory for image segmentation and object detection but optional for
other labeling types.

● annotation-format indicates the format of the label file. This parameter is
optional. The default value is PASCAL VOC. Only PASCAL VOC is supported.

● sample-type indicates a sample format. Value 0 indicates image, 1 text, 2
audio, 4 table, and 6 video.

Table 7-10 PASCAL VOC format parameters

Parameter Mand
atory

Description

folder Yes Directory where the data source is located

filename Yes Name of the file to be labeled

size Yes Image pixel
● width: image width. This parameter is mandatory.
● height: image height. This parameter is

mandatory.
● depth: number of image channels. This parameter

is mandatory.

segmented Yes Segmented or not

mask_source No Segmentation mask path

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 425

Parameter Mand
atory

Description

object Yes Object detection information. Multiple object{}
functions are generated for multiple objects.
● name: type of the labeled content. This parameter

is mandatory.
● pose: shooting angle of the labeled content. This

parameter is mandatory.
● truncated: whether the labeled content is

truncated (0 indicates that the content is not
truncated). This parameter is mandatory.

● occluded: whether the labeled content is occluded
(0 indicates that the content is not occluded). This
parameter is mandatory.

● difficult: whether the labeled object is difficult to
identify (0 indicates that the object is easy to
identify). This parameter is mandatory.

● confidence: confidence score of the labeled object.
The value ranges from 0 to 1. This parameter is
optional.

● bndbox: bounding box type. This parameter is
mandatory. For details about the possible values,
see Table 7-11.

● mask_color: label color, which is represented by
the RGB value. This parameter is mandatory.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 426

Table 7-11 Bounding box types

Parameter Shape Labeling information

polygon Polygon Coordinates of points
<x1>100<x1>
<y1>100<y1>
<x2>200<x2>
<y2>100<y2>
<x3>250<x3>
<y3>150<y3>
<x4>200<x4>
<y4>200<y4>
<x5>100<x5>
<y5>200<y5>
<x6>50<x6>
<y6>150<y6>
<x7>100<x7>
<y7>100<y7>

Example:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<annotation>
 <folder>NA</folder>
 <filename>image_0006.jpg</filename>
 <source>
 <database>Unknown</database>
 </source>
 <size>
 <width>230</width>
 <height>300</height>
 <depth>3</depth>
 </size>
 <segmented>1</segmented>
 <mask_source>obs://xianao/out/dataset-8153-Jmf5ylLjRmSacj9KevS/annotation/V001/
segmentationClassRaw/image_0006.png</mask_source>
 <object>
 <name>bike</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <difficult>0</difficult>
 <mask_color>193,243,53</mask_color>
 <occluded>0</occluded>
 <polygon>
 <x1>71</x1>
 <y1>48</y1>
 <x2>75</x2>
 <y2>73</y2>
 <x3>49</x3>
 <y3>69</y3>
 <x4>68</x4>
 <y4>92</y4>
 <x5>90</x5>
 <y5>101</y5>
 <x6>45</x6>
 <y6>110</y6>

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 427

 <x7>71</x7>
 <y7>48</y7>
 </polygon>
 </object>
</annotation>

Text Classification
{
 "source": "content://I like this product ",
 "id":"XGDVGS",
 "annotation": [
 {
 "type": "modelarts/text_classification",
 "name": " positive",
 "annotated-by": "human",
 "creation-time": "2019-01-23 11:30:30"
 }]
}

The content parameter indicates the text to be labeled (in UTF-8 encoding
format, which can be Chinese). The other parameters are the same as those
described in Image Classification. For details, see Table 7-7.

Named Entity Recognition
{
 "source":"content://Michael Jordan is the most famous basketball player in the world.",
 "usage":"TRAIN",
 "annotation":[
 {
 "type":"modelarts/text_entity",
 "name":"Person",
 "property":{
 "@modelarts:start_index":0,
 "@modelarts:end_index":14
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 },
 {
 "type":"modelarts/text_entity",
 "name":"Category",
 "property":{
 "@modelarts:start_index":34,
 "@modelarts:end_index":44
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 }
]
}

The parameters such as source, usage, and annotation are the same as those
described in Image Classification. For details, see Table 7-7.

Table 7-12 describes the property parameters. For example, if you want to extract
Michael from "source":"content://Michael Jordan", the value of start_index is 0
and that of end_index is 7.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 428

Table 7-12 property parameters

Parameter Data type Description

@modelarts:start_in
dex

Integer Start position of the text. The value starts
from 0, including the characters specified
by start_index.

@modelarts:end_ind
ex

Integer End position of the text, excluding the
characters specified by end_index.

Text Triplet
{
 "source":"content://"Three Body" is a series of long science fiction novels created by Liu Cix.",
 "usage":"TRAIN",
 "annotation":[
 {
 "type":"modelarts/text_entity",
 "name":"Person",
 "id":"E1",
 "property":{
 "@modelarts:start_index":67,
 "@modelarts:end_index":74
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 },
 {
 "type":"modelarts/text_entity",
 "name":"Book",
 "id":"E2",
 "property":{
 "@modelarts:start_index":0,
 "@modelarts:end_index":12
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 },
 {
 "type":"modelarts/text_triplet",
 "name":"Author",
 "id":"R1",
 "property":{
 "@modelarts:from":"E1",
 "@modelarts:to":"E2"
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 },
 {
 "type":"modelarts/text_triplet",
 "name":"Works",
 "id":"R2",
 "property":{
 "@modelarts:from":"E2",
 "@modelarts:to":"E1"
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 }
]
}

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 429

The parameters such as source, usage, and annotation are the same as those
described in Image Classification. For details, see Table 7-7.

Table 5 property parameters describes the property parameters.
@modelarts:start_index and @modelarts:end_index are the same as those of
named entity recognition. For example, when source is set to content://"Three
Body" is a series of long science fiction novels created by Liu Cix., Liu Cix is an
entity person, Three Body is an entity book, the person is the author of the book,
and the book is works of the person.

Table 7-13 property parameters

Parameter Data type Description

@modelarts:start_in
dex

Integer Start position of the triplet entities. The
value starts from 0, including the
characters specified by start_index.

@modelarts:end_ind
ex

Integer End position of the triplet entities,
excluding the characters specified by
end_index.

@modelarts:from String Start entity ID of the triplet relationship.

@modelarts:to String Entity ID pointed to in the triplet
relationship.

Object Detection
{
 "source":"s3://path/to/image1.jpg",
 "usage":"TRAIN",
 "hard":"true",
 "hard-coefficient":0.8,
 "annotation": [
 {
 "type":"modelarts/object_detection",
 "annotation-loc": "s3://path/to/annotation1.xml",
 "annotation-format":"PASCAL VOC",
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 }]
}

● The parameters such as source, usage, and annotation are the same as
those described in Image Classification. For details, see Table 7-7.

● annotation-loc indicates the path for saving the label file. This parameter is
mandatory for object detection and image segmentation but optional for
other labeling types.

● annotation-format indicates the format of the label file. This parameter is
optional. The default value is PASCAL VOC. Only PASCAL VOC is supported.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 430

Table 7-14 PASCAL VOC format parameters

Parameter Mand
atory

Description

folder Yes Directory where the data source is located

filename Yes Name of the file to be labeled

size Yes Image pixel
● width: image width. This parameter is mandatory.
● height: image height. This parameter is

mandatory.
● depth: number of image channels. This parameter

is mandatory.

segmented Yes Segmented or not

object Yes Object detection information. Multiple object{}
functions are generated for multiple objects.
● name: type of the labeled content. This parameter

is mandatory.
● pose: shooting angle of the labeled content. This

parameter is mandatory.
● truncated: whether the labeled content is

truncated (0 indicates that the content is not
truncated). This parameter is mandatory.

● occluded: whether the labeled content is occluded
(0 indicates that the content is not occluded). This
parameter is mandatory.

● difficult: whether the labeled object is difficult to
identify (0 indicates that the object is easy to
identify). This parameter is mandatory.

● confidence: confidence score of the labeled object.
The value ranges from 0 to 1. This parameter is
optional.

● bndbox: bounding box type. This parameter is
mandatory. For details about the possible values,
see Table 7-15.

Table 7-15 Bounding box types

Parameter Shape Labeling information

point Point Coordinates of a point
<x>100<x>
<y>100<y>

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 431

Parameter Shape Labeling information

line Line Coordinates of points
<x1>100<x1>
<y1>100<y1>
<x2>200<x2>
<y2>200<y2>

bndbox Rectangle Coordinates of the upper left and lower
right points
<xmin>100<xmin>
<ymin>100<ymin>
<xmax>200<xmax>
<ymax>200<ymax>

polygon Polygon Coordinates of points
<x1>100<x1>
<y1>100<y1>
<x2>200<x2>
<y2>100<y2>
<x3>250<x3>
<y3>150<y3>
<x4>200<x4>
<y4>200<y4>
<x5>100<x5>
<y5>200<y5>
<x6>50<x6>
<y6>150<y6>

circle Circle Center coordinates and radius
<cx>100<cx>
<cy>100<cy>
<r>50<r>

Example:
<annotation>
 <folder>test_data</folder>
 <filename>260730932.jpg</filename>
 <size>
 <width>767</width>
 <height>959</height>
 <depth>3</depth>
 </size>
 <segmented>0</segmented>
 <object>
 <name>point</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 432

 <occluded>0</occluded>
 <difficult>0</difficult>
 <point>
 <x1>456</x1>
 <y1>596</y1>
 </point>
 </object>
 <object>
 <name>line</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <line>
 <x1>133</x1>
 <y1>651</y1>
 <x2>229</x2>
 <y2>561</y2>
 </line>
 </object>
 <object>
 <name>bag</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <bndbox>
 <xmin>108</xmin>
 <ymin>101</ymin>
 <xmax>251</xmax>
 <ymax>238</ymax>
 </bndbox>
 </object>
 <object>
 <name>boots</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <hard-coefficient>0.8</hard-coefficient>
 <polygon>
 <x1>373</x1>
 <y1>264</y1>
 <x2>500</x2>
 <y2>198</y2>
 <x3>437</x3>
 <y3>76</y3>
 <x4>310</x4>
 <y4>142</y4>
 </polygon>
 </object>
 <object>
 <name>circle</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <circle>
 <cx>405</cx>
 <cy>170</cy>
 <r>100<r>
 </circle>
 </object>
</annotation>

Sound Classification
{
"source":

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 433

"s3://path/to/pets.wav",
 "annotation": [
 {
 "type": "modelarts/audio_classification",
 "name":"cat",
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 }
]
}

The parameters such as source, usage, and annotation are the same as those
described in Image Classification. For details, see Table 7-7.

Speech Labeling
{
 "source":"s3://path/to/audio1.wav",
 "annotation":[
 {
 "type":"modelarts/audio_content",
 "property":{
 "@modelarts:content":"Today is a good day."
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 }
]
}

● The parameters such as source, usage, and annotation are the same as
those described in Image Classification. For details, see Table 7-7.

● The @modelarts:content parameter in property indicates speech content.
The data type is String.

Speech Paragraph Labeling
{
 "source":"s3://path/to/audio1.wav",
 "usage":"TRAIN",
 "annotation":[
 {

"type":"modelarts/audio_segmentation",
 "property":{
 "@modelarts:start_time":"00:01:10.123",
 "@modelarts:end_time":"00:01:15.456",

 "@modelarts:source":"Tom",

 "@modelarts:content":"How are you?"
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 },
 {
 "type":"modelarts/audio_segmentation",
 "property":{
 "@modelarts:start_time":"00:01:22.754",
 "@modelarts:end_time":"00:01:24.145",
 "@modelarts:source":"Jerry",
 "@modelarts:content":"I'm fine, thank you."
 },
 "annotated-by":"human",
 "creation-time":"2019-01-23 11:30:30"
 }
]
}

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 434

● The parameters such as source, usage, and annotation are the same as
those described in Image Classification. For details, see Table 7-7.

● Table 7-16 describes the property parameters.

Table 7-16 property parameters

Parameter Data type Description

@modelarts:start_
time

String Start time of the sound. The format is
hh:mm:ss.SSS.
hh indicates the hour, mm indicates the
minute, ss indicates the second, and SSS
indicates the millisecond.

@modelarts:end_t
ime

String End time of the sound. The format is
hh:mm:ss.SSS.
hh indicates the hour, mm indicates the
minute, ss indicates the second, and SSS
indicates the millisecond.

@modelarts:sourc
e

String Sound source

@modelarts:conte
nt

String Sound content

Video Labeling
{
 "annotation": [{
 "annotation-format": "PASCAL VOC",
 "type": "modelarts/object_detection",
 "annotation-loc": "s3://path/to/annotation1_t1.473722.xml",
 "creation-time": "2020-10-09 14:08:24",
 "annotated-by": "human"
 }],
 "usage": "train",
 "property": {
 "@modelarts:parent_duration": 8,
 "@modelarts:parent_source": "s3://path/to/annotation1.mp4",
 "@modelarts:time_in_video": 1.473722
 },
 "source": "s3://input/path/to/annotation1_t1.473722.jpg",
 "id": "43d88677c1e9a971eeb692a80534b5d5",
 "sample-type": 0
}

● The parameters such as source, usage, and annotation are the same as
those described in Image Classification. For details, see Table 7-7.

● annotation-loc indicates the path for saving the label file. This parameter is
mandatory for object detection but optional for other labeling types.

● annotation-format indicates the format of the label file. This parameter is
optional. The default value is PASCAL VOC. Only PASCAL VOC is supported.

● sample-type indicates a sample format. Value 0 indicates image, 1 text, 2
audio, 4 table, and 6 video.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 435

Table 7-17 property parameters

Parameter Data type Description

@modelarts:parent_
duration

Double Duration of the labeled video, in seconds

@modelarts:time_in
_video

Double Timestamp of the labeled video frame, in
seconds

@modelarts:parent_
source

String OBS path of the labeled video

Table 7-18 PASCAL VOC format parameters

Parameter Mand
atory

Description

folder Yes Directory where the data source is located

filename Yes Name of the file to be labeled

size Yes Image pixel
● width: image width. This parameter is mandatory.
● height: image height. This parameter is

mandatory.
● depth: number of image channels. This parameter

is mandatory.

segmented Yes Segmented or not

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 436

Parameter Mand
atory

Description

object Yes Object detection information. Multiple object{}
functions are generated for multiple objects.
● name: type of the labeled content. This parameter

is mandatory.
● pose: shooting angle of the labeled content. This

parameter is mandatory.
● truncated: whether the labeled content is

truncated (0 indicates that the content is not
truncated). This parameter is mandatory.

● occluded: whether the labeled content is occluded
(0 indicates that the content is not occluded). This
parameter is mandatory.

● difficult: whether the labeled object is difficult to
identify (0 indicates that the object is easy to
identify). This parameter is mandatory.

● confidence: confidence score of the labeled object.
The value ranges from 0 to 1. This parameter is
optional.

● bndbox: bounding box type. This parameter is
mandatory. For details about the possible values,
see Table 7-19.

Table 7-19 Bounding box types

Parameter Shape Labeling information

point Point Coordinates of a point
<x>100<x>
<y>100<y>

line Line Coordinates of points
<x1>100<x1>
<y1>100<y1>
<x2>200<x2>
<y2>200<y2>

bndbox Rectangle Coordinates of the upper left and lower
right points
<xmin>100<xmin>
<ymin>100<ymin>
<xmax>200<xmax>
<ymax>200<ymax>

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 437

Parameter Shape Labeling information

polygon Polygon Coordinates of points
<x1>100<x1>
<y1>100<y1>
<x2>200<x2>
<y2>100<y2>
<x3>250<x3>
<y3>150<y3>
<x4>200<x4>
<y4>200<y4>
<x5>100<x5>
<y5>200<y5>
<x6>50<x6>
<y6>150<y6>

circle Circle Center coordinates and radius
<cx>100<cx>
<cy>100<cy>
<r>50<r>

Example:
<annotation>
 <folder>test_data</folder>
 <filename>260730932_t1.473722.jpg.jpg</filename>
 <size>
 <width>767</width>
 <height>959</height>
 <depth>3</depth>
 </size>
 <segmented>0</segmented>
 <object>
 <name>point</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <point>
 <x1>456</x1>
 <y1>596</y1>
 </point>
 </object>
 <object>
 <name>line</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <line>
 <x1>133</x1>
 <y1>651</y1>
 <x2>229</x2>
 <y2>561</y2>
 </line>
 </object>

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 438

 <object>
 <name>bag</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <bndbox>
 <xmin>108</xmin>
 <ymin>101</ymin>
 <xmax>251</xmax>
 <ymax>238</ymax>
 </bndbox>
 </object>
 <object>
 <name>boots</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <hard-coefficient>0.8</hard-coefficient>
 <polygon>
 <x1>373</x1>
 <y1>264</y1>
 <x2>500</x2>
 <y2>198</y2>
 <x3>437</x3>
 <y3>76</y3>
 <x4>310</x4>
 <y4>142</y4>
 </polygon>
 </object>
 <object>
 <name>circle</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <occluded>0</occluded>
 <difficult>0</difficult>
 <circle>
 <cx>405</cx>
 <cy>170</cy>
 <r>100<r>
 </circle>
 </object>
</annotation>

7.4.3 Importing Data from DLI
Data importing from DLI is supported for table datasets.

To import data from DLI, select the DLI queue, database, and table name. The
schema (column name and type) of the selected table must be the same as that
of the dataset. The schema of the selected table can be automatically obtained.

● Queue Name: All DLI queues of the current account are automatically
displayed. Select the required queue from the drop-down list.

● Database Name: All databases are displayed based on the selected queue.
Select the required database from the drop-down list.

● Table Name: All tables in the selected database are displayed. Select the
required table from the drop-down list.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 439

NO TE

The default queue of DLI is used only for experience. Different accounts may preempt
resources. Therefore, resources need to be queued. You may not be able to obtain required
resources each time to perform related operations.

DLI supports schema mapping. That is, the schema field name of the imported table can be
different from that of the dataset, but the type must be the same.

7.4.4 Importing Data from MRS
To import data in CSV format stored on HDFS from MRS, select an existing MRS
cluster and select the file name or directory from the HDFS file list. The number of
columns in the imported file must be the same as that of the dataset schema.

Figure 7-20 Importing data from MRS

● Cluster Name: All MRS clusters of the current account are automatically
displayed. However, streaming clusters do not support data import. Select the
required cluster from the drop-down list.

● File Path: Enter the HDFS file path based on the selected cluster.
● Contain Table Header: If this setting is enabled, the imported file contains

table headers.

7.4.5 Importing Data from DWS
To import data from DWS, select a DWS cluster and enter the database name,
table name, username, and password. The schema (column name and type) of the
imported table must be the same as that of the dataset.

Figure 7-21 Importing data from DWS

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 440

● Cluster Name: All DWS clusters of the current account are automatically
displayed. Select the required DWS cluster from the drop-down list.

● Database Name: Enter the name of the database where the data is located
based on the selected DWS cluster.

● Table Name: Enter the name of the table where the data is located based on
the selected database.

● User Name: Enter the username of the DWS cluster administrator.
● Password: Enter the password of the DWS cluster administrator.

NO TE

To import data from DWS, use DLI functions. If you do not have the permission to access
DLI, create a DLI agency as prompted.

7.4.6 Importing Data from Local Files

Prerequisites
● You have created a dataset.
● You have created an OBS bucket. The OBS bucket and ModelArts are in the

same region and you can operate the bucket.

Import Operation
Both file and table data can be uploaded from local files. The data uploaded from
local files should be stored in an OBS directory. You must have created an OBS
bucket.

In a single batch upload, a maximum of 100 files can be uploaded at a time, and
the total size of the files cannot exceed 5 GB.

The parameters on the GUI for data import vary according to the dataset type.
The following uses a dataset of the image classification type as an example.

1. Log in to the ModelArts management console.. In the navigation pane,
choose Data Management > Datasets.

2. Locate the row that contains the desired dataset and click Import in the
Operation column.
Alternatively, you can click the dataset name to go to the Dashboard tab
page of the dataset, and click Import in the upper right corner.

3. In the Import dialog box, set the parameters as follows and click OK.
– Data Source: Local file
– Storage Path: Select an OBS path.
– Uploading Data: Click Upload data, upload local data, and click OK.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 441

https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard

Figure 7-22 Importing data from local files

7.5 Data Analysis and Preview
Generally, the quality of raw data cannot meet training requirements, for example,
invalid or duplicate data exists. To help you improve data quality, ModelArts
provides the following capabilities:

● Auto Grouping: pre-classifies data through clustering to allow you to label
data based on clustering results, which ensures that different labels have the
same or the almost same number of samples.

● Data Filtering: enables you to filter data based on sample attributes and
auto grouping results.

● Data Feature Analysis: analyzes data features or labeling results, such as the
brightness and bounding box distribution, helping you analyze data balance
and improve the model training effect.

7.5.1 Auto Grouping
To improve the precision of auto labeling algorithms, you can evenly label
multiple classes. ModelArts provides built-in grouping algorithms. You can enable
auto grouping to improve data labeling efficiency.

Auto grouping can be understood as data labeling preprocessing. Clustering
algorithms are used to cluster unlabeled images, and images are labeled or
cleaned by group based on the clustering result.

For example, a user searches for XX through a search engine, downloads and
uploads related images to the dataset, and then uses the auto grouping function
to classify XX images, such as papers, posters, images confirmed as XX, and others.
The user can quickly remove unwanted images from a group or select all images
of a type and add labels to the images.

NO TE

Only datasets of image classification, object detection, and image segmentation types
support the auto grouping function.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 442

Starting Auto Grouping Tasks
1. Log in to the ModelArts management console.. In the navigation pane,

choose Data Management > Label Data.
2. In the labeling job list, select a labeling job of the object detection or image

classification type and click the labeling job name to go to the labeling job
details page.

3. On the All statuses tab page of the dataset details page, choose Auto
Grouping > Start Task.

NO TE

You can start auto group tasks or view task history only on the All tab page.

4. In the displayed Auto Grouping dialog box, set parameters and click OK.
– Groups: Enter an integer from 2 to 200. The parameter value indicates

the number of groups into which images are divided.
– Result Processing Method: Select Update attribute or Save to OBS.
– Attribute Name: If you select Update attribute, you need to enter an

attribute name.
– Result Storage Path: If you select Save to OBS, specify an OBS path.
– Advanced Feature Settings: After this function is enabled, you can select

Clarity, Brightness, and Color dimensions for the auto grouping function
so that the grouping is based on the image brightness, color, and clarity.
You can select multiple options.

Figure 7-23 Auto grouping

5. After the task is submitted, the task progress is displayed in the upper right
corner of the page. After the task is complete, you can view the history of the
auto grouping tasks to learn task status.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 443

https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard

Viewing the Auto Grouping Result

On the All tab page of the dataset details page, expand Filter Criteria, set
Sample Attribute to the attribute name of the auto grouping task, and set the
sample attribute value to filter the grouping result.

Figure 7-24 Viewing the auto grouping result

Viewing Auto Grouping Task History

On the All tab page of the dataset details page, choose Auto Grouping > View
Task History. In the View Task History dialog box, basic information about the
auto grouping tasks of the current dataset is displayed.

Figure 7-25 Auto grouping task history

7.5.2 Data Filtering
On the Dashboard tab page of the dataset, the summary of the dataset is
displayed by default. In the upper right corner of the page, click Label. The
dataset details page is displayed, showing all data in the dataset by default. On
the All, Unlabeled, or Labeled tab page, you can add filter criteria in the filter
criteria area to quickly filter the data you want to view.

The following filter criteria are supported. You can set one or more filter criteria.

● Example Type: Select Hard example or Non-hard example.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 444

● Label: Select All or one or more labels you specified.
● Sample Creation Time: Select Within 1 month, Within 1 day, or Custom to

customize a time range.
● File Name or Path: Filter files by file name or file storage path.
● Labeled By: Select the name of the user who labeled the image.
● Sample Attribute: Select the attribute generated by auto grouping. This filter

criterion can be used only after auto grouping is enabled.
● Data Attribute: This criterion is not supported.

Figure 7-26 Filter criteria

7.5.3 Data Feature Analysis
Images or target bounding boxes are analyzed based on image features, such as
blurs and brightness to draw visualized curves to help process datasets.

You can also select multiple versions of a dataset to view their curves for
comparison and analysis.

Background
● Data feature analysis is only available for image datasets of the image

classification and object detection types.
● Data feature analysis is only available for the published datasets. The

published dataset versions in Default format support data feature analysis.
● A data scope for feature analysis varies depending on the dataset type.

– In a dataset of the object detection type, if the number of labeled
samples is 0, the View Data Feature tab page is unavailable and data
features are not displayed after a version is published. After the images
are labeled and the version is published, the data features of the labeled
images are displayed.

– In a dataset of the image classification type, if the number of labeled
samples is 0, the View Data Feature tab page is unavailable and data
features are not displayed after a version is published. After the images
are labeled and the version is published, the data features of all images
are displayed.

● The analysis result is valid only when the number of images in a dataset
reaches a certain level. Generally, more than 1,000 images are required.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 445

● Image classification supports the following data feature metrics: Resolution,
Aspect Ratio, Brightness, Saturation, Blur Score, and Colorfulness Object
detection supports all data feature metrics. Supported Data Feature Metrics
provides all data feature metrics supported by ModelArts.

Data Feature Analysis
1. Log in to the ModelArts management console.. In the navigation pane,

choose Data Management > Datasets.
2. Locate the target dataset, click More in the Operation column, and select

View Data Feature. The View Data Feature tab of the dataset is displayed.
You can also click a dataset name to go to the dataset page and click the
View Data Feature tab.

3. By default, feature analysis is not started for published datasets. You need to
manually start feature analysis tasks for each dataset version. On the View
Data Feature tab, click Analyze Features.

4. In the dialog box that is displayed, configure the dataset version for feature
analysis and click Yes to start analysis.
Version: Select a published version of the dataset.

Figure 7-27 Starting a data feature analysis task

5. After a data feature analysis task is started, it takes a certain period of time
to complete, depending on the data volume. If the selected version is
displayed in the Version drop-down list and can be selected, the analysis is
complete.

6. View the data feature analysis result.
Version: Select the version to be compared from the drop-down list You can
also select only one version.
Type: Select the type to be analyzed. The value can be all, train, eval, or
inference.
Data Feature Metric: Select metrics to be displayed from the drop-down list.
For details, see Supported Data Feature Metrics.
Then, the selected version and metrics are displayed on the page. The
displayed chart helps you understand data distribution for better data
processing.

7. View historical records of the analysis task.
After data feature analysis is complete, you can click Task History on the
right of the Data Features tab page to view historical analysis tasks and their
statuses in the dialog box that is displayed.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 446

https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard

Supported Data Feature Metrics

Table 7-20 Data feature metrics

Metric Description Explanation

Resolution Image resolution. An area
value is used as a
statistical value.

Metric analysis results are
used to check whether there
is an offset point. If an offset
point exists, you can resize or
delete the offset point.

Aspect Ratio An aspect ratio is a
proportional relationship
between an image's width
and height.

The chart of the metric is in
normal distribution, which is
generally used to compare
the difference between the
training set and the dataset
used in the real scenario.

Brightness Brightness is the
perception elicited by the
luminance of a visual
target. A larger value
indicates better image
brightness.

The chart of the metric is in
normal distribution. You can
determine whether the
brightness of the entire
dataset is high or low based
on the distribution center.
You can adjust the brightness
based on your application
scenario. For example, if the
application scenario is night,
the brightness should be
lower.

Saturation Color saturation of an
image. A larger value
indicates that the entire
image color is easier to
distinguish.

The chart of the metric is in
normal distribution, which is
generally used to compare
the difference between the
training set and the dataset
used in the real scenario.

Blur Score
Clarity

Image clarity, which is
calculated using the
Laplace operator. A larger
value indicates clearer
edges and higher clarity.

You can determine whether
the clarity meets the
requirements based on the
application scenario. For
example, if data is collected
from HD cameras, the clarity
must be higher. You can
sharpen or blur the dataset
and add noises to adjust the
clarity.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 447

Metric Description Explanation

Colorfulness Horizontal coordinate:
Colorfulness of an image.
A larger value indicates
richer colors.
Vertical coordinate:
Number of images

Colorfulness on the visual
sense, which is generally
used to compare the
difference between the
training set and the dataset
used in the real scenario.

Bounding Box
Number

Horizontal coordinate:
Number of bounding
boxes in an image
Vertical coordinate:
Number of images

It is difficult for a model to
detect a large number of
bounding boxes in an image.
Therefore, more images
containing many bounding
boxes are required for
training.

Std of Bounding
Boxes Area Per
Image
Standard Deviation
of Bounding Boxes
Per Image

Horizontal coordinate:
Standard deviation of
bounding boxes in an
image. If an image has
only one bounding box,
the standard deviation is
0. A larger standard
deviation indicates higher
bounding box size
variation in an image.
Vertical coordinate:
Number of images

It is difficult for a model to
detect a large number of
bounding boxes with
different sizes in an image.
You can add data for training
based on scenarios or delete
data if such scenarios do not
exist.

Aspect Ratio of
Bounding Boxes

Horizontal coordinate:
Aspect ratio of the target
bounding boxes
Vertical coordinate:
Number of bounding
boxes in all images

The chart of the metric is
generally in Poisson
distribution, which is closely
related to application
scenarios. This metric is
mainly used to compare the
differences between the
training set and the
validation set. For example, if
the training set is a
rectangle, the result will be
significantly affected if the
validation set is close to a
square.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 448

Metric Description Explanation

Area Ratio of
Bounding Boxes

Horizontal coordinate:
Area ratio of the target
bounding boxes, that is,
the ratio of the bounding
box area to the entire
image area. A larger value
indicates a higher ratio of
the object in the image.
Vertical coordinate:
Number of bounding
boxes in all images

The metric is used to
determine the distribution of
anchors used in the model. If
the target bounding box is
large, set the anchor to a
large value.

Marginalization
Value of Bounding
Boxes

Horizontal coordinate:
Marginalization degree,
that is, the ratio of the
distance between the
center point of the target
bounding box and the
center point of the image
to the total distance of the
image. A larger value
indicates that the object is
closer to the edge. (The
total distance of an image
is the distance from the
intersection point of a ray
(that starts from the
center point of the image
and passes through the
center point of the
bounding box) and the
image border to the
center point of the
image.)
Vertical coordinate:
Number of bounding
boxes in all images

Generally, the chart of the
metric is in normal
distribution. The metric is
used to determine whether
an object is at the edge of an
image. If a part of an object
is at the edge of an image,
you can add a dataset or do
not label the object.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 449

Metric Description Explanation

Overlap Score of
Bounding Boxes
Overlap Score of
Bounding Boxes

Horizontal coordinate:
Overlap degree, that is,
the part of a single
bounding box overlapped
by other bounding boxes.
The value ranges from 0
to 1. A larger value
indicates that more parts
are overlapped by other
bounding boxes.
Vertical coordinate:
Number of bounding
boxes in all images

The metric is used to
determine the overlapping
degree of objects to be
detected. Overlapped objects
are difficult to detect. You
can add a dataset or do not
label some objects based on
your needs.

Brightness of
Bounding Boxes
Brightness of
Bounding Boxes

Horizontal coordinate:
Brightness of the image in
the target bounding box.
A larger value indicates
brighter image.
Vertical coordinate:
Number of bounding
boxes in all images

Generally, the chart of the
metric is in normal
distribution. The metric is
used to determine the
brightness of an object to be
detected. In some special
scenarios, the brightness of
an object is low and may not
meet the requirements.

Blur Score of
Bounding Boxes
Clarity of Bounding
Boxes

Horizontal coordinate:
Clarity of the image in the
target bounding box. A
larger value indicates
higher image clarity.
Vertical coordinate:
Number of bounding
boxes in all images

The metric is used to
determine whether the
object to be detected is
blurred. For example, a
moving object may become
blurred during collection and
its data needs to be collected
again.

7.6 Labeling Data
Model training requires a large amount of labeled data. Therefore, before training
a model, label data. You can create a manual labeling job labeled by one person
or by a group of persons (team labeling), or enable auto labeling to quickly label
images. You can also modify existing labels, or delete them and re-label.

● Manual labeling: allows you to manually label data.
● Auto labeling: allows you to automatically label remaining data after a small

amount of data is manually labeled.
● Team labeling: allows you to perform collaborative labeling for a large

amount of data.

For details about data labeling, see Introduction to Data Labeling.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 450

7.7 Publishing Data

7.7.1 Introduction to Data Publishing
ModelArts distinguishes data of the same source according to versions processed
or labeled at different time, which facilitates the selection of dataset versions for
subsequent model building and development.

About Dataset Versions
● For a newly created dataset (before publishing), there is no dataset version

information. The dataset must be published before being used for model
development or training.

● The default naming rules of dataset versions are V001 and V002 in ascending
order. You can customize the version number during publishing.

● You can set any version to the current version. Then the details of the version
are displayed on the dataset details page.

● You can obtain the dataset in the manifest file format corresponding to each
dataset version based on the value of Storage Path. The dataset can be used
when you import data or filter hard examples.

● The version of a table dataset cannot be changed.

7.7.2 Publishing a Data Version
1. Log in to the ModelArts management console.. In the navigation pane,

choose Data Management > Datasets.

2. Locate the row containing the target dataset and click Publish in the
Operation column. Alternatively, click the dataset name to go to the
Dashboard tab page of the dataset, and click Publish in the upper right
corner.

3. In the displayed dialog box, set the parameters and click OK.

Table 7-21 Parameters for publishing a dataset

Parameter Description

Version The naming rules of V001 and V002 in ascending order are
used by default. A version name can be customized. Only
letters, digits, hyphens (-), and underscores (_) are allowed.

Format Only table datasets support version format setting. Available
values are CSV and CarbonData.
NOTE

If the exported CSV file contains any command starting with =, +, -,
or @, ModelArts automatically adds the Tab setting and escapes the
double quotation marks (") for security purposes.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 451

https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard

Parameter Description

Splitting Only image classification, object detection, text
classification, and sound classification datasets support data
splitting.
By default, this function is disabled. After this function is
enabled, set the training and validation ratios.
Enter a value ranging from 0 to 1 for Training Set Ratio.
After the training set ratio is set, the validation set ratio is
determined. The sum of the training set ratio and the
validation set ratio is 1.
NOTE

To ensure the model accuracy, you are advised to set the training set
ratio to 0.8 or 0.9.

The training set ratio is the ratio of sample data used for
model training. The validation set ratio is the ratio of the
sample data used for model validation. The training and
validation ratios affect the performance of training
templates.

Description Description of the current dataset version.

Hard
Example

Only image classification and object detection datasets
support hard example attributes.
By default, this function is disabled. After this function is
enabled, information such as the hard example attributes of
the dataset are written to the corresponding manifest file.

Directory Structure of Dataset Versions
Datasets are managed based on OBS directories. After a new version is published,
the directory is generated based on the new version in the output dataset path.

Take an image classification dataset as an example. After the dataset is published,
the directory structure of related files generated in OBS is as follows:

|-- user-specified-output-path
 |-- DatasetName-datasetId
 |-- annotation
 |-- VersionMame1
 |-- VersionMame1.manifest
 |-- VersionMame2
 ...
 |-- ...

The following uses object detection as an example. If a manifest file is imported to
the dataset, the following provides the directory structure of related files after the
dataset is published:

|-- user-specified-output-path
 |-- DatasetName-datasetId
 |-- annotation
 |-- VersionMame1
 |-- VersionMame1.manifest
 |-- annotation
 |-- file1.xml

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 452

 |-- VersionMame2
 ...
 |-- ...

Take video labeling as an example. After the dataset is published, the labeling
result file (XML) is stored in the dataset output directory.

|-- user-specified-output-path
 |-- DatasetName-datasetId
 |-- annotation
 |-- VersionMame1
 |-- VersionMame1.manifest
 |-- annotations
 |-- images
 |-- videoName1
 |-- videoName1.timestamp.xml
 |-- videoName2
 |-- videoName2.timestamp.xml
 |-- VersionMame2
 ...
 |-- ...

The key frames for video labeling are stored in the dataset input directory.

|-- user-specified-input-path
 |-- images
 |-- videoName1
 |-- videoName1.timestamp.jpg
 |-- videoName2
 |-- videoName2.timestamp.jpg

7.7.3 Managing Data Versions
During data preparation, you can publish data into multiple versions for dataset
management. You can view version updates, set the current version, and delete
versions.

Viewing Dataset Version Updates
1. Log in to the ModelArts management console.. In the navigation pane,

choose Data Management > Datasets.

2. In the dataset list, choose More > Manage Version in the Operation column.
The Manage Version tab page is displayed.

You can view basic information about the dataset, and view the versions and
publish time on the left.

Setting to Current Version
1. Log in to the ModelArts management console.. In the navigation pane,

choose Data Management > Datasets.

2. In the dataset list, choose More > Manage Version in the Operation column.
The Manage Version tab page is displayed.

3. On the Manage Version tab page, select the desired dataset version, and
click Set to Current Version in the basic information area on the right. After
the setting is complete, Current version is displayed to the right of the
version name.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 453

https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard
https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard

Figure 7-28 Setting to current version

NO TE

Only the version in Normal status can be set to the current version.

Deleting a Dataset Version
1. Log in to the ModelArts management console.. In the navigation pane,

choose Data Management > Datasets.
2. In the dataset list, choose More > Manage Version in the Operation column.

The Manage Version tab page is displayed.
3. Locate the row that contains the target version, and click Delete in the

Operation column. In the dialog box that is displayed, click OK.

NO TE

Deleting a dataset version does not remove the original data. Data and its labeling
information are still stored in the OBS directory. However, this affects version
management. Exercise caution when performing this operation.

7.8 Exporting Data

7.8.1 Introduction to Exporting Data
You can select data or filter data based on the filter criteria in a dataset and
export to a new dataset or the specified OBS path. The historical export records
can be viewed in task history.

Only datasets of image classification, object detection, and image segmentation
types can be exported.

● For image classification datasets, only the label files in TXT format can be
exported.

● For object detection datasets, only XML label files in Pascal VOC format can
be exported.

● For image segmentation datasets, only XML label files in Pascal VOC format
and mask images can be exported.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 454

https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard

7.8.2 Exporting Data to a New Dataset
1. Log in to the ModelArts management console.. In the navigation pane,

choose Data Management > Datasets.
2. In the dataset list, select an image dataset and click the dataset name to go

to the Dashboard tab page of the dataset.
3. Click Export in the upper right corner. In the displayed Export To dialog box,

enter the related information and click OK.
Data Source: Select New Dataset.
Name: name of the new dataset
Storage Path: input path of the new dataset, that is, the OBS path where the
data to be exported is stored
Output Path: output path of the new dataset, that is, the output path after
labeling is complete The output path cannot be the same as the storage path,
and the output path cannot be a subdirectory of the storage path.

Figure 7-29 Exporting to a new dataset

4. After the data is exported, view it in the specified path. After the data is
exported, you can view the new dataset in the dataset list.

5. On the Dashboard tab page, click Export History in the upper right corner. In
the displayed dialog box, view the task history of the dataset.

7.8.3 Exporting Data to OBS
1. Log in to the ModelArts management console.. In the navigation pane,

choose Data Management > Datasets.
2. In the dataset list, select an image dataset and click the dataset name to go

to the Dashboard tab page of the dataset.
3. Click Export in the upper right corner. In the displayed Export To dialog box,

enter the related information and click OK.
Data Source: Select OBS.
Storage Path: path where the data to be exported is stored. You are advised
not to save data to the input or output path of the current dataset.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 455

https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard
https://console-intl.huaweicloud.com/modelarts/?region=ap-southeast-1&locale=en-us#/dashboard

Figure 7-30 Exporting data to OBS

4. After the data is exported, view it in the specified path.
5. On the Dashboard tab page, click Export History in the upper right corner. In

the displayed dialog box, view the task history of the dataset.

Figure 7-31 Viewing the task history

7.9 Introduction to Data Labeling
NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management, you are advised to submit a service ticket to
obtain the permissions.

Model training requires a large amount of labeled data. Therefore, before training
a model, label data. ModelArts provides you with the following labeling functions:

● Manual Labeling: allows you to manually label data.
● Auto Labeling: allows you to automatically label remaining data after a

small amount of data is manually labeled.
● Team Labeling: allows you to perform collaborative labeling for a large

amount of data.

Manual Labeling
Create a labeling job based on the dataset type. ModelArts supports the following
types of labeling jobs:

● Images
– Image classification: identifies a class of objects in images.
– Object detection: identifies the position and class of each object in an

image.
– Image segmentation: segments an image into different areas based on

objects in the image.
● Audio

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 456

– Sound classification: classifies and identifies different sounds.

– Speech labeling: labels speech content.

– Speech paragraph labeling: segments and labels speech content.

● Text

– Text classification: assigns labels to text according to its content.

– Named entity recognition: assigns labels to named entities in text, such
as time and locations.

– Text triplet: assigns labels to entity segments and entity relationships in
the text.

● Video

Video labeling: identifies the position and class of each object in a video. Only
the MP4 format is supported.

Auto Labeling

In addition to manual labeling, ModelArts also provides the auto labeling function
to quickly label data, reducing the labeling time by more than 70%. Auto labeling
means learning and training are performed based on the labeled images and an
existing model is used to quickly label the remaining images.

Only datasets of image classification and object detection types support the auto
labeling function.

Team Labeling

Generally, a small data labeling task can be completed by an individual. However,
team work is required to label a large dataset. ModelArts provides the team
labeling function. A labeling team can be formed to manage labeling for the same
dataset.

The team labeling function supports only datasets for image classification, object
detection, text classification, named entity recognition, text triplet, and speech
paragraph labeling.

Dataset Functions

Dataset functions vary depending on dataset types. For details, see Table 7-22.

Table 7-22 Functions supported by different types of datasets

Datas
et
Type

Labeling
Type

Manual
Labeling

Auto Labeling Team Labeling

Image
s

Image
classification

Supported Supported Supported

Object
detection

Supported Supported Supported

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 457

Datas
et
Type

Labeling
Type

Manual
Labeling

Auto Labeling Team Labeling

Image
segmentation

Supported N/A N/A

Audio Sound
classification

Supported N/A N/A

Speech
labeling

Supported N/A N/A

Speech
paragraph
labeling

Supported N/A Supported

Text Text
classification

Supported N/A Supported

Named entity
recognition

Supported N/A Supported

Text triplet Supported N/A Supported

Video Video
labeling

Supported N/A N/A

Free
format

N/A N/A N/A N/A

Table N/A N/A N/A N/A

7.10 Manual Labeling

7.10.1 Creating a Labeling Job
Model training requires a large amount of labeled data. Therefore, before training
a model, label data. You can create a manual labeling job labeled by one person
or by a group of persons (team labeling), or enable auto labeling to quickly label
images. You can also modify existing labels, or delete them and re-label.

Labeling Job Types

Create a labeling job based on the dataset type. ModelArts supports the following
types of labeling jobs:

● Images

– Image classification: identifies a class of objects in images.

– Object detection: identifies the position and class of each object in an
image.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 458

– Image segmentation: segments an image into different areas based on
objects in the image.

● Audio
– Sound classification: classifies and identifies different sounds.
– Speech labeling: labels speech content.
– Speech paragraph labeling: segments and labels speech content.

● Text
– Text classification: assigns labels to text according to its content.
– Named entity recognition: assigns labels to named entities in text, such

as time and locations.
– Text triplet: assigns labels to entity segments and entity relationships in

the text.
● Videos

Video labeling: identifies the position and class of each object in a video. Only
the MP4 format is supported.

Prerequisites
Before labeling data, create a dataset.

Procedure
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management, you are advised to submit a service ticket to
obtain the permissions.

2. On the Data Labeling page, click Create Labeling Job in the upper right
corner. On the page that is displayed, create a labeling job.

a. Enter basic information about the labeling job, including Name and
Description.

Figure 7-32 Basic information about a labeling job

b. Select a labeling scene and type as required.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 459

Figure 7-33 Selecting a labeling scene and type

c. Set the parameters based on the labeling job type. For details, see the
parameters of the following labeling job types:

▪ Images (Image Classification, Image Segmentation, and Object
Detection)

▪ Audio (Sound Classification, Speech Labeling, and Speech
Paragraph Labeling)

▪ Text (Text Classification, Named Entity Recognition, and Text
Triplet)

▪ Videos

d. Click Create in the lower right corner of the page.
After the labeling job is created, the data labeling management page is
displayed. You can perform the following operations on the labeling job:
start auto labeling, publish new versions, modify the labeling job, and
delete the labeling job.

Images (Image Classification, Image Segmentation, and Object Detection)

Figure 7-34 Parameters of labeling jobs for image classification and object
detection

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 460

Table 7-23 Parameters of an image labeling job

Parameter Description

Dataset
Name

Select a dataset that supports the labeling type.

Label Set ● Label name: Enter a label name with 1 to 1024 characters.
● Add Label: Click Add Label to add one or more labels.
● Label color: Set label colors for object detection and image

segmentation labeling jobs. Select a color from the color
palette on the right of a label, or enter the hexadecimal color
code to set the color.

● Add Label Attribute: For an object detection labeling job, you
can click the plus sign (+) on the right to add label attributes
after setting a label color. Label attributes are used to
distinguish different attributes of the objects with the same
label. For example, yellow kittens and black kittens have the
same label cat and their label attribute is color.

Team
Labeling

Enable or disable team labeling. Image segmentation does not
support team labeling. Therefore, this parameter is unavailable
when you use image segmentation.
After enabling team labeling, enter the type of the team labeling
job, and select the labeling team and team members. For details
about the parameter settings, see Creating a Team Labeling Job.
Before enabling team labeling, ensure that you have added a
team and members on the Labeling Teams page. If no labeling
team is available, click the link on the page to go to the Labeling
Teams page, and add your team and members. For details, see
Adding a Team.
After a dataset is created with team labeling enabled, you can
view the Team Labeling mark in Labeling Type.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 461

Audio (Sound Classification, Speech Labeling, and Speech Paragraph
Labeling)

Figure 7-35 Parameters of labeling jobs for sound classification, speech labeling,
and speech paragraph labeling

Table 7-24 Parameters of an audio labeling job

Parameter Description

Dataset Name Select a dataset that supports the labeling type.

Label Set (for
sound
classification)

You can add a label set for labeling jobs of sound
classification.
● Label name: Enter 1 to 1024 characters in the Label Set

text box.
● Add Label: Click Add Label to add one or more labels.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 462

Parameter Description

Label
Management
(for speech
paragraph
labeling)

Label management is available for speech paragraph labeling.
● Single Label

A single label is used to label a piece of audio that has only
one class.
– Label: Enter a label name, with 1 to 1024 characters.
– Label Color: Set the label color in the Label Color

column. You can select a color from the color palette or
enter a hexadecimal color code to set the color.

● Multiple Labels
Multiple labels are suitable for multi-dimensional labeling.
For example, you can label a piece of audio as both noise
and speech. For speech, you can label the audio with
different speakers. You can click Add Label Class to add
multiple label classes. A label class can contain multiple
labels. The label class or name contains 1 to 256
characters. Only letters, digits, periods (.), underscores (_),
and hyphens (-) are allowed.
– Add Label Class: Enter a label class.
– Label: Enter a label name.
– Add Label: Click Add Label to add one or more labels.

Speech
Labeling (for
speech
paragraph
labeling)

Only datasets for speech paragraph labeling support speech
labeling. By default, speech labeling is disabled. If this function
is enabled, you can label speech content.

Team Labeling
(for speech
paragraph
labeling)

Only datasets of speech paragraph labeling support team
labeling.
After enabling team labeling, enter the type of the team
labeling job, and select the labeling team and team members.
For details about the parameter settings, see Creating a Team
Labeling Job.
Before enabling team labeling, ensure that you have added a
team and members on the Labeling Teams page. If no
labeling team is available, click the link on the page to go to
the Labeling Teams page, and add your team and members.
For details, see Adding a Team.
After a dataset is created with team labeling enabled, you can
view the Team Labeling mark in Labeling Type.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 463

Text (Text Classification, Named Entity Recognition, and Text Triplet)

Figure 7-36 Parameters of labeling jobs for text classification, named entity
recognition, and text triplet

Table 7-25 Parameters of a text labeling job

Parameter Description

Dataset Name Select a dataset that supports the labeling type.

Label Set (for
text
classification
and named
entity
recognition)

● Label name: Enter a label name, with 1 to 1024 characters.
● Add Label: Click Add Label to add one or more labels.
● Label color: Select a color from the color palette or enter

the hexadecimal color code to set the color.

Figure 7-37 Setting the label color

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 464

Parameter Description

Label Set (for
text triplet)

For datasets of the text triplet type, set entity labels and
relationship labels.
● Entity Label: Set the label name and label color. You can

click the plus sign (+) on the right of the color area to add
multiple labels.

● Relationship Label: a relationship between two entities.
Set the source entity and target entity. Therefore, add at
least two entity labels before adding a relationship label.

Figure 7-38 Adding a label

Team Labeling Enable or disable team labeling.
After enabling team labeling, enter the type of the team
labeling job, and select the labeling team and team members.
For details about the parameter settings, see Creating a Team
Labeling Job.
Before enabling team labeling, ensure that you have added a
team and members on the Labeling Teams page. If no
labeling team is available, click the link on the page to go to
the Labeling Teams page, and add your team and members.
For details, see Adding a Team.
After a dataset is created with team labeling enabled, you can
view the Team Labeling mark in Labeling Type.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 465

Videos

Figure 7-39 Parameters of a video labeling job

Table 7-26 Parameters of a video labeling job

Parameter Description

Dataset Name Select a dataset that supports the labeling type.

Label Set ● Label name: Enter a label name, with 1 to 1024 characters.
● Add Label: Click Add Label to add one or more labels.
● Label color: Select a color from the color palette or enter

the hexadecimal color code to set the color.

7.10.2 Image Labeling

7.10.2.1 Image Classification

Training a model uses a large number of labeled images. Therefore, label images
before the model training. You can add labels to images by manual labeling or
auto labeling. In addition, you can modify the labels of images, or remove their
labels and label the images again.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 466

Before labeling an image in image classification scenarios, pay attention to the
following:

● You can add multiple labels to an image.
● A label name can contain a maximum of 1024 characters, including letters,

digits, hyphens (-), and underscores (_).

Starting Labeling
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management, you are advised to submit a service ticket to
obtain the permissions.

2. On the right of the labeling job list, select a labeling type from the job type
drop-down list. Click the job to be performed based on the labeling type. The
details page of the job is displayed.

Figure 7-40 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data
ModelArts automatically synchronizes data and labeling information from
datasets to labeling jobs.

To quickly obtain the latest data in a dataset, on the All statuses, Unlabeled, or
Labeled tab page of the labeling job details page, click Synchronize New Data.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 467

NO TE

Symptom:

After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.

Possible causes:

Automatic encryption is enabled in the OBS bucket.

Solution:

Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Filtering Data

On the All statuses, Unlabeled, or tab page, click in the filter criteria area and
add filter criteria to quickly filter the data you want to view.

The following filter criteria are available. You can set one or more filter criteria.

● Example Type: Select Hard example or Non-hard example.
● Label: Select All or one or more labels you specified.
● File Name or Path: Filter files by file name or file storage path.
● Labeled By: Select the name of the user who labeled the image.
● Sample Attribute: Select the attribute generated by auto grouping. This filter

criterion can be used only after auto grouping is enabled.
● Data Attribute: Select All or Inference to filter the data source.

Figure 7-41 Filter criteria

Manually Labeling Images

The labeling job details page displays the All statuses, Unlabeled, and Labeled
tab pages. The Unlabeled tab page is displayed by default. Click an image to
preview it. For the images that have been labeled, the label information is
displayed at the bottom of the preview page.

1. On the Unlabeled tab page, select the images to be labeled.
– Manual selection: In the image list, click the selection box in the upper

left corner of an image to enter the selection mode, indicating that the
image is selected. You can select multiple images of the same type and
add labels to them together.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 468

– Batch selection: If all the images on the current page of the image list
belong to the same type, you can click Select Images on Current Page
in the upper right corner to select all the images on the current page.

2. Add labels to the selected images.

a. In the label adding area on the right, set a label in the Label text box.
Click the Label text box and select an existing label from the drop-down
list. If the existing labels cannot meet the requirements, input a label in
the text box.

b. Click OK. The selected images are automatically moved to the Labeled
tab page. On the Unlabeled and All statuses tab pages, the labeling
information is updated along with the labeling process, including the
added label names and the number of images for each label.

Figure 7-42 Adding a label

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 469

NO TE

For details about how to label data, see Labeling Description on the dataset details
page.
1. Log in to the ModelArts management console. In the navigation pane on the left,

choose Data Management > Label Data. The Data Labeling page is displayed.
2. On the My Creations or My Participations tab page, find the dataset to be

labeled.
3. Click the dataset name. The labeling details page is displayed. (By default, the

Unlabeled tab page is displayed.)
4. In the upper right corner of the labeling details page, click Labeling Description.

Figure 7-43 Labeling Description

Viewing Labeled Images
On the labeling job details page, click the Labeled tab to view the list of labeled
images. By default, the corresponding labels are displayed under the image
thumbnails. You can also select an image and view the label information of the
image in the Labels of Selected Images area on the right.

Modifying Labeled Data
After labeling data, you can modify labeled data on the Labeled tab page.
● Modifying based on images

On the labeling job details page, click the Labeled tab, and select one or
more images to be modified from the image list. Modify the image
information in the label information area on the right.
Modifying a label: In the Labels of Selected Images area, click the edit icon
in the Operation column, enter the correct label name in the text box, and
click the check mark to complete the modification.
Deleting a label: In the Labels of Selected Images area, click the delete icon
in the Operation column to delete the label. This operation deletes only the
labels added to the selected image.

Figure 7-44 Modifying a label

● Modifying based on labels
– On the labeling job details page, click Label Management. All labels are

displayed on the list.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 470

▪ Modifying a label: Click Modify in the Operation column. In the
dialog box that is displayed, enter a new label name and click OK.
After the modification, the images with the label added will use the
new label name.

▪ Deleting a label: Click Delete in the Operation column to delete the
label from all images with the label added.

Figure 7-45 Label management

Figure 7-46 All labels

– Click Label in the Operation column of the target labeling job to go to
the label management page.

▪ Click Modify in the Operation column of the target label to modify
it.

▪ Click Delete in the Operation column of the target label to delete it.

Adding Data
In addition to the data automatically synchronized from datasets, you can directly
add images to labeling jobs for labeling. The added data is first imported to the
dataset associated with the labeling job. Then, the labeling job automatically
synchronizes the latest data from the dataset.

1. On the labeling job details page, click All statuses, Labeled, or Unlabeled
tab, click Add data in the upper left corner.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 471

Figure 7-47 Adding data

2. Configure the data source, import mode, import path, and labeling status.

Figure 7-48 Adding images

3. Click OK.
The images you have added will be automatically displayed in the image list
on the All statuses tab page. You can choose Add data > View historical
records to view task history.

Figure 7-49 Viewing historical data

Deleting Images
You can quickly delete the images you want to discard.

On the All statuses, Unlabeled, or Labeled tab page, select the images to be
deleted or click Select Images on Current Page, and click Delete. In the displayed

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 472

dialog box, select or deselect Delete the source files from OBS as required. After
confirmation, click Yes to delete the images.

Figure 7-50 Deleting Images

If a tick is displayed in the upper left corner of an image, the image is selected. If
no image is selected on the page, the Delete button is unavailable.

NO TE

If you select Delete the source files from OBS, images stored in the OBS directory will be
deleted accordingly. This operation may affect other dataset versions or datasets using
those files, for example, leading to an error in page display, training, or inference. Deleted
data cannot be recovered. Exercise caution when performing this operation.

Managing Annotators
If team labeling is enabled for a labeling job, view its labeling details on the
Annotator Management tab page. Additionally, you can add, modify, or delete
annotators.

1. Choose Data Management > Label Data. On the My Creations tab page,
view the list of all labeling jobs.

2. Locate the row that contains the target team labeling job. (The name of a
team labeling job is followed by .)

3. Choose More > Annotator Management in the Operation column.
Alternatively, click the job name to go to the job details page, and choose
Team Labeling > Annotator Management in the upper right corner.

Figure 7-51 Annotator management (1)

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 473

Figure 7-52 Annotator management (2)

● Adding an annotator

Click Add Member, select a member name, and click OK.

Click Send Email in the Operation column to send the labeling job to the
annotator by email.

● Modifying annotator information

Click Modify in the Operation column to modify the role of the annotator.

● Deleting an annotator

Click Delete in the Operation column to delete the annotator.

7.10.2.2 Object Detection

Training a model uses a large number of labeled images. Therefore, label images
before the model training. You can add labels to images by manual labeling or
auto labeling. In addition, you can modify the labels of images, or remove their
labels and label the images again.

Before labeling an image in object detection scenarios, pay attention to the
following:

● All target objects in the image must be labeled.

● Target objects are clear without any blocking and contained within bounding
boxes.

● Only the entire object must be contained within a bounding box. The
bounding box contains the entire object. The edge of the bounding box
cannot intersect the edge outline of the object to be labeled. Ensure that
there is no gap between the edge and the object to be labeled to prevent the
background from interfering with the model training.

Starting Labeling
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 474

NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management, you are advised to submit a service ticket to
obtain the permissions.

2. In the labeling job list, select a labeling type from the All type drop-down list,
click the job to be performed based on the labeling type. The details page of
the job is displayed.

Figure 7-53 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data
ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in a dataset, on the All statuses, Unlabeled, or
Labeled tab page of the labeling job details page, click Synchronize New Data.

NO TE

Symptom:
After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.
Possible causes:
Automatic encryption is enabled in the OBS bucket.
Solution:
Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 475

Filtering Data

On the All statuses, Unlabeled, or tab page, click in the filter criteria area
and add filter criteria to quickly filter the data you want to view.

The following filter criteria are available. You can set one or more filter criteria.

● Example Type: Select Hard example or Non-hard example.
● Label: Select All or one or more labels you specified.
● File Name or Path: Filter files by file name or file storage path.
● Labeled By: Select the name of the user who labeled the image.
● Sample Attribute: Select the attribute generated by auto grouping. This filter

criterion can be used only after auto grouping is enabled.
● Data Attribute: Select All or Inference to filter the data source.

Figure 7-54 Filter criteria

Manually Labeling Images

The labeling job details page displays the All statuses, Unlabeled, and Labeled
tab pages. The Unlabeled tab page is displayed by default.

1. On the Unlabeled tab page, click an image. The system automatically directs
you to the page for labeling the image. For details about how to use common
buttons on this page, see Table 7-28.

2. In the tool bar, select a proper labeling shape. The default labeling shape is a
rectangle. In this example, the rectangle is used for labeling.

NO TE

In the tool bar, multiple tools are provided for you to label images. After you select a
shape to label the first image, the shape automatically applies to subsequent images.
You can switch the shape as required.

Table 7-27 Supported bounding box

Icon Description

Rectangle. You can also press 1. Click the edge of the
upper left corner of the object to be labeled. A rectangle
will be displayed. Drag the rectangle to cover the object
and click to label the object.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 476

Icon Description

Polygon. You can also press 2. In the area where the object
to be labeled is located, click to label a point, move the
mouse and click multiple points along the edge of the
object, and then click the first point again. All the points
form a polygon. In this way, the object to be labeled is
within the bounding box.

Round. You can also press 3. Click the center point of an
object, and move the mouse to draw a circle to cover the
object and click to label the object.

Straight. You can also press 4. Click to specify the start and
end points of an object, and move the mouse to draw a
straight line to cover the object and click to label the
object.

Dashed line. You can also press 5. Click to specify the start
and end points of an object, and move the mouse to draw
a dashed line to cover the object and click to label the
object.

Dot. You can also press 6. Click the object in an image to
label a point.

3. In the Add Label text box, enter a new label name, select the label color, and
click Add. Alternatively, select an existing label from the drop-down list.

Label all objects in an image. Multiple labels can be added to an image. After
labeling an image, click the right arrow (or press D) in the upper right corner
of the image to switch to the next image and label the image.

Figure 7-55 Adding an object detection label

4. Click Back to Data Labeling Preview in the upper left part of the page to
view the labeling information. In the dialog box that is displayed, click Yes to
save the labeling settings.

The selected images are automatically moved to the Labeled tab page. On
the Unlabeled and All statuses tab pages, the labeling information is
updated along with the labeling process, including the added label names and
the number of images for each label.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 477

Table 7-28 Common icons on the labeling page

Button Features

Cancel the previous operation. You can also press Ctrl+Z.

Redo the previous operation. You can also press Ctrl+Shift+Z.

Zoom in an image. You can also use the mouse wheel to
zoom in.

Zoom out an image. You can also use the mouse wheel to
zoom out.

Delete all bounding boxes on the current image. You can also
press Shift+Delete.

Show or hide a bounding box. This operation can be
performed only on a labeled image. You can also press Shift
+H.

Drag a bounding box to another position or drag the edge of
the bounding box to resize it. You can also use X + left mouse
button.

Reset a bounding box. After dragging a bounding box, you
can click this button to quickly restore the bounding box to
its original shape and position. You can also press Esc.

Viewing Labeled Images
On the labeling job details page, click the Labeled tab to view the list of labeled
images. The labels of each image are displayed below the image.

Figure 7-56 Labels

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 478

Quick Review
To simplify operations, ModelArts provides quick review so that you can batch
review and modify labeled data.

1. Log in to the ModelArts management console. In the navigation pane, choose
Data Management > Label Data. On the My Creations tab page, select the
target labeling job type from the All types drop-down list in the upper right
corner. (Only object detection and image segmentation support quick review.)

2. In the labeling job list, click the target labeling job. The labeling details page
is displayed.

3. Click Quick Review on the Labeled tab. On the displayed page, confirm the
labeling results.

Figure 7-57 Quick Review

4. Batch review images of the same label.

a. On the review page, select the label type from the drop-down list next to
Filter by Label.

b. Sort images of the selected label type by bounding box area or aspect
ratio.

c. Click an incorrectly labeled image, and then drag the labeling box to
relabel the image. (Modified is displayed on the modified images.)

d. You can select the incorrectly labeled images, and then click in the
upper right corner to delete the label. (Deleted is displayed on the
images whose label has been deleted.)

Figure 7-58 Modified

Figure 7-59 Deleted

e. You can also modify the label of a labeled image.

i. Select the target images and click in the All Labels area on the
right.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 479

ii. Type a new label and click OK.

Figure 7-60 All Labels

Figure 7-61 Adding a label

5. After the modification, click Apply Modifications. In the displayed dialog box,
click OK. The system automatically returns to the labeling overview page and
overwrites the original labeling data.

Figure 7-62 Apply Modifications

6. If you are not satisfied with the modified data, you can click Cancel
Modifications to retain the original labeling data.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 480

Figure 7-63 Cancel Modifications

Table 7-29 Buttons on the quick review page

Button Features

Delete the label.

Undo all operations on the current page.

Undo the previous operation.

Redo the previous operation.

Modifying Labeled Data

After labeling data, you can modify labeled data on the Labeled tab page.

● Modifying based on images
On the labeling job details page, click the Labeled tab and then the image to
be modified. The labeling page is displayed. Modify the image information in
the label information area on the right.
– Modifying a label: In the Labeling area, click the edit icon, enter the

correct label name in the text box, and click the check mark to complete
the modification. Alternatively, click a label. In the image labeling area,
adjust the position and size of the labeling box. After the adjustment,
right-click the labeling box and choose Modify from the shortcut menu.
Enter the new label and click Modify to save the modification.

– Deleting a label: In the Labeling area, click the deletion icon to delete a
label from the image.
After deleting the label, click Back to Data Labeling Preview in the
upper left corner of the page to exit the labeling page. In the dialog box
that is displayed, save the modification. After all labels of an image are
deleted, the image is displayed on the Unlabeled tab page.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 481

Figure 7-64 Editing an object detection label

● Modifying based on labels
– On the labeling job details page, click Label Management on the right.

All label information is displayed.

▪ Modifying a label: Click Modify in the Operation column. In the
dialog box that is displayed, enter a new label name, select a new
label color, and click OK. After the modification, the images with the
label added will use the new label name.

▪ Deleting a label: Click Delete in the Operation column, or select the
label to be deleted and click Delete Label above the label list.

Figure 7-65 Label Management

Figure 7-66 All labels

– Alternatively, click Label in the Operation column of the target labeling
job to go to the label management page.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 482

Figure 7-67 Accessing the label management page from the labeling job
list

▪ Click Modify in the Operation column of the target label to modify
it.

▪ Click Delete in the Operation column of the target label to delete it.

Adding Data
In addition to the data automatically synchronized from datasets, you can directly
add images to labeling jobs for labeling. The added data is first imported to the
dataset associated with the labeling job. Then, the labeling job automatically
synchronizes the latest data from the dataset.

1. On the labeling job details page, click All statuses, Labeled, or Unlabeled
tab, click Add data in the upper left corner.

Figure 7-68 Adding data

2. Configure the data source, import mode, import path, and labeling status.

Figure 7-69 Adding images

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 483

3. Click OK.
The images you have added will be automatically displayed in the image list
on the All statuses tab page. You can choose Add data > View historical
records to view task history.

Figure 7-70 Viewing historical data

Deleting Images

You can quickly delete the images you want to discard.

On the All statuses, Unlabeled, or Labeled tab page, select the images to be
deleted or click Select Images on Current Page, and click Delete. In the displayed
dialog box, select or deselect Delete the source files from OBS as required. After
confirmation, click Yes to delete the images.

Figure 7-71 Deleting images

If a tick is displayed in the upper left corner of an image, the image is selected. If
no image is selected on the page, the Delete button is unavailable.

NO TE

If you select Delete the source files from OBS, images stored in the OBS directory will be
deleted accordingly. This operation may affect other dataset versions or datasets using
those files, for example, leading to an error in page display, training, or inference. Deleted
data cannot be recovered. Exercise caution when performing this operation.

Managing Annotators

If team labeling is enabled for a labeling job, view its labeling details on the
Annotator Management tab page. Additionally, you can add, modify, or delete
annotators.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 484

1. Choose Data Management > Label Data. On the My Creations tab page,
view the list of all labeling jobs.

2. Locate the row that contains the target team labeling job. (The name of a

team labeling job is followed by .)
3. Choose More > Annotator Management in the Operation column.

Alternatively, click the job name to go to the job details page, and choose
Team Labeling > Annotator Management in the upper right corner.

Figure 7-72 Annotator management (1)

Figure 7-73 Annotator management (2)

● Adding an annotator
Click Add Member, select a member name, and click OK.
Click Send Email in the Operation column to send the labeling job to the
annotator by email.

● Modifying annotator information
Click Modify in the Operation column to modify the role of the annotator.

● Deleting an annotator
Click Delete in the Operation column to delete the annotator.

7.10.2.3 Image Segmentation

Training a model uses a large number of labeled images. Therefore, label images
before the model training. You can label images on the ModelArts management
console. Alternatively, modify labels, or delete them and label them again.

Before labeling an image in image segmentation scenarios, pay attention to the
following:

● All objects whose contours need to be extracted from the image must be
labeled.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 485

● Polygons can be used for labeling.
– In polygon labeling, draw a polygon based on the outline of the target

object.
● When labeling an image, ensure that the polygons are within the image.

Otherwise, an error will occur in subsequent operations.

Starting Labeling
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management, you are advised to submit a service ticket to
obtain the permissions.

2. On the right of the labeling job list, select a labeling type from the job type
drop-down list. Click the job to be performed based on the labeling type. The
details page of the job is displayed.

Figure 7-74 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data
ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in a dataset, in the All statuses, Unlabeled, or
Labeled tab of the labeling job details page, click Synchronize New Data.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 486

NO TE

Symptom:

After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.

Possible causes:

Automatic encryption is enabled in the OBS bucket.

Solution:

Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Filtering Data

In the All statuses or Unlabeled tab, click in the filter criteria area and add
filter criteria to quickly filter the data you want to view.

The following filter criteria are available. You can set one or more filter criteria.

● Example Type: Select Hard example or Non-hard example.
● Label: Select All or one or more labels you specified.
● File Name or Path: Filter files by file name or file storage path.
● Labeled By: Select the name of the user who labeled the image.
● Sample Attribute: Select the attribute generated by auto grouping. This filter

criterion can be used only after auto grouping is enabled.
● Data Attribute: Select All or Inference to filter the data source.

Figure 7-75 Filter criteria

Manually Labeling Images

The labeling job details page displays the All statuses, Unlabeled, and Labeled
tabs. The Unlabeled tab is displayed by default.

1. In the Unlabeled tab, click an image. The system automatically directs you to
the page for labeling the image. For details about how to use common
buttons on this page, see Table 7-31.

2. Select a labeling method.
On the labeling page, common labeling methods and buttons are provided
in the toolbar. By default, polygon labeling is selected. Use polygon or pole
labeling as needed.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 487

NO TE

After you select a method to label the first image, the labeling method automatically
applies to subsequent images.

Table 7-30 Labeling methods

Icon Description

Polygon. In the area where the object to be labeled is
located, click to label a point, move the mouse and click
multiple points along the edge of the object, and then
click the first point again. All the points form a polygon. In
this way, the object to be labeled is within the bounding
box.

Table 7-31 Toolbar buttons

Button Features

Cancel the previous operation.

Redo the previous operation.

Zoom in an image.

Zoom out an image.

Delete all bounding boxes on the current image.

Show or hide a bounding box. This operation can be
performed only on a labeled image.

Drag a bounding box to another position or drag the edge
of the bounding box to resize it.

Reset a bounding box. After dragging a bounding box,
you can click this button to quickly restore the bounding
box to its original shape and position.

Display the labeled image in full screen.

3. Label an object.

Identify an object in an image. Click the top, bottom, leftmost, and rightmost
points on the object contour. In the displayed dialog box, set the label name

and click Add. After labeling an image, click below the image to view
in the image list and click an unlabeled image to label the new image.

4. Click Back to Data Labeling Preview in the upper left part of the page to
view the labeling information. In the displayed dialog box, click Yes to save
the labeling settings.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 488

The selected images are automatically moved to the Labeled tab. In the
Unlabeled and All statuses tabs, the labeling information is updated along
with the labeling process, including the added label names and the number of
images for each label.

Viewing Labeled Images
On the labeling job details page, click the Labeled tab to view the list of labeled
images. Click an image to view its labeling information in the File Labels area on
the right.

Quick Review
To simplify operations, ModelArts provides quick review so that you can batch
review and modify labeled data.

1. Log in to the ModelArts management console. In the navigation pane, choose
Data Management > Label Data. On the My Creations tab page, select the
target labeling job type from the All types drop-down list in the upper right
corner. (Only object detection and image segmentation support quick review.)

2. In the labeling job list, click the target labeling job. The labeling details page
is displayed.

3. Click Quick Review on the Labeled tab. On the displayed page, confirm the
labeling results.

Figure 7-76 Quick Review

4. Batch review images of the same label.

a. On the review page, select the label type from the drop-down list next to
Filter by Label.

b. Sort images of the selected label type by bounding box area or aspect
ratio.

c. Click an incorrectly labeled image, and then drag the labeling box to
relabel the image. (Modified is displayed on the modified images.)

d. You can select the incorrectly labeled images, and then click in the
upper right corner to delete the label. (Deleted is displayed on the
images whose label has been deleted.)

Figure 7-77 Modified

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 489

Figure 7-78 Deleted

e. You can also modify the label of a labeled image.

i. Select the target images and click in the All Labels area on the
right.

ii. Type a new label and click OK.

Figure 7-79 All Labels

Figure 7-80 Adding a label

5. After the modification, click Apply Modifications. In the displayed dialog box,
click OK. The system automatically returns to the labeling overview page and
overwrites the original labeling data.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 490

Figure 7-81 Apply Modifications

6. If you are not satisfied with the modified data, you can click Cancel
Modifications to retain the original labeling data.

Figure 7-82 Cancel Modifications

Table 7-32 Buttons on the quick review page

Button Features

Delete the label.

Undo all operations on the current page.

Undo the previous operation.

Redo the previous operation.

Modifying a Label

After labeling data, you can modify labeled data in the Labeled tab.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 491

On the labeling details page, click the Labeled tab and then the image to be
modified. On the displayed labeling page, modify the labeling information in the
File Labels area on the right.

● Modifying a label: In the Labeling area, click the edit icon, set the target label

name or color in the displayed dialog box, and click to save the
modification. Alternatively, click a label to be modified. In the image labeling
area, adjust the position and size of the bounding box. After the adjustment is
complete, click another label to save the modification.

● Deleting a label: In the Labeling area, click the deletion icon to delete a label
from the image. After all labels of an image are deleted, the image is
displayed in the Unlabeled tab.

After the labeling information is modified, click Back to Data Labeling Preview in
the upper left part of the page to exit the labeling page. In the displayed dialog
box, click Yes to save the modification.

Adding Data

In addition to the data automatically synchronized from datasets, you can directly
add images to labeling jobs for labeling. The added data is first imported to the
dataset associated with the labeling job. Then, the labeling job automatically
synchronizes the latest data from the dataset.

1. On the labeling job details page, click All statuses, Labeled, or Unlabeled
tab, click Add data in the upper left corner.

Figure 7-83 Adding Data

2. Configure the data source, import mode, import path, and labeling status.

Figure 7-84 Adding images

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 492

3. Click OK.
The images you have added will be automatically displayed in the image list
in the All statuses tab. You can choose Add data > View historical records
to view task history.

Figure 7-85 Viewing historical data

Deleting Images
You can quickly delete the images you want to discard.

In the All statuses, Unlabeled, or Labeled tab, select the images to be deleted or
click Select Images on Current Page, and click Delete in the upper left corner to
delete them. In the displayed dialog box, select or deselect Delete the source files
from OBS as required. After confirmation, click Yes to delete the images.

If a tick is displayed in the upper left corner of an image, the image is selected. If
no image is selected on the page, the Delete button is unavailable.

NO TE

If you select Delete the source files from OBS, images stored in the OBS directory will be
deleted accordingly. This operation may affect other dataset versions or datasets using
those files, for example, leading to an error in page display, training, or inference. Deleted
data cannot be recovered. Exercise caution when performing this operation.

7.10.3 Text Labeling

7.10.3.1 Text Classification
Model training requires a large amount of labeled data. Therefore, before the
model training, add labels to the files that are not labeled. In addition, you can
modify, delete, and re-label the labeled text.

Text classification classifies text content based on labels. Before labeling text
content, pay attention to the following:

● Text labeling supports multiple labels. That is, you can add multiple labels to
a labeling object.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 493

● A label name can contain a maximum of 1024 characters, including letters,
digits, hyphens (-), underscores (_), and special characters.

Starting Labeling
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management, you are advised to submit a service ticket to
obtain the permissions.

2. In the labeling job list, select a labeling type from the All type drop-down list,
click the job to be performed based on the labeling type. The details page of
the job is displayed.

Figure 7-86 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data
ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in the datasets, in the Unlabeled tab of the
labeling job details page, click Synchronize New Data.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 494

NO TE

Symptom:
After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.
Possible causes:
Automatic encryption is enabled in the OBS bucket.
Solution:
Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Labeling Text Files
The labeling job details page displays the Unlabeled and Labeled tabs. The
Unlabeled tab is displayed by default.

1. In the Unlabeled tab, the objects to be labeled are listed in the pane on the
left. In the list, click the text object to be labeled, and select a label in the
Label Set area in the right pane. Multiple labels can be added to a labeling
object.
You can repeat this operation to select objects and add labels to the objects.

Figure 7-87 Labeling for text classification

2. After all objects are labeled, click Save Current Page at the bottom of the
page.

Adding a Label
● Adding labels in the Unlabeled tab: Click the plus sign (+) next to Label Set.

On the displayed Add Label page, add a label name, select a label color, and
click OK.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 495

Figure 7-88 Adding a label (1)

● Adding labels in the Labeled tab: Click the plus sign (+) next to Label Set. On
the displayed Add Label page, add a label name, select a label color, and click
OK.

Figure 7-89 Adding a label (2)

Figure 7-90 Adding a label

Viewing the Labeled Text
On the labeling job details page, click the Labeled tab to view the list of labeled
texts. You can also view all labels supported by the labeling job in the All Labels
area on the right.

Modifying Labeled Data
After labeling data, you can modify labeled data in the Labeled tab.

● Modifying based on texts
On the labeling job details page, click the Labeled tab and select the text to
be modified from the text list.
In the text list, click the text. When the text background turns blue, the text is
selected. If a text file has multiple labels, you can click above a label to
delete the label.

● Modifying based on labels
On the labeling job details page, click the Labeled tab. The information about
all labels is displayed on the right.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 496

– Batch modification: In the All Labels area, click the edit icon in the
Operation column, modify the label name in the text box, select a label
color, and click OK.

– Batch deletion: In the All Labels area, click the deletion icon in the
Operation column to delete the label. In the displayed dialog box, select
Delete the label or Delete the label and objects with only the label,
and click OK.

Adding a File

In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

1. On the labeling job details page, click the Unlabeled tab, click Add data in
the upper left corner.

2. Configure input data and click OK.

For details about how to import data, see Importing Data.

Figure 7-91 Importing data

Deleting a File

You can quickly delete the files you want to discard.

● In the Unlabeled tab, select the text to be deleted, and click Delete in the
upper left corner.

● In the Labeled tab, select the text to be deleted, and click Delete.
Alternatively, tick Select Current Page to select all text objects on the current
page and click Delete in the upper left corner.

The background of the selected text is blue.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 497

https://support.huaweicloud.com/intl/en-us/dataprepare-modelarts/dataprepare-modelarts-0008.html

Managing Annotators

If team labeling is enabled for a labeling job, view its labeling details on the
Annotator Management tab page. Additionally, you can add, modify, or delete
annotators.

1. Choose Data Management > Label Data. On the My Creations tab page,
view the list of all labeling jobs.

2. Locate the row that contains the target team labeling job. (The name of a
team labeling job is followed by .)

3. Choose More > Annotator Management in the Operation column.
Alternatively, click the job name to go to the job details page, and choose
Team Labeling > Annotator Management in the upper right corner.

Figure 7-92 Annotator management (1)

Figure 7-93 Annotator management (2)

● Adding an annotator
Click Add Member, select a member name, and click OK.
Click Send Email in the Operation column to send the labeling job to the
annotator by email.

● Modifying annotator information
Click Modify in the Operation column to modify the role of the annotator.

● Deleting an annotator
Click Delete in the Operation column to delete the annotator.

7.10.3.2 Named Entity Recognition

Named entity recognition assigns labels to named entities in text, such as time
and locations. Before labeling, pay attention to the following:

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 498

A label name of a named entity can contain a maximum of 1024 characters,
including letters, digits, hyphens (-), underscores (_), and special characters.

Starting Labeling
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management, you are advised to submit a service ticket to
obtain the permissions.

2. In the labeling job list, select a labeling type from the All type drop-down list,
click the job to be performed based on the labeling type. The details page of
the job is displayed.

Figure 7-94 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data
ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in the datasets, in the Unlabeled tab of the
labeling job details page, click Synchronize New Data.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 499

NO TE

Symptom:

After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.

Possible causes:

Automatic encryption is enabled in the OBS bucket.

Solution:

Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Labeling Text Files
The labeling job details page displays the Unlabeled and Labeled tabs. The
Unlabeled tab is displayed by default.

1. In the Unlabeled tab, the objects to be labeled are listed in the pane on the
left. In the list, click the text object to be labeled, select a part of text
displayed under Label Set for labeling, and select a label in the Label Set
area in the right pane.
You can repeat this operation to select objects and add labels to the objects.

Figure 7-95 Labeling for named entity recognition

2. Click Save Current Page in the lower part of the page to complete the
labeling.

Adding a Label
● Adding labels in the Unlabeled tab: Click the plus sign (+) next to Label Set.

On the displayed Add Label page, add a label name, select a label color, and
click OK.

Figure 7-96 Adding a named entity label (1)

● Adding labels in the Labeled tab: Click the plus sign (+) next to Label Set. On
the displayed Add Label page, add a label name, select a label color, and click
OK.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 500

Figure 7-97 Adding a named entity label (2)

Figure 7-98 Adding a named entity label

Viewing the Labeled Text
On the dataset details page, click the Labeled tab to view the list of the labeled
text. You can also view all labels supported by the dataset in the All Labels area
on the right.

Modifying Labeled Data
After labeling data, you can modify labeled data in the Labeled tab.

On the labeling job details page, click the Labeled tab, and modify the text
information in the label information area on the right.

● Modifying based on texts
On the labeling job details page, click the Labeled tab, and select the text to
be modified from the text list.
Manual deletion: In the text list, click the text. When the text background
turns blue, the text is selected. On the right of the page, click above a text
label to delete the label.

● Modifying based on labels
On the labeling job details page, click the Labeled tab. The information about
all labels is displayed on the right.
– Batch modification: In the All Labels area, click the edit icon in the

Operation column, add a label name in the text box, select a label color,
and click OK.

– Batch deletion: In the All Labels area, click the deletion icon in the
Operation column to delete the label. In the displayed dialog box, select
Delete the label or Delete the label and objects with only the label,
and click OK.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 501

Adding a File
In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

1. On the labeling job details page, click the Unlabeled tab, click Add data in
the upper left corner.

2. Configure input data and click OK.
For details about how to import data, see Importing Data.

Figure 7-99 Importing data

Deleting a File
You can quickly delete the files you want to discard.

● In the Unlabeled tab, select the text to be deleted, and click Delete in the
upper left corner.

● In the Labeled tab, select the text to be deleted, and click Delete.
Alternatively, tick Select Current Page to select all text objects on the current
page and click Delete in the upper left corner.

The background of the selected text is blue.

Managing Annotators
If team labeling is enabled for a labeling job, view its labeling details on the
Annotator Management tab page. Additionally, you can add, modify, or delete
annotators.

1. Choose Data Management > Label Data. On the My Creations tab page,
view the list of all labeling jobs.

2. Locate the row that contains the target team labeling job. (The name of a
team labeling job is followed by .)

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 502

https://support.huaweicloud.com/intl/en-us/dataprepare-modelarts/dataprepare-modelarts-0008.html

3. Choose More > Annotator Management in the Operation column.
Alternatively, click the job name to go to the job details page, and choose
Team Labeling > Annotator Management in the upper right corner.

Figure 7-100 Annotator management (1)

Figure 7-101 Annotator management (2)

● Adding an annotator

Click Add Member, select a member name, and click OK.

Click Send Email in the Operation column to send the labeling job to the
annotator by email.

● Modifying annotator information

Click Modify in the Operation column to modify the role of the annotator.

● Deleting an annotator

Click Delete in the Operation column to delete the annotator.

7.10.3.3 Text Triplet

Triplet labeling is suitable for scenarios where structured information, such as
subjects, predicates, and objects, needs to be labeled in statements. With this
function, not only entities in statements, but also relationships between entities
can be labeled. Triplet labeling is often used in natural language processing tasks
such as dependency syntax analysis and information extraction.

Text triplet labeling involves two classes of important labels: Entity Label and
Relationship Label. For Relationship Label, set its Source entity and Target
entity.

● You can define multiple entity and relationship labels for a text object.

● The Entity Label defined during dataset creation cannot be deleted.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 503

Precautions
Before labeling, ensure that the Entity Label and Relationship Label of a labeling
job have been defined. For Relationship Label, set its Source entity and Target
entity. Relationship Label must be between the defined Source entity and
Target entity.

For example, if two entities are labeled as Place, you cannot add any relationship
label between them, as shown in Figure 7-102. If a relationship label cannot be
added, a red cross is displayed, as shown in Figure 7-103.

Figure 7-102 Example of entity and relationship labels

Figure 7-103 Failure of adding a relationship label

Starting Labeling
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management, you are advised to submit a service ticket to
obtain the permissions.

2. In the labeling job list, select a labeling type from the All type drop-down list,
click the job to be performed based on the labeling type. The details page of
the job is displayed.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 504

Figure 7-104 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data
ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in the datasets, in the Unlabeled tab of the
labeling job details page, click Synchronize New Data.

NO TE

Symptom:
After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.
Possible causes:
Automatic encryption is enabled in the OBS bucket.
Solution:
Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Labeling Text Files
The labeling job details page displays the Unlabeled and Labeled tabs. The
Unlabeled tab is displayed by default.

1. In the Unlabeled tab, the objects to be labeled are listed in the pane on the
left. In the list, click a text object, select the corresponding text content on the
right pane, and select an entity name from the displayed entity list to label
the content.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 505

Figure 7-105 Labeling an entity

2. After labeling multiple entities, click the source entity and target entity in
sequence and select a relationship type from the displayed relationship list to
label the relationship.

Figure 7-106 Labeling a relationship

3. After all objects are labeled, click Save Current Page at the bottom of the
page.

NO TE

You cannot modify the labels of a dataset in the text triplet type on the labeling page.
Instead, click Label Management and modify the Entity Label and Relationship Label.

Modifying Labeled Data
After labeling data, you can modify labeled data in the Labeled tab.

On the labeling job details page, click the Labeled tab. Select a text object in the
left pane and the right pane displays the detailed label information. You can move
your cursor to the entity or relationship label, and right-click to delete it. You can
also click the source entity and target entity in sequence to add a relationship
label.

Figure 7-107 Modifying a label in the text

You can click Delete Labels on Current Item at the bottom of the page to delete
all labels in the selected text object.

Figure 7-108 Deleting current labels

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 506

Adding a File
In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

1. On the labeling job details page, click the Unlabeled tab, click Add data in
the upper left corner.

2. Configure input data and click OK.
For details about how to import data, see Importing Data.

Figure 7-109 Importing data

Deleting a File
You can quickly delete the files you want to discard.

● In the Unlabeled tab, select the text to be deleted, and click Delete in the
upper left corner.

● In the Labeled tab, select the text to be deleted, and click Delete.
Alternatively, tick Select Current Page to select all text objects on the current
page and click Delete in the upper left corner.

The background of the selected text is blue. If no text is selected on the page, the
Delete button is unavailable.

Managing Annotators
If team labeling is enabled for a labeling job, view its labeling details on the
Annotator Management tab page. Additionally, you can add, modify, or delete
annotators.

1. Choose Data Management > Label Data. On the My Creations tab page,
view the list of all labeling jobs.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 507

https://support.huaweicloud.com/intl/en-us/dataprepare-modelarts/dataprepare-modelarts-0008.html

2. Locate the row that contains the target team labeling job. (The name of a
team labeling job is followed by .)

3. Choose More > Annotator Management in the Operation column.
Alternatively, click the job name to go to the job details page, and choose
Team Labeling > Annotator Management in the upper right corner.

Figure 7-110 Annotator management (1)

Figure 7-111 Annotator management (2)

● Adding an annotator
Click Add Member, select a member name, and click OK.
Click Send Email in the Operation column to send the labeling job to the
annotator by email.

● Modifying annotator information
Click Modify in the Operation column to modify the role of the annotator.

● Deleting an annotator
Click Delete in the Operation column to delete the annotator.

7.10.4 Audio Labeling

7.10.4.1 Sound Classification

Sound classification is to classify different sounds.

Model training requires a large amount of labeled data. Therefore, before the
model training, label the unlabeled audio files. ModelArts enables you to label
audio files in batches by one click. In addition, you can modify the labels of audio
files, or remove their labels and label the audio files again.

Only Chinese and English are supported for audio labeling.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 508

Starting Labeling
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management, you are advised to submit a service ticket to
obtain the permissions.

2. In the labeling job list, select a labeling type from the All type drop-down list,
click the job to be performed based on the labeling type. The details page of
the job is displayed.

Figure 7-112 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data

ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in the datasets, in the Unlabeled or Labeled tab
of the labeling job details page, click Synchronize New Data.

NO TE

Symptom:

After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.

Possible causes:

Automatic encryption is enabled in the OBS bucket.

Solution:

Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 509

Labeling Audio Files
The labeling job details page displays the Unlabeled and Labeled tabs. The

Unlabeled tab is displayed by default. Click on the left of the audio to
preview the audio.

1. In the Unlabeled tab, select the audio files to be labeled.
– Manual selection: In the audio list, click the target audio. If the blue

check box is displayed in the upper right corner, the audio is selected. You
can select multiple audio files of the same type and label them together.

– Batch selection: If all audio files of the current page belong to one type,
you can click Select Current Page in the upper right corner of the list to
select all the audio files on the page.

2. Add labels.

a. In the label adding area on the right, set a label in the Label text box.
Method 1 (the required label already exists): In the right pane, select a
shortcut from the Shortcut drop-down list, select an existing label name
from the Label text box, and click OK.
Method 2 (adding a label): In the right pane, select a shortcut from the
Shortcut drop-down list, and enter a new label name in the Label text
box.

b. The selected audio files are automatically moved to the Labeled tab. In
the Unlabeled tab, the labeling information is updated along with the
labeling process, including the added label names and the number of
audio files corresponding to each label.

NO TE

Shortcut key description: After specifying a shortcut key for a label, you can select an
audio file and press the shortcut key to add a label for the audio file. Example: Specify
1 as the shortcut key for the aa label. Select one or more files and press 1. A message
is displayed, asking you whether to label the files with aa. Click OK.
Each label has a shortcut key. A shortcut key cannot be specified for different labels.
Shortcut keys can greatly improve the labeling efficiency.

Figure 7-113 Adding an audio label

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 510

Viewing the Labeled Audio Files

On the labeling job details page, click the Labeled tab to view the list of labeled
audio files. Click an audio file. You can view the label information about the audio
file in the File Labels area on the right.

Modifying Labeled Data

After labeling data, you can modify labeled data in the Labeled tab.

● Modifying based on audio
On the labeling job details page, click the Labeled tab. Select one or more
audio files to be modified from the audio list. Modify the label in the label
details area on the right.
– Modifying a label: In the File Labels area, click the edit icon in the

Operation column, enter the correct label name in the text box, and click
the check mark to complete the modification.

– Deleting a label: In the File Labels area, click the delete icon in the
Operation column to delete the label.

● Modifying based on labels
On the labeling job details page, click the Labeled tab. The information about
all labels is displayed on the right.

Figure 7-114 Information about all labels

– Modifying a label: Click the edit icon in the Operation column. In the
displayed dialog box, enter the new label name and click OK. After the
modification, the new label applies to the audio files that contain the
original label.

– Deleting a label: Click the deletion icon in the Operation column. In the
displayed dialog box, select the object to be deleted as prompted and
click OK.

Adding Audio Files

In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 511

1. On the labeling job details page, click the Unlabeled or Labeled tab, click
Add data in the upper left corner.

2. Configure input data and click OK.
For details about how to import data, see Importing Data.

Figure 7-115 Importing data

Deleting Audio Files
You can quickly delete the audio files you want to discard.

In the Unlabeled or Labeled tab, select the audio files to be deleted one by one
or tick Select Current Page to select all audio files on the page, and then click
Delete File in the upper left corner. In the displayed dialog box, select or deselect
Delete the source files from OBS as required. After confirmation, click OK to
delete the audio files.

If a tick is displayed in the upper right corner of an audio file, the audio file is
selected. If no audio file is selected on the page, the Delete File button is
unavailable.

NO TE

If you select Delete the source files from OBS, audio files stored in the corresponding OBS
directory will be deleted when you delete the selected audio files. Deleting source files may
affect other dataset versions or datasets using those files. As a result, the page display,
training, or inference is abnormal. Deleted data cannot be recovered. Exercise caution when
performing this operation.

7.10.4.2 Speech Labeling
Speech labeling is to label speech content.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 512

https://support.huaweicloud.com/intl/en-us/dataprepare-modelarts/dataprepare-modelarts-0008.html

Model training requires a large amount of labeled data. Therefore, before the
model training, label the unlabeled audio files. ModelArts enables you to label
audio files in batches by one click. In addition, you can modify the labels of audio
files, or remove their labels and label the audio files again.

Only Chinese and English are supported for audio labeling.

Starting Labeling
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management, you are advised to submit a service ticket to
obtain the permissions.

2. In the labeling job list, select a labeling type from the All type drop-down list,
click the job to be performed based on the labeling type. The details page of
the job is displayed.

Figure 7-116 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing New Data
ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in the datasets, in the Unlabeled tab of the
labeling job details page, click Synchronize New Data.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 513

NO TE

Symptom:

After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.

Possible causes:

Automatic encryption is enabled in the OBS bucket.

Solution:

Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Labeling Audio Files
The labeling job details page displays the labeled and unlabeled audio files. The
Unlabeled tab is displayed by default.

1. In the audio file list in the Unlabeled tab, click the target audio file. In the

area on the right, the audio file is displayed. Click below the audio file to
play the audio.

2. In Speech Content, enter the speech content.
3. After entering the content, click Label to complete the labeling. The audio file

is automatically moved to the Labeled tab.

Figure 7-117 Labeling speech content

Viewing the Labeled Audio Files
On the labeling job details page, click the Labeled tab to view the list of labeled
audio files. Click the audio file to view the audio content in the Speech Content
text box on the right.

Modifying Labeled Data
After labeling data, you can modify labeled data in the Labeled tab.

On the labeling job details page, click the Labeled tab and select the audio file to
be modified from the audio file list. In the label information area on the right,
modify the content of the Speech Content text box, and click Label to complete
the modification.

Adding an Audio File
In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 514

1. On the labeling job details page, click the Unlabeled tab, click Add data in
the upper left corner.

2. Configure input data and click OK.
For details about how to import data, see Importing Data.

Figure 7-118 Importing data

Deleting Audio Files
You can quickly delete the audio files you want to discard.

In the Unlabeled or Labeled tab, select the audio files to be deleted, and then
click Delete File in the upper left corner. In the displayed dialog box, select or
deselect Delete the source files from OBS as required. After confirmation, click
OK to delete the audio files.

NO TE

If you select Delete the source files from OBS, audio files stored in the corresponding OBS
directory will be deleted when you delete the selected audio files. Deleting source files may
affect other dataset versions or datasets using those files. As a result, the page display,
training, or inference is abnormal. Deleted data cannot be recovered. Exercise caution when
performing this operation.

7.10.4.3 Speech Paragraph Labeling
Speech paragraph labeling is to segment and label speech content.

Model training requires a large amount of labeled data. Therefore, before the
model training, label the unlabeled audio files. ModelArts enables you to label
audio files. In addition, you can modify the labels of audio files, or remove their
labels and label the audio files again.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 515

https://support.huaweicloud.com/intl/en-us/dataprepare-modelarts/dataprepare-modelarts-0008.html

Only Chinese and English are supported for audio labeling.

Starting Labeling
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management, you are advised to submit a service ticket to
obtain the permissions.

2. In the labeling job list, select a labeling type from the All type drop-down list,
click the job to be performed based on the labeling type. The details page of
the job is displayed.

Figure 7-119 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing Data Sources
ModelArts automatically synchronizes data and labeling information from
datasets to the labeling job.

To quickly obtain the latest data in the OBS bucket, click Synchronize Data
Source in the Unlabeled tab of the labeling job details page to add the data
uploaded using OBS to the dataset.

NO TE

Symptom:
After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.
Possible causes:
Automatic encryption is enabled in the OBS bucket.
Solution:
Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 516

Labeling Audio Files

The labeling job details page displays the Unlabeled and Labeled tabs. The
Unlabeled tab is displayed by default.

1. In the audio file list in the Unlabeled tab, click the target audio file. In the

area on the right, the audio file is displayed. Click below the audio file to
play the audio.

2. Select an audio segment based on the content being played, and enter the
audio file label and content in the Speech Content text box.

Figure 7-120 Speech paragraph labeling

3. After entering the content, click Label to complete the labeling. The audio file
is automatically moved to the Labeled tab.

Viewing the Labeled Audio Files

On the labeling job details page, click the Labeled tab to view the list of labeled
audio files. Click the audio file to view the labeling information on the right.

Modifying Labeled Data

After labeling data, you can modify labeled data in the Labeled tab.

● Modifying a label: On the labeling details page, click the Labeled tab, and
select the audio file to be modified from the audio file list. In the right area,
modify labeling information and click Label to complete the modification.

● Deleting a label: Click Delete in the Operation column of the target number
to delete the label of the audio segment. Alternatively, you can click above
the labeled audio file to delete the label. Then click Label.

Adding an Audio File

In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

1. On the labeling job details page, click the Unlabeled tab, click Add data in
the upper left corner.

2. Configure input data and click OK.

For details about how to import data, see Introduction to Data Importing.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 517

https://support.huaweicloud.com/intl/en-us/dataprepare-modelarts/dataprepare-modelarts-0008.html

Figure 7-121 Importing data

Deleting Audio Files
You can quickly delete the audio files you want to discard.

In the Unlabeled or Labeled tab, select the audio files to be deleted, and then
click Delete File in the upper left corner. In the displayed dialog box, select or
deselect Delete the source files from OBS as required. After confirmation, click
OK to delete the audio files.

NO TE

If you select Delete the source files from OBS, audio files stored in the corresponding OBS
directory will be deleted when you delete the selected audio files. Deleting source files may
affect other dataset versions or datasets using those files. As a result, the page display,
training, or inference is abnormal. Deleted data cannot be recovered. Exercise caution when
performing this operation.

Managing Annotators
If team labeling is enabled for a labeling job, view its labeling details on the
Annotator Management tab page. Additionally, you can add, modify, or delete
annotators.

1. Choose Data Management > Label Data. On the My Creations tab page,
view the list of all labeling jobs.

2. Locate the row that contains the target team labeling job. (The name of a
team labeling job is followed by .)

3. Choose More > Annotator Management in the Operation column.
Alternatively, click the job name to go to the job details page, and choose
Team Labeling > Annotator Management in the upper right corner.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 518

Figure 7-122 Annotator management (1)

Figure 7-123 Annotator management (2)

● Adding an annotator
Click Add Member, select a member name, and click OK.
Click Send Email in the Operation column to send the labeling job to the
annotator by email.

● Modifying annotator information
Click Modify in the Operation column to modify the role of the annotator.

● Deleting an annotator
Click Delete in the Operation column to delete the annotator.

7.10.5 Video Labeling
Model training requires a large amount of labeled video data. Therefore, before
the model training, label the unlabeled video files. ModelArts enables you to label
video files. In addition, you can modify the labels of video files, or remove their
labels and label the video files again.

NO TE

Video labeling applies only to video frames.

Starting Labeling
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management, you are advised to submit a service ticket to
obtain the permissions.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 519

2. In the labeling job list, select a labeling type from the All type drop-down list,
click the job to be performed based on the labeling type. The details page of
the job is displayed.

Figure 7-124 Selecting a labeling type

3. The job details page displays all data of the labeling job.

Synchronizing Data Sources

ModelArts automatically synchronizes data and labeling information from Input
Dataset Path to the dataset details page.

To quickly obtain the latest data in the OBS bucket, in the Labeled or Unlabeled
tab of the labeling job details page, click Synchronize Data Source.

NO TE

Symptom:

After the labeled data is uploaded to OBS and synchronized, the data is displayed as
unlabeled.

Possible causes:

Automatic encryption is enabled in the OBS bucket.

Solution:

Create an OBS bucket and upload data again, or disable bucket encryption and upload data
again.

Video Labeling

The labeling job details page displays the Unlabeled, Labeled, and All statuses
tabs.

1. In the Unlabeled tab, click the target video file in the video list on the left.
The labeling page is displayed.

2. Play the video. When the video is played to the time point to be labeled, click
the pause button in the progress bar to pause the video to a specific image.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 520

3. In the upper pane, select a bounding box. By default, a rectangular box is
selected. Drag the mouse to select an object in the video image, enter a new
label name in the displayed Add Label text box, select a label color, and click
Add to label the object. Alternatively, select an existing label from the drop-
down list and click Add to label the object. Label all objects in the image.
Multiple labels can be added to an image.
The supported labeling boxes are the same as those for object detection. For
details, see Common icons on the labeling page.

4. After the previous image is labeled, click the play button on the progress bar
to resume the playback. Then, repeat 3 to complete labeling on the entire
video.
Click Label List in the upper right corner of the page. The time points when
the video is labeled are displayed.

Figure 7-125 File labels

5. Click Back to Data Labeling Preview in the upper left corner of the page.
The labeling job details page is displayed, and the labeled video file is
displayed in the Labeled tab.

FAQs
Q: What can I do if the video dataset cannot be displayed or videos cannot be
played?

A: If this issue occurs, check the video format. Only MP4 videos can be displayed
and played.

Modifying Labeled Data
After labeling data, you can modify labeled data in the Labeled tab.

● In the Labeled tab, click the target video file. In the upper right corner of the
labeling page, click Label List to go to the File Labels page. You can click the
triangle icon on the right of the time point to view details, modify labels, and
delete labels.

● Modifying a label: On the File Labels area, click the edit button on the right
of a label to modify it.

● Deleting a label: On the File Labels area, click the delete button on the right
of a label to delete it. If you click the delete icon on the right of the image
time, all labels on the image are deleted.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 521

Figure 7-126 Modifying Labeled Data

Adding Video Files
In addition to the data synchronized, you can directly add data on labeling job
details page for labeling.

1. On the labeling job details page, click the Unlabeled or Labeled tab, click
Add data in the upper left corner.

2. Configure the data source, import mode, and other parameters, and click OK.

Figure 7-127 Importing data

Deleting a Video File
You can quickly delete the video files you want to discard.

In the All statuses, Unlabeled, or Labeled tab, select the video files to be deleted
or click Select Images on Current Page to select all video files on the page, and

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 522

click Delete in the upper part to delete the video files. In the displayed dialog box,
select or deselect Delete the source files from OBS as required. After
confirmation, click OK to delete the videos.

If a tick is displayed in the upper left corner of a video file, the video file is
selected. If no video file is selected on the page, the Delete button is unavailable.

NO TE

If you select Delete the source files from OBS, video files stored in the corresponding OBS
directory will be deleted when you delete the selected video files. Deleting source files may
affect other dataset versions or datasets using those files. As a result, the page display,
training, or inference is abnormal. Deleted data cannot be recovered. Exercise caution when
performing this operation.

7.10.6 Viewing Labeling Jobs

7.10.6.1 Viewing My Created Labeling Jobs

On the ModelArts Data Labeling page, view your created labeling jobs in the My
Creations tab.

Procedure
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data. The Data Labeling page is
displayed.

2. On the My Creations tab, view all labeling jobs created by you. You can view
information about these labeling jobs.

Figure 7-128 My Creations

Copying a Labeling Job
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data. The Data Labeling page is
displayed.

2. On the My Creations tab, locate the labeling job you want to copy.

3. Choose More > Copy in the Operation column of the job.

4. In the Copy Task dialog box, enter the job description and job name Task
name-copy-xxxx, where xxxx is a randomly generated code to distinguish the
new job from the copied job. You can also change the name of the new job.
Click Yes.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 523

5. After the labeling job is copied, you can obtain the new labeling job on the
labeling job list page. The new labeling job information includes the samples,
labels, and team labeling information.

7.10.6.2 Viewing My Participated Labeling Jobs

On the ModelArts Data Labeling page, view your participated labeling jobs in the
My Participations tab.

Prerequisites

Team labeling is enabled when a labeling job is created.

Procedure
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data. The Data Labeling page is
displayed.

2. Click the My Participations tab to view the labeling jobs you have
participated in, including the members in the labeling team and the labeling
progress.

7.11 Auto Labeling

7.11.1 Creating an Auto Labeling Job
In addition to manual labeling, ModelArts also provides the auto labeling function
to quickly label data, reducing the labeling time by more than 70%. Auto labeling

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 524

means learning and training are performed based on the labeled images and an
existing model is used to quickly label the remaining images.

Context
● Only labeling jobs of image classification and object detection types support

auto labeling.
● There are at least two types of labels in the labeling job for auto labeling, and

each label has been added to at least five images.
● At least one unlabeled image must exist when you enable auto labeling.
● Before starting an auto labeling job, ensure that no auto labeling job is in

progress.
● Before starting an auto labeling job, ensure that the image data does not

contain any RGBA four-channel images. These images will cause the job to
fail. Delete them from the dataset if you find any.

Starting an Auto Labeling Job
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Data Management > Label Data. The Data Labeling page is
displayed.

NO TE

Data management is being upgraded and is invisible to users who have not used data
management. To use data management, you are advised to submit a service ticket to
obtain the permissions.

2. In the labeling job list, locate the row containing a labeling job of the object
detection or image classification type and click Auto Labeling in the
Operation column.

3. On the Enable Auto Labeling page, select Active learning or Pre-labeling.
For details, see Table 7-33 and Table 7-34.

Table 7-33 Active learning

Paramet
er

Description

Auto
Labeling
Type

Active learning: The system uses semi-supervised learning and
hard example filtering to perform auto labeling, reducing
manual labeling workload and helping you find hard examples.

Algorith
m Type

For a dataset of the image classification type, set the following
parameters:
Fast: Use the labeled samples for training.
Precise: Use labeled and unlabeled samples for semi-supervised
training, which improves the model precision.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 525

Paramet
er

Description

Specificat
ions

Resource specifications used by an auto labeling job.
NOTE

Creating an auto labeling job is free, but you will be billed for OBS
storage based on usage. For details, see Product Pricing Details. To
avoid wasting resources, clear your OBS bucket after labeling jobs and
their subsequent tasks are complete.

Compute
Nodes

The default value is 1, indicating the single-node system mode.
Only this parameter value is supported.

Table 7-34 Pre-labeling

Paramet
er

Description

Auto
Labeling
Type

Pre-labeling: Select a model in the My AI Applications tab.
Ensure that the model type matches the dataset labeling type.
After the pre-labeling is complete, if the labeling result complies
with the standard labeling format defined by the platform, the
system filters hard examples. This step does not affect the pre-
labeling result.

Model
and
Version

● My AI Applications: Select a model as required. Click the
drop-down arrow on the left of the target AI application and
select a proper version. For details about how to import a
model, see Creating a Model

Specificat
ions

In the drop-down list, you can select the node specifications
supported by ModelArts.

Compute
Nodes

The default value is 1. You can select a value based on site
requirements. The maximum value is 5.

NO TE

For labeling jobs of the object detection type, only rectangular boxes can be
recognized and labeled when Active learning is selected.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 526

https://www.huaweicloud.com/intl/en-us/pricing/index.html#/modelarts
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/inference-modelarts-0003.html

Figure 7-129 Enabling auto labeling (image classification)

Figure 7-130 Enabling auto labeling (object detection)

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 527

Figure 7-131 Enabling auto labeling (pre-labeling)

4. After setting the parameters, click Submit to enable auto labeling.

5. In the labeling job list, click a labeling job name to go to the labeling job
details page.

6. Click the To Be Confirmed tab to view the auto labeling progress.

You can also enable auto labeling or view the auto labeling history in this tab.

Figure 7-132 Labeling progress

NO TE

If there are too many auto labeling jobs, they may have to wait in a queue due to
limited free resources. This means that they will stay in the labeling state until their
turn comes. To ensure that your labeling job can run properly, you are advised to avoid
peak hours.

7. After auto labeling is complete, all the labeled images are displayed on the To
Be Confirmed page.

– Image classification labeling job

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 528

On the To Be Confirmed page, check whether labels are correct, select
the correctly labeled images, and click OK to confirm the auto labeling
results. The confirmed image will be categorized to the Labeled page.

You can modify the labels of the images that are marked as hard
examples according to your needs. For details, see For labeling jobs of
the image classification type.

– Object detection labeling job

On the To Be Confirmed page, click images to view their labeling details
and check whether labels and target bounding boxes are correct. For the
correctly labeled images, click Labeled to confirm the auto labeling
results. The confirmed image will be categorized to the Labeled page.

You can modify the labels or target bounding boxes of the images
marked as hard examples according to your needs. For details, see For
labeling jobs of the object detection type.

FAQs
● What can I do if auto labeling fails?

Auto labeling is free of charge. If there are too many auto labeling jobs, they
may have to wait in a queue due to limited free resources. Create an auto
labeling job again or avoid peak hours.

● What can I do if auto labeling takes a long time?

Auto labeling is free of charge. If there are too many auto labeling jobs, they
may have to wait in a queue due to limited free resources. You are advised to
avoid peak hours.

7.11.2 Confirming Hard Examples
In a labeling task that processes a large amount of data, auto labeling results
cannot be directly used for training because the labeled images are insufficient at
the initial stage of labeling. It takes a lot of time and manpower to adjust and
confirm all unlabeled data one by one. To accelerate labeling progress, ModelArts
embeds an auto hard example detection function for labeling unlabeled data in an
auto labeling task. This function provides suggestions on labeling priorities for
remaining unlabeled images. The auto labeling result of an image with high
labeling priority is not as expected. Therefore, this case is called a hard example.

The auto hard example detection function is used to automatically label hard
examples during auto labeling and data collection and filtering. Further confirm
and label hard example data, and add labeling results to the training dataset to
obtain a trained model with higher precision. No manual intervention is required
for hard example detection, and you only need to confirm and modify the labeled
data, improving data management and labeling efficiency. In addition, you can
supplement data similar to hard examples to improve the variety of the dataset
and further improve the model training precision.

Hard example management involves three scenarios.

● Confirming Hard Examples After Auto Labeling

● Labeling Data in a Dataset as Hard Examples

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 529

NO TE

Only datasets of image classification and object detection types support the auto hard
example detection function.

Confirming Hard Examples After Auto Labeling

During the execution of an auto labeling task, ModelArts automatically detects
and labels hard examples. After the auto labeling task is complete, the labeling
results of hard examples are displayed in the To Be Confirmed tab. Modify hard
example data and confirm the labeling result.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose Data Management > Label Data. On the Data Labeling page,
click My Creations.

2. In the labeling job list, select a labeling job of the object detection or image
classification type and click the labeling job name to go to the labeling job
details page.

3. In the Labeling tab, click To Be Confirmed to check and confirm hard
examples.

NO TE

Labeling data is displayed in the To Be Confirmed tab only after the auto labeling
task is complete. Otherwise, no data is available in the tab. For details about auto
labeling, see Creating an Auto Labeling Job.

– For labeling jobs of the object detection type
In the To Be Confirmed tab, click an image to expand its labeling details.
Check whether labeling information is correct, for example, whether the
label is correct and whether the target bounding box is correctly added to
the right position. If the auto labeling result is inaccurate, manually
adjust the label or target bounding box and click Labeled. Then, the re-
labeled data is displayed in the Labeled tab.

– For labeling jobs of the image classification type
In the To Be Confirmed tab, check whether labels added to images with
the Hard example mark are correct. Select the images that are
incorrectly labeled, delete the incorrect labels, and add correct labels in
Label on the right. Click OK. The selected images and its labeling details
are displayed in the Labeled tab.
The selected images are incorrectly labeled. Delete the incorrect labels on
the right, add the dog label in Label, and click OK to confirm the hard
examples.

Labeling Data in a Dataset as Hard Examples

In a labeling job, labeled or unlabeled image data can be labeled as hard
examples. Data labeled as hard examples can be used to improve model precision
through built-in rules during subsequent model training.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose Data Management > Label Data. On the Data Labeling page,
click My Creations.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 530

2. In the labeling job list, select a labeling job of the object detection or image
classification type and click the labeling job name to go to the labeling job
details page.

3. On the labeling job details page, click the Labeled, Unlabeled, or All tab,
select the images to be labeled as hard examples, and choose Batch Process
Hard Examples > Confirm Hard Example. After the labeling is complete, a
Hard example mark will be displayed in the upper right corner of a preview
image.

7.12 Team Labeling

7.12.1 Team Labeling Overview
Generally, a small data labeling job can be completed by an individual. However,
team work is required to label a large dataset. ModelArts provides the team
labeling function. A labeling team can be formed to manage labeling for the same
dataset.

NO TE

Team labeling is available only to datasets for image classification, object detection, text
classification, named entity recognition, text triplet, and speech paragraph labeling.

For labeling jobs with team labeling enabled, you can create team labeling jobs
and assign them to different teams so that team members can complete the
labeling jobs together. During data labeling, members can initiate acceptance,
continue acceptance, and view acceptance reports.

Team labeling is managed in a unit of teams. To enable team labeling for a
dataset, a team must be specified. Multiple members can be added to a team.

● An account can have a maximum of 10 teams.

● An account must have at least one team to enable team labeling for datasets.
If the account has no team, add a team by referring to Adding a Team.

7.12.2 Creating and Managing Teams

7.12.2.1 Managing Teams

Team labeling is managed in a unit of teams. To enable team labeling for a
dataset, a team must be specified. Multiple members can be added to a team.

Context
● An account can have a maximum of 10 teams.

● An account must have at least one team to enable team labeling for datasets.
If the account has no team, add a team by referring to Adding a Team.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 531

Adding a Team
1. In the left navigation pane of the ModelArts management console, choose

Data Management > Labeling Teams. The Labeling Teams page is
displayed.

2. On the Labeling Teams page, click Add Team.
3. In the displayed Add Team dialog box, enter a team name and description

and click OK. The labeling team is added.
The new team is displayed on the Labeling Teams page. You can view team
details in the right pane. There is no member in the new team. Add members
to the new team by referring to Adding a Member.

Deleting a Team

You can delete a team that is no longer used.

On the Labeling Teams page, select the target team and click Delete. In the
dialog box that is displayed, click OK.

Figure 7-133 Deleting a team

7.12.2.2 Managing Team Members

There is no member in a new team. You need to add members who will
participate in a team labeling job.

A maximum of 100 members can be added to a team. If there are more than 100
members, add them to different teams for better management.

Adding a Member
1. In the left navigation pane of the ModelArts management console, choose

Data Management > Labeling Teams. The Labeling Teams page is
displayed.

2. On the Labeling Teams page, select a team from the team list on the left
and click a team name. The team details are displayed in the right pane.

3. In the Team Details area, click Add Member.
4. An email address uniquely identifies a team member. Different members

cannot use the same email address. The email address you enter will be
recorded and saved in ModelArts. It is used only for ModelArts team labeling.
After a member is deleted, the email address will also be deleted.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 532

Possible values of Role are Labeler, Reviewer, and Team Manager. Only one
Team Manager can be set.
No annotator cannot be deleted from a labeling team with labeling tasks
assigned. The labeling result of an annotator can be synchronized to the
overall labeling result only after the annotator's labeling is approved, and the
labeling result cannot be filtered.
Information about the added member is displayed in the Team Details area.

Modifying Member Information
You can modify member information if it is changed.

1. In the Team Details area, select the desired member.
2. In the row containing the desired member, click Modify in the Operation

column. In the displayed dialog box, modify the description or role.
The email address of a member cannot be changed. To change the email
address of a member, delete the member, and set a new email address when
adding a member.
Possible values of Role are Labeler, Reviewer, and Team Manager. Only one
Team Manager can be set.

Deleting Members
● Deleting a single member

In the Team Details area, select the desired member, and click Delete in the
Operation column. In the dialog box that is displayed, click OK.

● Batch Deletion
In the Team Details area, select members to be deleted and click Delete. In
the dialog box that is displayed, click OK.

Figure 7-134 Batch deletion

7.12.3 Creating a Team Labeling Job
If you enable team labeling when creating a labeling job and assign a team to
label the dataset, the system creates a labeling job based on the team by default.
After creating the labeling job, you can view the job on the My Creations tab
page of the dataset.

You can also create a team labeling job and assign it to different members in the
same team or to other labeling teams.

Methods
● Choose Data Management > Label Data on the console. When creating a

labeling job, enable Team Labeling and select a team or task manager.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 533

Figure 7-135 Enabling team labeling

● Choose Data Management > Datasets on the console. In the Operation
column of the target dataset, click Labeling. On the Create Labeling Job
page that is displayed, enable Team Labeling. You can create multiple team
labeling jobs for the same dataset.

Figure 7-136 Enabling team labeling

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 534

NO TE

● Team members receive emails for team labeling jobs. No email will be sent when
you create a labeling team or add members to a labeling team. Additionally, after
all samples are labeled, no email will be sent when you create a team labeling job.

● After a team labeling job is created, all unlabeled samples are assigned to
annotators randomly and evenly.

Procedure

You can create multiple team labeling jobs for the same dataset and assign them
to different members in the same team or to other labeling teams.

1. Log in to the ModelArts management console. In the left navigation pane,
choose Data Management > Datasets.

2. In the dataset list, select a dataset that supports team labeling, and click the
dataset name to go to the Dashboard tab page of the dataset.

3. In the Labeling Job area, view existing labeling jobs of the dataset. Click
Create to create a job.

Figure 7-137 Labeling Job

Alternatively, you can choose Data Management > Label Data and click
Create Labeling Job.

4. In the displayed Create Labeling Job page, set parameters and click Create.

– Name: Enter a job name.

– Labeling Scene: Select the type of the labeling job.

– Label Set: All existing labels and label attributes of the dataset are
displayed.

– Team Labeling: Click the button on the right and set the following
parameters:

▪ Type: Select a job type, Team or Task Manager.

▪ Select Team: If Type is set to Team, select a team and members for
labeling. The drop-down list displays the labeling teams and their
members created by the current account.

▪ Select Task Manager: If Type is set to Task Manager, select one
Team Manager member from all teams as the task manager.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 535

▪ Automatically synchronize new files to the team labeling task:
New files in the dataset will be automatically synchronized to the
labeling job that has been started.

▪ Automatically load the intelligent labeling results to files that
need to be labeled: Files are automatically labeled. Annotators can
then accept or modify the labels.

NO TE

The process of loading auto labeling results to a team labeling job is as
follows:
● If you set Type to Team, you are required to create a team labeling task

before executing the job.
● If you set Type to Task Manager, select a team labeling job on the My

Participations tab page and click Assign Task.

Figure 7-138 Creating a team labeling job

After the job is created, you can view the new job on the My Creations
tab page.

7.12.4 Logging In to ModelArts
Typically, users label data in Data Management of the ModelArts console. Data
Management provides data management capabilities such as dataset
management, data labeling, data import and export, auto labeling, and team

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 536

labeling and management. After a team labeling job is created, team members
can log in to the ModelArts console to view the job.

1. After a labeling job is created, receive a labeling notification email as a team
member to which the job is assigned.

2. Click the labeling job link in the email. The Data Management > Data
Labeling > My Participations tab page on the ModelArts console is
displayed. If you have not logged in to the console, log in to it first.

3. On the My Participations tab page, you can view your labeling jobs.

Figure 7-139 My Participations

The following table lists the data labeling access addresses. If a team member has
bound an email address, the team member can receive a job notification email
and access the data labeling console using the address provided in the email.

Table 7-35 ModelArts labeling address

Region URL of the data labeling console

CN-Hong
Kong

https://console-intl.huaweicloud.com/modelarts/?region=ap-
southeast-1&locale=en-us#/dataLabel?tabActive=labelConsole

AP-
Singapor
e

https://console-intl.huaweicloud.com/modelarts/?region=ap-
southeast-3&locale=en-us#/dataLabel?tabActive=labelConsole

AP-
Bangkok

https://console-intl.huaweicloud.com/modelarts/?region=ap-
southeast-2&locale=en-us#/dataLabel?tabActive=labelConsole

Upon your login, only the team labeling jobs and related data of the current user
(the mailbox user) are displayed.

7.12.5 Starting a Team Labeling Job
After logging in to the data labeling page on the management console, you can
click the My Participations tab page to view the assigned labeling job and click
the job name to go to the labeling page. The labeling method varies depending on
the labeling job type. For details, see the following:

● Image Classification
● Object Detection
● Text Classification
● Named Entity Recognition
● Text Triplet

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 537

● Speech Paragraph Labeling

On the labeling page, each member can view the images that are not labeled, to
be confirmed, rejected, to be reviewed, approved, and accepted. Pay attention to
the images rejected by the administrator and the images to be corrected.

If the Reviewer role is assigned for a team labeling job, the labeling result needs
to be reviewed. After the labeling result is reviewed, it is submitted to the
administrator for acceptance.

Figure 7-140 Labeling platform

7.12.6 Reviewing Team Labeling Results
After team labeling is complete, the reviewer can review the labeling result.

1. Log in to the ModelArts management console. In the navigation pane, choose
Data Management > Label Data. On the Data Labeling page, click My
Participations. Locate the row containing the target labeling job and click
Review in the Operation column to initiate the review.

Figure 7-141 Initiating review

2. On the review page, check the samples that are not reviewed, reviewed,
approved, or rejected.

Figure 7-142 Labeling result review

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 538

3. Choose Confirm or Reject on the right of the review page.
If you choose Confirm, set Rating to A, B, C, or D. Option A indicates the
highest score. If you choose Reject, enter the rejection reason in the text box.

7.12.7 Accepting Team Labeling Results

Task Acceptance (Administrator)
● Initiating acceptance

After team members complete data labeling, the labeling job creator can
initiate acceptance to check labeling results. The acceptance can be initiated
only when a labeling member has labeled data. Otherwise, the acceptance
initiation button is unavailable.

a. Log in to the ModelArts management console. In the left navigation
pane, choose Data Management > Label Data.

b. On the My Participations tab page, click a team labeling job to go to its
details page. Choose Team Labeling > Accept in the upper right corner.

Figure 7-143 Initiating acceptance

c. In the displayed dialog box, set Sample Policy to By percentage or By
quantity. Click OK to start the acceptance.
By percentage: Sampling is performed based on a percentage for
acceptance.
By quantity: Sampling is performed based on quantity for acceptance.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 539

Figure 7-144 Initiating acceptance

d. After the acceptance is initiated, an acceptance report is displayed on the
console. In the Acceptance Result area on the right, click Pass or Reject.
If you click Pass, set Rating to A, B, C, or D. Option A indicates the
highest score. See Figure 7-146. If you click Reject, enter your rejection
reasons in the text box. See Figure 7-147.

Figure 7-145 Viewing a real-time acceptance report

Figure 7-146 Pass

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 540

Figure 7-147 Reject

● Continuing acceptance
You can continue accepting tasks whose acceptance is not completed. For
tasks for which an acceptance process is not initiated, the Continue
Acceptance button is unavailable.
In the Labeling Progress pane on the Task Statistics tab page, click
Continue Acceptance to continue accepting jobs. The Real-Time Acceptance
Report page is displayed. You can continue to accept the images that are not
accepted.

● Finishing acceptance
After the continue acceptance is complete, click Stop Acceptance in the
upper right corner. On the page that is displayed, view the acceptance status
of the labeling job, such as the number of sampled files, configure
parameters, and perform the acceptance. The labeling information is
synchronized to the Labeled tab page of the labeling job only after the
acceptance is complete.
Once the labeled data is accepted, team members cannot modify the labeling
information. Only the dataset creator can modify the labeling information.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 541

Table 7-36 Parameters for finishing acceptance

Parameter Description

Modifying
Labeled Data

● Not overwrite: For the same data, do not overwrite
the existing data with the labeling result of the
current team.

● Overlays: For the same data, overwrite the existing
data with the labeling result of the current team.
Overwritten data cannot be recovered.

Acceptance Scope ● All passed: All items, including the rejected ones will
pass the review.

● All rejects: All items, including the ones that have
passed the review will be rejected. In this case, the
passed items must be labeled and reviewed again in
the next acceptance.

● All remaining items pass: The rejected items are
still rejected, and the remaining items will
automatically pass the review.

● All remaining items rejects: The selected items that
have passed the review do not need to be labeled.
All the selected items that have been rejected and
the items that have not been selected must be
labeled again for acceptance.

Figure 7-148 Finishing acceptance

Viewing an Acceptance Report
You can view the acceptance report of an ongoing or finished labeling job. Log in
to the management console and choose Data Management > Label Data. On
the Data Labeling page, select My Creations and click the name of a team
labeling job. The job details page is displayed. In the upper right corner of the
page, click Acceptance Report. In the displayed dialog box, view report details.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 542

Figure 7-149 Viewing an acceptance report

Deleting a Labeling Job
After a job is accepted, delete it if the labeling job is no longer used. After a job is
deleted, the labeling details that are not accepted will be lost. However, the
original data in the dataset and the labeled data that has been accepted are still
stored in the corresponding OBS bucket.

ModelArts
User Guide (ModelArts Standard) 7 Data Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 543

8 Model Training

8.1 Model Training Process
AI modeling involves two stages:

● Development: Prepare and configure the environment, and debug code for
training based on deep learning. ModelArts DevEnviron is recommended for
code debugging.

● Experiment: Optimize the datasets and hyperparameters, and obtain an ideal
model through multiple rounds of experiments. The ModelArts training
platform is recommended for training.

In the two stages, code is designed, developed and tested in repeated cycles. In
the development stage, when the code becomes stable, the modeling process
enters the experiment stage, during which hyperparameters are continuously
optimized to iterate the model. In the experiment stage, when the training
performance can be optimized, the modeling process returns to the development
stage for optimizing code.

Figure 8-1 Model development process

ModelArts provides model training, which allows you to view training results and
tune model parameters based on the training results. You can select resource
pools with different instance flavors for model training.

To train a model on ModelArts Standard, follow these steps:

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 544

Figure 8-2 ModelArts Standard model training process

Table 8-1 ModelArts Standard model training process

Task Subtask Description

Making
preparatio
ns

Preparing
training
code

Model training includes training code, training
framework, and training data.
Training code contains the boot file or command and
dependency package of a training job.
● To use a preset image to create a training job,

develop training code by referring to Developing
Code for Training Using a Preset Image.

● To use a custom image to create a training job,
develop training code by referring to Developing
Code for Training Using a Custom Image.

Preparing
a training
image

There are multiple training image sources. For
details, see Preparing a Model Training Image.
● ModelArts Standard offers mainstream preset

images for model training, ready for immediate
use.

● If the preset images do not meet your needs,
create custom images.

Preparing
training
data

Before training, prepare necessary data, which can be
datasets or predictive models.
● Upload your training data to OBS if it does not

need further processing. To create a training job,
enter the OBS bucket path directly as the input
parameter path.

● Import your unlabeled or unpreprocessed training
dataset to ModelArts data management for
processing. To create a training job, choose your
dataset in data management as the input
parameter.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 545

Task Subtask Description

Creating a
debug
training
job

Creating a
debug
training
job

Before model training, debug your code. ModelArts
offers multiple methods for creating a debug training
job.
● With ModelArts, you can easily access JupyterLab

in the cloud without worrying about environment
installation or configuration.

● After enabling remote SSH, you can remotely
access a training job for debugging from a local
IDE. This method does not affect your coding
habits. Debugged code can be used for production
training at zero cost. ModelArts supports local IDE
PyCharm. For details, see Using PyCharm Toolkit
to Create and Debug a Training Job.

Creating
an
algorithm

Creating
an
algorithm

Before creating a production training job, create an
algorithm or subscribe to an algorithm from AI
Gallery.

Creating a
production
training
job

Using
basic
training
features

● You can create a training job on the ModelArts
Standard console. There are multiple algorithm
types and training frameworks for you to select.
For details, see Table 8-2.

● ModelArts Standard also allows you to create
training jobs using APIs. For details, see Using
PyTorch to Create a Training Job (New-Version
Training).

Using
advanced
training
features

ModelArts Standard supports the following advanced
training features:
● Incremental learning
● Distributed training
● Training acceleration
● High training reliability

Viewing
training
results and
logs

Viewing
training
job details

You can view a training job's parameter settings and
events on the job details page at any time, whether
the job is running or has completed.

Viewing
training
job logs

Training logs track the execution and any errors that
occur during training job runs. You can view these
logs to identify and troubleshoot issues that cause
jobs to fail.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 546

https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0407.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0407.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0407.html

Table 8-2 Methods of creating a training job

Creation Method Description

Using a preset image to
create a training job

If you have used some mainstream images to
develop algorithms locally, you can select a
mainstream image and create a training job to
build a model.

Using a custom image to
create a training job

To use a non-mainstream image, create a custom
algorithm image and then use it to create a
training job.

Using an existing algorithm
to create a training job

In Algorithm Management, you can manage your
created algorithms and those subscribed from AI
Gallery. This allows you to quickly create training
jobs and build models using these algorithms.

Using a subscribed
algorithm to create a
training job

You can subscribe to algorithms in AI Gallery to
quickly create training jobs and build models.

8.2 Preparing Model Training Code

8.2.1 Starting a Preset Image's Boot File
ModelArts Standard offers multiple AI images for model training, which can be
adapted by modifying their boot commands.

This section describes how to modify the boot file when creating a training job
using different preset images.

Ascend-Powered-Engine Boot Principles
Ascend-Powered-Engine is a unique engine that combines multiple AI frameworks,
runtime environments, and boot modes tailored to Ascend accelerator chips.

Major Snt9 Ascend accelerators run on Arm-backed CPU servers, which means the
upper-layer Docker images are Arm images. The NVIDIA CUDA (unified computing
architecture) compute library is installed in images for GPU scenarios. The Huawei
CANN (heterogeneous computing architecture) compute library is installed in
images powered by the Ascend-Powered-Engine, adapting to the Ascend driver.

After a training job is submitted, ModelArts Standard automatically runs the boot
file.

The default boot mode of the boot file of the Ascend-Powered-Engine framework
is as follows:

The number of times the boot file runs for each training job depends on the
number of cards used. When a job is running, the boot file is executed once for
each card. For example, in a single-node job with one card, the boot file runs once.
In a single-node job with eight cards, it runs eight times. So, do not listen on ports
in the boot file.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 547

The following environment variables are automatically configured in the boot file:

● RANK_TABLE_FILE: path of the rank table file.
● ASCEND_DEVICE_ID: logical device ID. For example, for single-card training,

the value is always 0.
● RANK_ID: logical (sequential) number of a device in a training job.
● RANK_SIZE: Set this parameter based on the number of devices in the rank

table file. For example, the value is 4 for 4 snt9b devices.

To ensure the boot file runs only once, check the ASCEND_DEVICE_ID value. If it is
0, execute the logic; otherwise, exit directly.

For details about the example code file mindspore-verification.py of the Ascend-
Powered-Engine framework, see Training the mindspore-verification.py File.

The command for starting Ascend-Powered-Engine in standalone mode is the
same as that in distributed mode.

The Ascend-Powered-Engine framework offers multiple boot modes. By default,
the boot file is executed based on RANK_TABLE_FILE. You can also configure the
MA_RUN_METHOD environment variable to run the boot file using alternative
methods. The MA_RUN_METHOD environment variable can be set to torchrun
and msrun.

● If MA_RUN_METHOD is set torchrun, ModelArts Standard uses the torchrun
command to run the boot file.

NO TE

The PyTorch version must be 1.11.0 or later.

– For single-node jobs, ModelArts Standard uses these commands to start
the boot file:
torchrun --standalone --nnodes=${MA_NUM_HOSTS} --nproc_per_node=${MA_NUM_GPUS} $
{MA_EXTRA_TORCHRUN_PARAMS} "Boot file" {arg1} {arg2} ...

– For multi-node jobs, ModelArts Standard uses these commands to start
the boot file:
torchrun --nnodes=${MA_NUM_HOSTS} --nproc_per_node=${MA_NUM_GPUS} --node_rank=$
{VC_TASK_INDEX} --master_addr={master_addr} --master_port=$
{MA_TORCHRUN_MASTER_PORT} --rdzv_id={ma_job_name} --rdzv_backend=static $
{MA_EXTRA_TORCHRUN_PARAMS} "Boot file" {arg1} {arg2} ...

Parameters:
– standalone: identifier of a single-node job.
– nnodes: number of task nodes.
– nproc_per_node: number of main processes started by each task node.

Set this parameter to the number of NPUs allocated to the task.
– node_rank: task rank, which is used for multi-task distributed training.
– master_addr: address of the main task (rank 0). Set it to the

communication domain name of worker-0.
– master_port: port used for communication during distributed training on

the main task (rank 0). The default value is 18888. When a master_port
conflict occurs, you can modify the port configuration by configuring the
MA_TORCHRUN_MASTER_PORT environment variable.

– rdzv_id: Rendezvous ID. Set it to a value with the training job ID.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 548

– rdzv_backend: Rendezvous backend, which is fixed at static. That is,
master_addr and master_port are used instead of Rendezvous.
Additionally, you can configure the MA_EXTRA_TORCHRUN_PARAMS
environment variable to add additional torchrun command parameters
or overwrite the preset torchrun command parameters. The following is
an example of configuring the rdzv_conf parameter in the torchrun
command:
"environments": {
"MA_RUN_METHOD": "torchrun",
"MA_EXTRA_TORCHRUN_PARAMS": "--rdzv_conf=timeout=7200"
}

NO TE

If the RuntimeError: Socket Timeout error occurs during the distributed process
group initialization using torchrun, you can add the following environment variables
to create a training job again to view initialization details and further locate the fault.

● LOGLEVEL=INFO

● TORCH_CPP_LOG_LEVEL=INFO

● TORCH_DISTRIBUTED_DEBUG=DETAIL

The RuntimeError: Socket Timeout error is caused by a significant time discrepancy
between tasks when running the torchrun command. The time discrepancy is usually
caused by initialization tasks, like downloading the training data and checkpoint read/
write, which happen before the torchrun command is run. If the time taken to
complete these initialization tasks varies significantly, a Socket Timeout error may
occur. When this error happens, check the time difference between the torchrun
execution points for each task. If the time difference is too large, optimize the
initialization process before running the torchrun command to ensure a reasonable
time gap.

● If MA_RUN_METHOD is set msrun, ModelArts Standard uses the msrun
command to run the boot file.

NO TE

The MindSpore version must be 2.3.0 or later.

This solution supports dynamic networking and rank table file-based
networking. If you set the environment variable MS_RANKTABLE_ENABLE to
True, msrun reads the rank table file for networking. Otherwise, dynamic
networking is used by default.
msrun uses these commands to start the boot file:
msrun --worker_num=${msrun_worker_num} --local_worker_num=${MA_NUM_GPUS} --master_addr=
${msrun_master_addr} --node_rank=${VC_TASK_INDEX} --master_port=${msrun_master_port} --
log_dir=${msrun_log_dir} --join=True --cluster_time_out=${MSRUN_CLUSTER_TIME_OUT} --
rank_table_file=${msrun_rank_table_file} "Boot file" {arg1} {arg2} ...

Parameters:
– worker_num: total number of processes, which is also equivalent to the

number of cards involved, as each card initiates a process.
– local_worker_num: number of processes on the current node, which is

also the number of cards used by the current node.
– master_addr: IP address of the node where the msrun scheduling

process is located. This parameter does not need to be configured for
single-node jobs.

– master_port: port number of the msrun scheduling process.
– node_rank: ID of the current node.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 549

– log_dir: log output directory of msrun and all processes.
– join: whether the msrun process still exists after the training process is

started. The default value is True, indicating that the msrun process exits
after all processes exit.

– cluster_time_out: timeout interval of the cluster networking. The default
value is 600s. The value can be controlled by the
MSRUN_CLUSTER_TIME_OUT environment variable.

– rank_table_file: address of the rank table file. If the environment variable
MS_RANKTABLE_ENABLE is set to True, this parameter is added during
startup.

PyTorch-GPU Boot Principles
For single-node multi-card scenarios, the platform adds the --init_method "tcp://
<ip>:<port>" parameter to the boot file.

For multi-node multi-card scenarios, the platform adds the --init_method "tcp://
<ip>:<port>" --rank <rank_id> --world_size <node_num> parameter to the boot
file.

The preceding parameters must be parsed in the boot file.

For details about the code example of the PyTorch-GPU framework, see "Method
1" in Example: Creating a DDP Distributed Training Job (PyTorch + GPU).

TensorFlow-GPU Boot Principles
For a single-node job, ModelArts starts a training container that exclusively uses
the resources on the node.

For a multi-node job, ModelArts starts a parameter server and a worker on the
same node. It allocates parameter server and worker tasks in a 1:1 ratio. For
example, in a two-node job, two parameter servers and two workers are allocated.
ModelArts also injects the following parameters into the boot file:
--task_index <VC_TASK_INDEX> --ps_hosts <TF_PS_HOSTS> --worker_hosts <TF_WORKER_HOSTS> --
job_name <MA_TASK_NAME>

The following parameters must be parsed in the boot file.

● VC_TASK_INDEX: task serial number, for example, 0, 1, or 2.
● TF_PS_HOSTS: addresses of parameter server nodes, for example, [xx-

ps-0.xx:TCP_PORT,xx-ps-1.xx:TCP_PORT]. The value of TCP_PORT is a random
port ranging from 5,000 to 10,000.

● TF_WORKER_HOSTS: addresses of worker nodes, for example, [xx-
worker-0.xx:TCP_PORT,xx-worker-1.xx:TCP_PORT]. The value of TCP_PORT is
a random port ranging from 5,000 to 10,000.

● MA_TASK_NAME: task name, which can be ps or worker.

For details, see the example code file mnist.py (single-node) of the
TensorFlow-GPU framework.

Horovod/MPI/MindSpore-GPU
ModelArts uses mpirun to run boot files for Horovod, MPI, or MindSpore-GPU. To
use a preset engine in ModelArts Standard, simply edit the boot file (training

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 550

script). ModelArts Standard automatically builds the mpirun command and
training job cluster. The platform does not add extra parameters to the boot file.

Example of pytorch_synthetic_benchmark.py:

import argparse
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data.distributed
from torchvision import models
import horovod.torch as hvd
import timeit
import numpy as np

Benchmark settings
parser = argparse.ArgumentParser(description='PyTorch Synthetic Benchmark',
 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
 help='use fp16 compression during allreduce')

parser.add_argument('--model', type=str, default='resnet50',
 help='model to benchmark')
parser.add_argument('--batch-size', type=int, default=32,
 help='input batch size')

parser.add_argument('--num-warmup-batches', type=int, default=10,
 help='number of warm-up batches that don\'t count towards benchmark')
parser.add_argument('--num-batches-per-iter', type=int, default=10,
 help='number of batches per benchmark iteration')
parser.add_argument('--num-iters', type=int, default=10,
 help='number of benchmark iterations')

parser.add_argument('--no-cuda', action='store_true', default=False,
 help='disables CUDA training')

parser.add_argument('--use-adasum', action='store_true', default=False,
 help='use adasum algorithm to do reduction')

args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()

hvd.init()

if args.cuda:
 # Horovod: pin GPU to local rank.
 torch.cuda.set_device(hvd.local_rank())

cudnn.benchmark = True

Set up standard model.
model = getattr(models, args.model)()

By default, Adasum doesn't need scaling up learning rate.
lr_scaler = hvd.size() if not args.use_adasum else 1

if args.cuda:
 # Move model to GPU.
 model.cuda()
 # If using GPU Adasum allreduce, scale learning rate by local_size.
 if args.use_adasum and hvd.nccl_built():
 lr_scaler = hvd.local_size()

optimizer = optim.SGD(model.parameters(), lr=0.01 * lr_scaler)

Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none

Horovod: wrap optimizer with DistributedOptimizer.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 551

optimizer = hvd.DistributedOptimizer(optimizer,
 named_parameters=model.named_parameters(),
 compression=compression,
 op=hvd.Adasum if args.use_adasum else hvd.Average)

Horovod: broadcast parameters & optimizer state.
hvd.broadcast_parameters(model.state_dict(), root_rank=0)
hvd.broadcast_optimizer_state(optimizer, root_rank=0)

Set up fixed fake data
data = torch.randn(args.batch_size, 3, 224, 224)
target = torch.LongTensor(args.batch_size).random_() % 1000
if args.cuda:
 data, target = data.cuda(), target.cuda()

def benchmark_step():
 optimizer.zero_grad()
 output = model(data)
 loss = F.cross_entropy(output, target)
 loss.backward()
 optimizer.step()

def log(s, nl=True):
 if hvd.rank() != 0:
 return
 print(s, end='\n' if nl else '')

log('Model: %s' % args.model)
log('Batch size: %d' % args.batch_size)
device = 'GPU' if args.cuda else 'CPU'
log('Number of %ss: %d' % (device, hvd.size()))

Warm-up
log('Running warmup...')
timeit.timeit(benchmark_step, number=args.num_warmup_batches)

Benchmark
log('Running benchmark...')
img_secs = []
for x in range(args.num_iters):
 time = timeit.timeit(benchmark_step, number=args.num_batches_per_iter)
 img_sec = args.batch_size * args.num_batches_per_iter / time
 log('Iter #%d: %.1f img/sec per %s' % (x, img_sec, device))
 img_secs.append(img_sec)

Results
img_sec_mean = np.mean(img_secs)
img_sec_conf = 1.96 * np.std(img_secs)
log('Img/sec per %s: %.1f +-%.1f' % (device, img_sec_mean, img_sec_conf))
log('Total img/sec on %d %s(s): %.1f +-%.1f' %
 (hvd.size(), device, hvd.size() * img_sec_mean, hvd.size() * img_sec_conf))

run_mpi.sh is as follows:

#!/bin/bash
MY_HOME=/home/ma-user

MY_SSHD_PORT=${MY_SSHD_PORT:-"36666"}

MY_MPI_BTL_TCP_IF=${MY_MPI_BTL_TCP_IF:-"eth0,bond0"}

MY_TASK_INDEX=${MA_TASK_INDEX:-${VC_TASK_INDEX:-${VK_TASK_INDEX}}}

MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"}

MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process"

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 552

if [-z ${MY_MPI_SLOTS}]; then
 echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1"
 MY_MPI_SLOTS="1"
fi

printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: $
{MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n"

env | grep -E '^MA_|SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > $
{MY_MPI_TUNE_FILE}
add -x to each line
sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE}

sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config

start sshd service
bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config"

confirm the sshd is up
netstat -anp | grep LIS | grep ${MY_SSHD_PORT}

if [$MY_TASK_INDEX -eq 0]; then
 # generate the hostfile of mpi
 for ((i=0; i<$MA_NUM_HOSTS; i++))
 do
 eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME}
 echo "[run_mpi] hostname: ${hostname}"

 ip=""
 while [-z "$ip"]; do
 ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g')
 sleep 1
 done
 echo "[run_mpi] resolved ip: ${ip}"

 # test the sshd is up
 while :
 do
 if [cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT}]; then
 break
 fi
 sleep 1
 done

 echo "[run_mpi] the sshd of ip ${ip} is up"

 echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile
 done

 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
fi

RET_CODE=0

if [$MY_TASK_INDEX -eq 0]; then

 echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S")

 np=$((${MA_NUM_HOSTS} * ${MY_MPI_SLOTS}))

 echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-p $
{MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@"

 # execute mpirun at worker-0
 # mpirun
 mpirun \
 -np ${np} \
 -hostfile ${MY_HOME}/hostfile \
 -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 553

 -tune ${MY_MPI_TUNE_FILE} \
 -bind-to none -map-by slot \
 -x NCCL_DEBUG=INFO -x NCCL_SOCKET_IFNAME=${MY_MPI_BTL_TCP_IF} -x
NCCL_SOCKET_FAMILY=AF_INET \
 -x HOROVOD_MPI_THREADS_DISABLE=1 \
 -x LD_LIBRARY_PATH \
 -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \
 "$@"

 RET_CODE=$?

 if [$RET_CODE -ne 0]; then
 echo "[run_mpi] exec command failed, exited with $RET_CODE"
 else
 echo "[run_mpi] exec command successfully, exited with $RET_CODE"
 fi

 # stop 1...N worker by killing the sleep proc
 sed -i '1d' ${MY_HOME}/hostfile
 if [`cat ${MY_HOME}/hostfile | wc -l` -ne 0]; then
 echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc"

 sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile
 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"

 mpirun \
 --hostfile ${MY_HOME}/hostfile \
 --mca btl_tcp_if_include ${MY_MPI_BTL_TCP_IF} \
 --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -x PATH -x LD_LIBRARY_PATH \
 pkill sleep \
 > /dev/null 2>&1
 fi

 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
else
 echo "[run_mpi] the training log is in worker-0"
 sleep 365d
 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
fi

exit $RET_CODE

8.2.2 Developing Code for Training Using a Preset Image
Before you use a preset image in ModelArts Standard to create an algorithm,
develop the algorithm code. This section describes how to modify local code for
model training on ModelArts.

When creating an algorithm, set the code directory, boot file, input path, and
output path. These settings enable the interaction between your codes and
ModelArts Standard.

● Code directory
Specify the code directory in the OBS bucket and upload training data such as
training code, dependency installation packages, or pre-generated model to
the directory. After you create the training job, ModelArts downloads the code
directory and its subdirectories to the container.
Take OBS path obs://obs-bucket/training-test/demo-code as an example.
The content in the OBS path will be automatically downloaded to $
{MA_JOB_DIR}/demo-code in the training container, and demo-code
(customizable) is the last-level directory of the OBS path.
Do not store training data in the code directory. When the training job starts,
the data stored in the code directory will be downloaded to the backend. A

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 554

large amount of training data may lead to a download failure. It is
recommended that the size of the code directory does not exceed 50 MB.

● Boot file
The boot file in the code directory is used to start the training. Only Python
boot files are supported. For details about the boot process of the boot file of
a preset image, see Starting a Preset Image's Boot File.

● Input path
The training data must be uploaded to an OBS bucket or stored in the
dataset. In the training code, the input path must be parsed. ModelArts
automatically downloads the data in the input path to the local container
directory for training. Ensure that you have the read permission to the OBS
bucket. After the training job is started, ModelArts mounts a disk to the /
cache directory. You can use this directory to store temporary files. For details
about the size of the /cache directory, see What Are Sizes of the /cache
Directories for Different Resource Specifications in the Training
Environment?

● Output path
You are advised to set an empty directory as the training output path. In the
training code, the output path must be parsed. ModelArts automatically
uploads the training output to the output path. Ensure that you have the
write and read permissions to the OBS bucket.

The following section describes how to develop training code in ModelArts.

(Optional) Introducing Dependencies
1. If your model references other dependencies, place the required file or

installation package in Code Directory you set during algorithm creation.
– For details about how to install the Python dependency package, see

How Do I Create a Training Job When a Dependency Package Is
Referenced by the Model to Be Trained?

– For details about how to install a C++ dependency library, see How Do I
Install a Library That C++ Depends on?

– For details about how to load parameters to a pre-trained model, see
How Do I Load Some Well Trained Parameters During Job Training?

Parsing Input and Output Paths
When a ModelArts Standard training job reads data stored in OBS or outputs
training results to a specified OBS path, perform the following operations to
configure the input and output data:

1. Parse the input and output paths in the training code. The following method
is recommended:
import argparse
Create a parsing task.
parser = argparse.ArgumentParser(description='train mnist')

Add parameters.
parser.add_argument('--data_url', type=str, default="./Data/mnist.npz", help='path where the dataset
is saved')
parser.add_argument('--train_url', type=str, default="./Model", help='path where the model is saved')

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 555

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0090.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0090.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0090.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0063.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0063.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0088.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0088.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0091.html

Parse the parameters.
args = parser.parse_args()

After the parameters are parsed, use data_url and train_url to replace the
paths to the data source and the data output, respectively.

2. When creating a training job, set the input and output paths.
Select the OBS path or dataset path as the training input, and the OBS path
as the output.

Complete Training Code Example
The training code is closely related to the AI engine you use. The following uses
the TensorFlow framework as an example. Before using this case, you need to
download the mnist.npz file and upload it to the OBS bucket. The training input
is the OBS path where the mnist.npz file is stored.

The following training code example contains the code for saving the model.

import os
import argparse
import tensorflow as tf

parser = argparse.ArgumentParser(description='train mnist')
parser.add_argument('--data_url', type=str, default="./Data/mnist.npz", help='path where the dataset is
saved')
parser.add_argument('--train_url', type=str, default="./Model", help='path where the model is saved')
args = parser.parse_args()

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url)
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)
])

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
model.compile(optimizer='adam',
 loss=loss_fn,
 metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)

model.save(os.path.join(args.train_url, 'model'))

8.2.3 Developing Code for Training Using a Custom Image
If the preset images offered by ModelArts Standard do not meet your needs,
create custom images for model training.

Customizing an image requires a deep understanding of containers. Use this
method only if the subscribed algorithms and preset images cannot meet your
requirements. Custom images can be used to train models in ModelArts Standard
only after they are uploaded to the Software Repository for Container (SWR).

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 556

https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

Boot Command Specifications for Custom Images
You can create an image based on the ModelArts image specifications, select your
own image and configure the code directory (optional) and boot command to
create a training job.

Figure 8-3 Selecting a custom image

NO TE

When you use a custom image to create a training job, the boot command must be
executed in the /home/ma-user directory. Otherwise, the training job may run abnormally.

conda env starts training jobs created using custom images. Training jobs do not
run in a shell. Therefore, you are not allowed to run the conda activate command
to activate a specified Conda environment. In this case, use other methods to start
training. For example, Conda in your custom image is installed in the /home/ma-
user/anaconda3 directory, the Conda environment is python-3.7.10, and the
training script is stored in /home/ma-user/modelarts/user-job-dir/code/train.py.
Use a specified Conda environment to start training in one of the following ways:

● Method 1: Configure the correct DEFAULT_CONDA_ENV_NAME and
ANACONDA_DIR environment variables for the image.
ANACONDA_DIR=/home/ma-user/anaconda3
DEFAULT_CONDA_ENV_NAME=python-3.7.10

Run the python command to start the training script. The following shows an
example:
python /home/ma-user/modelarts/user-job-dir/code/train.py

● Method 2: Use the absolute path of Conda environment Python.
Run the /home/ma-user/anaconda3/envs/python-3.7.10/bin/python
command to start the training script. The following shows an example:
/home/ma-user/anaconda3/envs/python-3.7.10/bin/python /home/ma-user/modelarts/user-job-dir/
code/train.py

● Method 3: Configure the PATH environment variable.
Configure the bin directory of the specified Conda environment into the path
environment variable. Run the python command to start the training script.
The following shows an example:
export PATH=/home/ma-user/anaconda3/envs/python-3.7.10/bin:$PATH; python /home/ma-user/
modelarts/user-job-dir/code/train.py

● Method 4: Run the conda run -n command.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 557

Run the /home/ma-user/anaconda3/bin/conda run -n python-3.7.10
command to execute the training. The following shows an example:
/home/ma-user/anaconda3/bin/conda run -n python-3.7.10 python /home/ma-user/modelarts/user-
job-dir/code/train.py

NO TE

If there is an error indicating that the .so file is unavailable in the $ANACONDA_DIR/envs/
$DEFAULT_CONDA_ENV_NAME/lib directory, add the directory to LD_LIBRARY_PATH and
place the following command before the preceding boot command:
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/
lib:$LD_LIBRARY_PATH;

For example, the example boot command used in method 1 is as follows:
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/
lib:$LD_LIBRARY_PATH; python /home/ma-user/modelarts/user-job-dir/code/train.py

Training Code Adaptation Specifications for Training Using an Ascend-
powered Custom Image

When creating a training job that uses NPU resources, the system automatically
generates the Ascend HCCL RANK_TABLE_FILE file in the training container.
When using a preset image, Ascend HCCL RANK_TABLE_FILE is automatically
parsed during training. When using a custom image, the training code must be
modified to read and parse Ascend HCCL RANK_TABLE_FILE.

Ascend HCCL RANK_TABLE_FILE file description

Ascend HCCL RANK_TABLE_FILE provides the cluster used by Ascend distributed
training jobs. It is used for distributed communication between Ascend chips and
can be parsed by Huawei Collective Communication Library (HCCL). The file has
two format versions: template 1 and template 2.

● ModelArts provides the template 2 format. The Ascend HCCL
RANK_TABLE_FILE file in the ModelArts training environment is named
jobstart_hccl.json. You can access this file using the preset RANK_TABLE_FILE
environment variable.

Table 8-3 RANK_TABLE_FILE environment variables

Environment
Variable

Description

RANK_TABLE_FI
LE

Directory of Ascend HCCL RANK_TABLE_FILE, which is /
user/config.
Obtain the file using ${RANK_TABLE_FILE}/
jobstart_hccl.json.

Example of the jobstart_hccl.json file content in the ModelArts training
environment (template 2):
{
 "group_count": "1",
 "group_list": [{
 "device_count": "1",
 "group_name": "job-trainjob",
 "instance_count": "1",

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 558

 "instance_list": [{
 "devices": [{
 "device_id": "4",
 "device_ip": "192.1.10.254"
 }],
 "pod_name": "jobxxxxxxxx-job-trainjob-0",
 "server_id": "192.168.0.25"
 }]
 }],
 "status": "completed"
}

In jobstart_hccl.json, the status value may not be completed when the
training script is started. In this case, wait until the status value changes to
completed and read the remaining content of the file.

● After the status field is completed, use the training script to convert the
jobstart_hccl.json file from template 2 to template 1 format.
Format of the jobstart_hccl.json file after format conversion (template 1):
{
 "server_count": "1",
 "server_list": [{
 "device": [{
 "device_id": "4",
 "device_ip": "192.1.10.254",
 "rank_id": "0"
 }],
 "server_id": "192.168.0.25"
 }],
 "status": "completed",
 "version": "1.0"
}

Mount Points of a Training Job in a Container
When training a model with a custom image, the mount points in the container
are shown in Table 8-4.

Table 8-4 Training job mount points

Mount Point Read Only Remarks

/xxx No Directory where a dedicated resource
pool mounts an SFS disk. You can specify
this directory.

/home/ma-user/
modelarts

No This folder is empty. You should use it as
the main directory.

/cache No Used to mount the hard disk of the host
NVMe (supported by bare metal
specifications).

/dev/shm No Used for PyTorch engine acceleration

/usr/local/nvidia Yes NVIDIA library of the host machine.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 559

8.2.4 Configuring Password-free SSH Mutual Trust Between
Nodes for a Training Job Created Using a Custom Image

If you use a custom image based on the MPI or Horovod framework for
distributed training, you must configure password-free SSH mutual trust between
training job nodes. Otherwise, the training will fail.

This involves code adaptation and training job parameter configuration.

1. Create a custom image with OpenSSH pre-installed. The training framework
should be MPI or Horovod.

2. Create a boot script file start_sshd.sh.
MY_SSHD_PORT=${MY_SSHD_PORT:-"38888"}
mkdir -p /home/ma-user/etc
ssh-keygen -f /home/ma-user/etc/ssh_host_rsa_key0 -N '' -t rsa > /dev/null
/usr/sbin/sshd -p $MY_SSHD_PORT -h /home/ma-user/etc/ssh_host_rsa_key0

3. Upload the sshd startup script file to the training code directory in OBS.
4. Create a training job using the custom image.

– Code Directory: Select the OBS path where the sshd boot script file is
stored.

– Boot Command: Adapt the boot command to the sshd boot script.
bash ${MA_JOB_DIR}/demo-code/start_sshd.sh && your custom command

In the command, your custom command indicates custom commands
you want to execute in the training job.

– Environment Variable: Add MY_SSHD_PORT = 38888.
– training_ssh_configure_nodes: Enable it and configure the SSH key

directory. Retain default settings unless you have specific needs. After a
training job is delivered, the SSH key file and configuration file
authorized_keys config id_rsa id_rsa.pub are automatically generated in
the /home/ma-user/.ssh directory of the training container.

5. After a training job is created, its nodes can establish an SSH connection with
each other by using the domain name and port number throughout the
training process. The sample code is as follows:
ssh modelarts-job-a0978141-1712-4f9b-8a83-000000000000-worker-1 -p $MY_SSHD_PORT

8.3 Preparing a Model Training Image
ModelArts provides deep learning-powered base images such as TensorFlow,
PyTorch, and MindSpore images. In these images, the software mandatory for
running training jobs has been installed. If the software in the base images cannot
meet your service requirements, create new images based on the base images and
use the new images to create training jobs.

Preset Training Images
The following table lists the preset training base images of ModelArts.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 560

Table 8-5 ModelArts training base images

Engine Version

PyTorch pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64

TensorFlow tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64

Horovod horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-
ubuntu_18.04-x86_64

horovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7-
ubuntu_18.04-x86_64

MPI mindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_1804-x86_64

Creating a Custom Training Image

If the software in the base images cannot meet your service requirements, create
new images based on the base images and use the new images to create training
jobs. Figure 8-4 shows the process of creating an image.

Figure 8-4 Process of creating a custom training image

Scenario 1: If the preset images meet ModelArts training constraints but lack
necessary code dependencies, install additional software packages.

For details, see Creating a Custom Image Using a Preset Image for Model
Training.

Scenario 2: If the local images meet code dependency requirements but not
ModelArts training constraints, adapt them to ModelArts.

For details, see Migrating Existing Images to ModelArts for Model Training.

Scenario 3: If neither the preset nor local images meet your needs, create an
image that meets both code dependency and ModelArts training constraints. See
the following examples:

● Creating a Custom Image for Training (PyTorch + CPU/GPU)

● Creating a Custom Image for Training (MPI + CPU/GPU)

● Creating a Custom Image for Training (TensorFlow + GPU)

8.4 Creating a Debug Training Job

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 561

8.4.1 Using PyCharm Toolkit to Create and Debug a Training
Job

AI developers use PyCharm to develop algorithms or models. ModelArts provides
the PyCharm Toolkit plug-in to help AI developers quickly submit locally
developed code to the ModelArts training environment. With PyCharm Toolkit,
developers can quickly remotely access notebook instances through SSH, upload
code, submit training jobs, and obtain training logs for local display so that they
can better focus on local code development.

This section describes how to use PyCharm Toolkit to create and debug a training
job.

Prerequisites
● Step 1 Download and Install PyCharm Toolkit
● A training code project exists in the local PyCharm.
● You have created a bucket and folders in OBS for storing datasets and trained

models. For example, create a bucket named test-modelarts2 and folders
dataset-mnist and mnist-output. Data used by the training job has been
uploaded to OBS. OBS and ModelArts are in the same region.

Configuring Training Job Parameters
1. In PyCharm, open the training code project and training boot file, and choose

ModelArts > Training Job > New... on the menu bar.

Figure 8-5 Configuring job parameters

2. In the displayed dialog box, configure the training job parameters. For details,
see Table 8-6.

Table 8-6 Training job parameters

Parameter Description

Job Name Name of the training job.
The system automatically generates a name. You can
rename it based on the following naming rules:
● The name contains 1 to 64 characters.
● Letters, digits, hyphens (-), and underscores (_) are

allowed.

Job Description Brief description of the training job.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 562

Parameter Description

Algorithm
Source

Source of the training algorithm. The options are
Frequently-used and Custom.
Frequently-used refers to the frequently-used AI
engines supported by ModelArts Training Management.
For details about the supported engines, see Preset
Images Supported by ModelArts.
If the AI engine you use is not in the supported list, you
are advised to create a training job using a custom
image.

AI Engine Select the AI engine and the version used in code. The
supported AI engines are the same as Preset Images
Supported by ModelArts on the ModelArts console.

Boot File Path Training boot file. The selected boot file must be a file in
the current PyCharm training project. This parameter is
displayed if Algorithm source is set to Frequently-used.

Code Directory Training code directory. The system automatically sets
this parameter to the directory where the training boot
file is located. You can change the parameter value to a
directory that is in the current project and contains the
boot file.
If the algorithm source is a custom image and the
training code has been built in the image, this
parameter can be left blank.

Image
Path(optional)

URL of the SWR image

Boot Command Command for starting the training job, for example,
bash /home/work/run_train.sh python {Python boot
file and parameters}. This parameter is displayed if
Algorithm source is set to Custom.
If the command does not contain the --data_url or --
train_url parameter, the tool automatically adds the
two parameters to the end of the command when
submitting the training job. The two parameters
correspond to the OBS path for storing training data and
the OBS path for storing training output, respectively.

Data OBS Path OBS path for storing training data, for example, /test-
modelarts2/mnist/dataset-mnist/, in which test-
modelarts2 indicates a bucket name.

Training OBS
Path

OBS path. A directory is automatically created in the
path for storing a trained model and training logs.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 563

Parameter Description

Running
Parameters

Running parameters. Add running parameters to your
code based on your needs. Separate multiple running
parameters with semicolons (;), for example,
key1=value1;key2=value2. This parameter can be left
blank.

Specifications Type of resources used for training. Currently, public
resource pools and dedicated resource pools are
supported.
Dedicated resource pool specifications are identified by
Dedicated Resource Pool. Dedicated resource pool
specifications are displayed only for users who have
purchased dedicated resource pools.

Compute Nodes Number of compute nodes. If this parameter is set to 1,
the system runs in standalone mode. If this parameter is
set to a value greater than 1, the distributed computing
mode is used at the background.

Available/Total
Nodes

When Specifications is set to a dedicated resource pool,
the number of available instances and the total number
of instances are displayed. The value of Compute Nodes
cannot exceed the number of available instances.

Figure 8-6 Configuring training job parameter (public resource pool)

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 564

Figure 8-7 Configuring training job parameters (dedicated resource pool)

Figure 8-8 Configuring training job parameters (custom image)

3. Click Apply and Run. Then, local code is automatically uploaded to the cloud
and training is started. The training job status is displayed in the Training Log
area in real time. If information similar to Current training job status:
Successful is displayed in the training logs, the training job has been
successfully executed.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 565

NO TE

● After you click Apply and Run, the system automatically executes the training job.
To stop the training job, choose ModelArts > Training Job > Stop on the menu
bar.

● If you click Apply, the job is not started directly, and the training job settings are
saved instead. To start the job, click Apply and Run.

Figure 8-9 Training log example

Stopping a Job
When a training job is running, choose ModelArts > Training Job > Stop on the
PyCharm menu bar to stop the training job.

Figure 8-10 Stopping a job

Viewing Training Logs
You can view training logs in OBS or PyCharm Toolkit.

● Viewing training logs in OBS
When you submit a training job, the system automatically creates a folder
with the same name as the training job in the configured OBS path to store
the model, logs, and code outputted during training.
For example, when the train-job-01 job is submitted, a folder named train-
job-01 is created in the test-modelarts2 bucket. In this folder, three sub-
folders (output, log, and code) are created to store the outputted model,
logs, and training code, respectively. Sub-folders will be created in the output
folder based on your training job version. The following is an example of the
folder structure:
test-modelarts2
 |---train-job-01
 |---output
 |---log
 |---code

● Viewing training logs in PyCharm Toolkit
In PyCharm Toolkit, click ModelArts Training Log in the lower right corner of
the page to view the training logs.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 566

Figure 8-11 Viewing training logs

8.5 Creating an Algorithm
Machine learning explores general rules from limited volume of data and uses
these rules to predict unknown data. To obtain more accurate prediction results,
select a proper algorithm to train your model. ModelArts provides a large number
of algorithm samples for different scenarios. This section describes algorithm
sources and learning modes.

Algorithm Sources

ModelArts provides the following algorithm sources for model training:

● Using a subscribed algorithm
You can directly subscribe to algorithms in ModelArts AI Gallery and use them
to build models without writing code.

● Using a preset image
To use a custom algorithm, use a framework built in ModelArts. ModelArts
supports most mainstream AI engines. For details, see Starting a Preset
Image's Boot File. These built-in engines pre-load some extra Python
packages, such as NumPy. You can also use the requirements.txt file in the
code directory to install dependency packages. For details about how to
create a training job using a preset image, see Developing Code for Training
Using a Preset Image.

● Using a preset image with customization
If you use a preset image to create an algorithm and you need to modify or
add some software dependencies based on the preset image, you can
customize the preset image. In this case, select a preset image and choose
Customize from the framework version drop-down list box.
The only difference between this method and creating an algorithm totally
based on a preset image is that you must select an image. You can create a
custom image based on a preset image.

● Using a custom image
The subscribed algorithms and built-in frameworks can be used in most
training scenarios. In certain scenarios, ModelArts allows you to create custom
images to train models. You can create an image based on the ModelArts

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 567

image specifications, select your own image and configure the code directory
(optional) and boot command to create a training job.
Custom images can be used to train models in ModelArts only after they are
uploaded to Software Repository for Container (SWR). For details, see
Creating a Custom Image for Model Training. Customizing an image
requires a deep understanding of containers. Use this method only if the
subscribed algorithms and custom scripts cannot meet your requirements.

NO TE

When you use a custom image to create a training job, the boot command must be
executed in the /home/ma-user directory. Otherwise, the training job may run
abnormally.

Creating an Algorithm
Your locally developed algorithms or algorithms developed using other tools can
be uploaded to ModelArts for unified management.

1. Make preparations.
– Create a dataset in ModelArts or upload a training dataset to an OBS

directory.
– Your training script has been uploaded to an OBS directory. For details

about how to develop a training script, see Developing Code for
Training Using a Preset Image or Developing Code for Training Using
a Custom Image.

– Create at least one empty folder in OBS for storing training outputs.
– Make sure your OBS directory and ModelArts are in the same region.

2. Access the algorithm creation page.

a. Log in to the ModelArts console. In the navigation pane, choose Asset
Management > Algorithm Management.

b. In the My algorithm tab, click Create Algorithm. Enter the basic
algorithm information, including Name and Description.

3. Set the algorithm boot mode. The options are as follows:
– Using a preset image

Figure 8-12 Using a preset image to create an algorithm

Set Code Directory and Boot File based on the algorithm code. Ensure
that the preset image you select is the same as the one you use for
editing algorithm code. For example, if TensorFlow is used for writing
algorithm code, select TensorFlow when you create an algorithm.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 568

Table 8-7 Parameters

Parameter Description

Boot Mode Select Preset image.
Select a preset image and its version used by the
algorithm.

Code
Directory

Select an OBS path for storing the algorithm code. The
files required for training, such as the training code,
dependency installation packages, and pre-generated
models, are uploaded to the code directory.
Do not store training data in the code directory. When
the training job starts, the data stored in the code
directory will be downloaded to the backend. A large
amount of training data may lead to a download
failure.
After you create the training job, ModelArts downloads
the code directory and its subdirectories to the training
container.
Take OBS path obs://obs-bucket/training-test/demo-
code as an example. The content in the OBS path will
be automatically downloaded to ${MA_JOB_DIR}/
demo-code in the training container, and demo-code
(customizable) is the last-level directory of the OBS
path.
NOTE

● Any programming language is supported.
● The total number of both files and folders cannot exceed

1,000.
● The total size of files cannot exceed 5 GB.

Boot File The file must be stored in the code directory and end
with .py. ModelArts supports boot files edited only in
Python.
The boot file in the code directory is used to start a
training job.

– Using a preset image with customization

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 569

Figure 8-13 Creating an algorithm using a preset image with
customization

Set Image, Code Directory, and Boot File based on the algorithm code.
Ensure that the preset image you select is the same as the one you use
for editing algorithm code. For example, if TensorFlow is used for writing
algorithm code, select TensorFlow when you create an algorithm.

Table 8-8 Parameters

Parameter Description

Boot Mode Select Preset image.
Select Customize for the engine version.

Image Select your image uploaded to SWR. For details about
how to create an image, see Creating a Custom
Training Image.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 570

Parameter Description

Code
Directory

Select an OBS path for storing the algorithm code. The
files required for training, such as the training code,
dependency installation packages, and pre-generated
models, are uploaded to the code directory.
Do not store training data in the code directory. When
the training job starts, the data stored in the code
directory will be downloaded to the backend. A large
amount of training data may lead to a download
failure.
When the training job starts, ModelArts downloads the
training code directory and its subdirectories to the
training container.
Take OBS path obs://obs-bucket/training-test/demo-
code as an example. The content in the OBS path will
be automatically downloaded to ${MA_JOB_DIR}/
demo-code in the training container, and demo-code
(customizable) is the last-level directory of the OBS
path.
NOTE

● Any programming language is supported for training code.
The training boot file must be a Python file.

● The total number of both files and folders cannot exceed
1,000.

● The total size of files cannot exceed 5 GB.
● The file depth cannot exceed 32.

Boot File The file must be stored in the code directory and end
with .py. ModelArts supports boot files edited only in
Python.
The boot file in the code directory is used to start a
training job.

Selecting a preset image with customization results in the same
background behavior as running a training job directly with that image.
For example:

▪ The system automatically injects environment variables.
PATH=${MA_HOME}/anaconda/bin:${PATH}
LD_LIBRARY_PATH=${MA_HOME}/anaconda/lib:${LD_LIBRARY_PATH}
PYTHONPATH=${MA_JOB_DIR}:${PYTHONPATH}

▪ The selected boot file will be automatically started using Python
commands. Ensure that the Python environment is correct. The PATH
environment variable is automatically injected. Run the following
commands to check the Python version for the training job:
export MA_HOME=/home/ma-user; docker run --rm {image} ${MA_HOME}/anaconda/bin/
python -V
docker run --rm {image} $(which python) -V

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 571

▪ The system automatically adds hyperparameters associated with the
preset image.

– Using a custom image

Figure 8-14 Creating an algorithm using a custom image

Table 8-9 Parameters

Parameter Description

Boot Mode Select Custom image.

Image Select your image uploaded to SWR. For details about
how to create an image, see Creating a Custom
Training Image.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 572

Parameter Description

Code
Directory

Select an OBS path for storing the algorithm code. The
files required for training, such as the training code,
dependency installation packages, and pre-generated
models, are uploaded to the code directory. Configure
this parameter only if your custom image does not
contain training code.
Do not store training data in the code directory. When
the training job starts, the data stored in the code
directory will be downloaded to the backend. A large
amount of training data may lead to a download
failure.
When the training job starts, ModelArts downloads the
training code directory and its subdirectories to the
training container.
Take OBS path obs://obs-bucket/training-test/demo-
code as an example. The content in the OBS path will
be automatically downloaded to ${MA_JOB_DIR}/
demo-code in the training container, and demo-code
(customizable) is the last-level directory of the OBS
path.
NOTE

● Any programming language is supported for training code.
The training boot file must be a Python file.

● The total number of both files and folders cannot exceed
1,000.

● The total size of files cannot exceed 5 GB.
● The file depth cannot exceed 32.

Boot
Command

Command for booting an image. This parameter is
mandatory.
When a training job is running, the boot command is
automatically executed after the code directory is
downloaded.
● If the training boot script is a .py file, train.py for

example, the boot command is as follows.
python ${MA_JOB_DIR}/demo-code/train.py

● If the training boot script is a .sh file, main.sh for
example, the boot command is as follows:
bash ${MA_JOB_DIR}/demo-code/main.sh

You can use semicolons (;) and ampersands (&&) to
combine multiple commands. demo-code in the
command is the last-level OBS directory where the code
is stored. Replace it with the actual one.

For details about how to use custom images supported by training, see
Boot Command Specifications for Custom Images.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 573

4. Configure pipelines.
An algorithm obtains data from an OBS bucket or dataset for model training.
The training output is stored in an OBS bucket. The input and output
parameters in your algorithm code must be parsed to enable data exchange
between ModelArts and OBS. For details about how to develop code for
training on ModelArts, see Preparing Model Training Code.
– Input configurations

Table 8-10 Input configurations

Paramet
er

Description

Paramete
r Name

Set this parameter based on the data input parameter in
your algorithm code. The code path parameter must be the
same as the training input parameter parsed in your
algorithm code. Otherwise, the algorithm code cannot
obtain the input data.
For example, If you use argparse in the algorithm code to
parse data_url into the data input, set the data input
parameter to data_url when creating the algorithm.

Descripti
on

Customize the description of the input parameter.

Obtained
from

Select a source of the input parameter, Hyperparameters
(default) or Environment variables.

Constrain
ts

Enable this parameter to specify the input source. You can
select a storage path or ModelArts dataset. This parameter
is optional.
If you select a ModelArts dataset, set the following
parameters:
● Labeling Type: For details, see Creating a Manual

Labeling Job.
● Data Format, which can be Default, CarbonData, or

both. Default indicates the manifest format.
● Data Segmentation is available only for image

classification, object detection, text classification, and
sound classification datasets.
The options are Segmented dataset, Dataset not
segmented, and Unlimited. For details, see Publishing
a Data Version.

Add Add multiple input data sources based on your algorithm.

– Output configurations

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 574

Table 8-11 Output configurations

Paramete
r

Description

Parameter
Name

Set this parameter based on the data output parameter in
your algorithm code. The code path parameter must be
the same as the data output parameter parsed in your
algorithm code. Otherwise, the algorithm code cannot
obtain the output path.
For example, if you use argparse in the algorithm code to
parse train_url into the data output, set the data output
parameter to train_url when creating the algorithm.

Descriptio
n

Customize the description of the output parameter.

Obtained
from

Select a source of the output parameter,
Hyperparameters (default) or Environment variables.

Add Add multiple output data paths based on your algorithm.

5. Define hyperparameters.

When you create an algorithm, ModelArts allows you to customize
hyperparameters so you can view or modify them anytime. Defined
hyperparameters are displayed in the boot command and passed to your boot
file as CLI parameters.

a. Click Add hyperparameter to manually add hyperparameters.

b. Edit hyperparameters.

NO TE

To ensure data security, do not enter sensitive information, such as plaintext
passwords.

Table 8-12 Hyperparameter parameters

Param
eter

Description

Name Enter the hyperparameter name.
Enter 1 to 64 characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Type Select the data type of the hyperparameter. The value can be
String, Integer, Float, or Boolean

Default Set the default value of the hyperparameter. This value will
be used for training jobs by default.

Restrai
n

Click Restrain. Then, set the range of the default value or
enumerated value in the dialog box displayed.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 575

Param
eter

Description

Require
d

Select Yes or No.
● If you select No, you can delete the hyperparameter on

the training job creation page when using this algorithm
to create a training job.

● If you select Yes, you cannot delete the hyperparameter
on the training job creation page when using this
algorithm to create a training job.

Descrip
tion

Enter the description of the hyperparameter.
Only letters, digits, spaces, hyphens (-), underscores (_),
commas (,), and periods (.) are allowed.

6. Configure supported policies.

Auto search on ModelArts automatically finds the optimal hyperparameters
without any code modification. For details about parameter settings, see
Creating a Training Job for Automatic Model Tuning.
Only the tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64 and
pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 images are available
for auto search.

7. Add training constraints.
You can add training constraints of the algorithm based on your needs.
– Resource Type: Select the required resource types.
– Multicard Training: Choose whether to support multi-card training.
– Distributed Training: Choose whether to support distributed training.

8. Click Submit.
In the algorithm list, click the algorithm to access its details page and view
the algorithm details.
– In the Basic Information tab, you can view the algorithm information.

In the Basic Information tab, click Edit to modify algorithm information
except the name and ID. After the modification, click Save.

– In the Training tab, you can view the information about the training jobs
that use the algorithm, such as the training job name and status.

Previewing the Runtime Environment

When creating an algorithm, click the arrow on in the lower
right corner of the page to know the paths of the code directory, boot file, and
input and output data in the training container.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 576

Deleting an Algorithm

NO TICE

Deleted algorithm assets cannot be restored.

To delete your algorithm, choose Asset Management > Algorithm Management.
Click Delete in the Operation column. In the displayed dialog box, click OK to
confirm the deletion.

To delete a subscribed algorithm, go to AI Gallery, choose My Assets > Algorithm,
click My Subscription, and click Cancel Subscription for the algorithm you want
to delete. In the displayed dialog box, click OK.

8.6 Creating a Production Training Job
Model training continuously iterates and optimizes model weights. ModelArts
training management allows you to create training jobs, view training status, and
manage training versions. Through model training, you can test various
combinations of model structures, data, and hyperparameters to obtain the
optimal model structure and weight.

Create a production training job in either of the following ways:

● Use the ModelArts Standard console. For details, see the following sections.
● Use the ModelArts API to create a production training job. For details, see

Using PyTorch to Create a Training Job (New-Version Training).

Prerequisites
● Data for training uploaded to an OBS directory.
● At least one empty folder in OBS for storing training output.

NO TE

ModelArts does not support encrypted OBS buckets. When creating an OBS bucket, do
not enable bucket encryption.

● Account not in arrears (paid resources required for training jobs).
● OBS directory and ModelArts in the same region.
● Access authorization configured. If it is not configured, configure it by

referring to Configuring Access Authorization for ModelArts Standard.
● Training algorithm. For details, see Creating an Algorithm.

Procedure
To create a training job, follow these steps:

Step 1 Follow the steps in Accessing the Page for Creating a Training Job.

Step 2 Follow the steps in Configuring Basic Information.

Step 3 Select an algorithm type.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 577

https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0407.html

● Use an existing algorithm to create a training job by referring to Choosing an
Algorithm Type (My Algorithm).

● Use a preset image to create a training job by referring to Choosing an
Algorithm Type (Custom Algorithm).

● Use a custom image to create a training job by referring to Choosing a Boot
Mode (Custom Image).

Step 4 Configure training parameters, including the input, output, hyperparameters, and
environment variables. For details, see Configuring Training Parameters.

Step 5 Select a resource pool as needed. A dedicated resource pool is recommended for
optimal performance. For details about the differences between dedicated and
public resource pools, see Differences Between Dedicated Resource Pools and
Public Resource Pools.
● Configuring a Public Resource Pool
● Configuring a Dedicated Resource Pool

Step 6 Select a training mode when you use a preset MindSpore engine and Ascend
resources. For details, see (Optional) Selecting a Training Mode.

Step 7 Add tags if you want to manage training jobs by group. For details, see
(Optional) Adding Tags.

Step 8 Perform follow-up procedure. For details, see Follow-Up Operations.

----End

Accessing the Page for Creating a Training Job
1. Log in to the ModelArts console.
2. In the navigation pane, choose Model Training > Training Jobs.
3. Click Create Training Job.

Configuring Basic Information

On the Create Training Job page, configure parameters.

Table 8-13 Basic information

Parameter Description

Name Job name, which is mandatory.
The system automatically generates a name, which you
can then rename according to the following rules.
● The name contains 1 to 64 characters.
● Letters, digits, hyphens (-), and underscores (_) are

allowed.

Description Job description, which helps you learn about the job
information in the training job list.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 578

Choosing an Algorithm Type (My Algorithm)
Set Algorithm Type to My algorithm and select an algorithm from the algorithm
list. If no algorithm meets the requirements, you can create an algorithm. For
details, see Creating an Algorithm.

Choosing an Algorithm Type (Custom Algorithm)
If an algorithm is available in algorithm management, choose My algorithm. If no
algorithm is available, choose Custom algorithm. If you use a custom algorithm
to create a training job, select a boot mode by referring to Table 8-14.

Table 8-14 Creating a training job using a custom algorithm

Parameter Description

Algorithm Type Select Custom algorithm. This parameter is
mandatory.

Boot Mode Select Preset image and select the preset image
engine and engine version to be used by the training
job.
If you select Customize for the engine version, select a
custom image from Image.

Image This parameter is displayed and mandatory only when
the preset image version is set to Customize.
You can set the container image path in either of the
following ways:
● To select your image or an image shared by others,

click Select on the right and select a container
image for training. The required image must be
uploaded to SWR beforehand.

● To select a public image, enter the address of the
public image in SWR. Enter the image path in the
format of "Organization name/Image name:Version
name". Do not contain the domain name in the
path because the system will automatically add the
domain name to the path.

Code Source Select a training code source.
● OBS: Select OBS if the training code is stored in an

OBS bucket.
● SFS: Select SFS if the training code is stored in an

SFS file system.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 579

Parameter Description

Code Directory This parameter is available only when Code Source is
set to OBS.
Select the OBS directory where the training code file is
stored. This parameter is mandatory.
● Upload code to the OBS bucket beforehand. The

total size of files in the directory cannot exceed 5
GB, the number of files cannot exceed 1000, and the
folder depth cannot exceed 32.

● The training code file is automatically downloaded
to the ${MA_JOB_DIR}/demo-code directory of the
training container when the training job is started.
demo-code is the last-level OBS directory for
storing the code. For example, if Code Directory is
set to /test/code, the training code file is
downloaded to the ${MA_JOB_DIR}/code directory
of the training container.

Boot File Select the Python boot script of the training job in the
code directory. This parameter is mandatory.
ModelArts supports only the boot file written in
Python. Therefore, the boot file must end with .py.

Local Code Directory This parameter is available only when Code Source is
set to OBS.
Specify the local directory of a training container. When
a training starts, the system automatically downloads
the code directory to this directory.
The default local code directory is /home/ma-user/
modelarts/user-job-dir. This parameter is optional.

Work Directory During training, the system automatically runs the cd
command to execute the boot file in this directory.

Selecting a preset image with customization results in the same background
behavior as running a training job directly with that image. For example:
● The system automatically injects environment variables.

PATH=${MA_HOME}/anaconda/bin:${PATH}
LD_LIBRARY_PATH=${MA_HOME}/anaconda/lib:${LD_LIBRARY_PATH}
PYTHONPATH=${MA_JOB_DIR}:${PYTHONPATH}

● The selected boot file will be automatically started using Python commands.
Ensure that the Python environment is correct. The PATH environment
variable is automatically injected. Run the following commands to check the
Python version for the training job:
export MA_HOME=/home/ma-user; docker run --rm {image} ${MA_HOME}/anaconda/bin/python -V
docker run --rm {image} $(which python) -V

● The system automatically adds hyperparameters associated with the preset
image.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 580

Choosing a Boot Mode (Custom Image)
If you use a custom image to create a training job, select a boot mode by referring
to Table 8-15.

Table 8-15 Creating a training job using a custom image

Parameter Description

Algorithm Type Select Custom algorithm. This parameter is
mandatory.

Boot Mode Select Custom image. This parameter is mandatory.

Image Container image path. This parameter is mandatory.
You can set the container image path in either of the
following ways:
● To select your image or an image shared by others,

click Select on the right and select a container
image for training. The required image must be
uploaded to SWR beforehand.

● To select a public image, enter the address of the
public image in SWR. Enter the image path in the
format of "Organization name/Image name:Version
name". Do not contain the domain name in the
path because the system will automatically add the
domain name to the path.

Code Directory OBS directory where the training code file is stored.
Configure this parameter only if your custom image
does not contain training code.
● Upload code to the OBS bucket beforehand. The

total size of files in the directory cannot exceed 5
GB, the number of files cannot exceed 1000, and the
folder depth cannot exceed 32.

● The training code file is automatically downloaded
to the ${MA_JOB_DIR}/demo-code directory of the
training container when the training job is started.
demo-code is the last-level OBS directory for
storing the code. For example, if Code Directory is
set to /test/code, the training code file is
downloaded to the ${MA_JOB_DIR}/code directory
of the training container.

User ID User ID for running the container. The default value
1000 is recommended.
If the UID needs to be specified, its value must be
within the specified range. The UID ranges of different
resource pools are as follows:
● Public resource pool: 1000 to 65535
● Dedicated resource pool: 0 to 65535

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 581

Parameter Description

Boot Command Command for booting an image. This parameter is
mandatory.
When a training job is running, the boot command is
automatically executed after the code directory is
downloaded.
● If the training boot script is a .py file, train.py for

example, the boot command is as follows.
python ${MA_JOB_DIR}/demo-code/train.py

● If the training boot script is a .sh file, main.sh for
example, the boot command is as follows:
bash ${MA_JOB_DIR}/demo-code/main.sh

You can use semicolons (;) and ampersands (&&) to
combine multiple commands. demo-code in the
command is the last-level OBS directory where the
code is stored. Replace it with the actual one.
NOTE

To ensure data security, do not enter sensitive information,
such as plaintext passwords.

Local Code Directory This parameter is available only when Code Source is
set to OBS.
Specify the local directory of a training container. When
a training starts, the system automatically downloads
the code directory to this directory.
The default local code directory is /home/ma-user/
modelarts/user-job-dir. This parameter is optional.

Work Directory During training, the system automatically runs the cd
command to execute the boot file in this directory.

For details about how to use custom images supported by training, see Boot
Command Specifications for Custom Images.

Configuring Training Parameters
Data is obtained from an OBS bucket or dataset for model training. The training
output can also be stored in an OBS bucket. When creating a training job, you can
configure parameters such as input, output, hyperparameters, and environment
variables by referring to Table 8-16.

NO TE

The input, output, and hyperparameter parameters of a training job vary depending on the
algorithm type selected during training job creation. If a parameter value is dimmed, the
parameter has been configured in the algorithm code and cannot be modified.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 582

Table 8-16 Configuring training parameters

Paramete
r

Sub-
Paramete
r

Description

Input Paramete
r name

The algorithm code reads the training input data based
on the input parameter name.
The recommended value is data_url. The training input
parameters must match the input parameters of the
selected algorithm. For details, see Table 8-10.

Dataset Click Dataset and select the target dataset and its
version in the ModelArts dataset list.
When the training job is started, ModelArts
automatically downloads the data in the input path to
the training container.
NOTE

ModelArts data management is being upgraded and is
invisible to users who have not used data management. It is
recommended that new users store their training data in OBS
buckets.

Data path Click Data path and select the storage path to the
training input data from an OBS bucket. Files must not
exceed 10 GB in total size, 1,000 in number, or 1 GB
per file.
When the training job is started, ModelArts
automatically downloads the data in the input path to
the training container.

Obtained
from

The following uses training input data_path as an
example.
● If you select Hyperparameters, use this code to

obtain the data:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_path')
args, unknown = parser.parse_known_args()
data_path = args.data_path

● If you select Environment variables, use this code
to obtain the data:
import os
data_path = os.getenv("data_path", "")

Output Paramete
r name

The algorithm code reads the training output data
based on the output parameter name.
The recommended value is train_url. The training
output parameters must match the output parameters
of the selected algorithm. For details, see Table 8-11.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 583

Paramete
r

Sub-
Paramete
r

Description

Data path Click Data path and select the storage path for the
training output data from an OBS bucket. Files must
not exceed 1 GB in total size, 128 in number, or 128
MB per file.
During training, the system automatically synchronizes
files from the local code directory of the training
container to the data path.
NOTE

The data path can only be an OBS path. To prevent any issues
with data storage, choose an empty directory as the data
path.

Obtained
from

The following uses the training output train_url as an
example.
● If you select Hyperparameters, use this code to

obtain the data:
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--train_url')
args, unknown = parser.parse_known_args()
train_url = args.train_url

● If you select Environment variables, use this code
to obtain the data:
import os
train_url = os.getenv("train_url", "")

Predownl
oad

Indicates whether to pre-download the files in the
output directory to a local directory.
● If you set Predownload to No, the system does not

download the files in the training output data path
to a local directory of the training container when
the training job is started.

● If you set Predownload to Yes, the system
automatically downloads the files in the training
output data path to a local directory of the training
container when the training job is started. The larger
the file size, the longer the download time. To avoid
excessive training time, remove any unneeded files
from the local code directory of the training
container as soon as possible. To use Resumable
Training, select Yes.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 584

Paramete
r

Sub-
Paramete
r

Description

Hyperpar
ameter

N/A Used for training tuning. This parameter is determined
by the selected algorithm. If hyperparameters have
been defined in the algorithm, all hyperparameters in
the algorithm are displayed.
Hyperparameters can be modified and deleted. The
status depends on the hyperparameter constraint
settings in the algorithm. For details, see Table 8-12.
To import hyperparameters in batches, click Upload.
You will need to fill in the hyperparameters based on
the provided template. The total number of
hyperparameters should not exceed 100, or the import
will fail.
NOTE

To ensure data security, do not enter sensitive information,
such as plaintext passwords.

Environm
ent
Variable

N/A Add environment variables based on service
requirements. For details about the environment
variables preset in the training container, see
Managing Environment Variables of a Training
Container.
To import environment variables in batches, click
Upload. You will need to fill in the environment
variables based on the provided template. The total
number of environment variables should not exceed
100, or the import will fail.
NOTE

To ensure data security, do not enter sensitive information,
such as plaintext passwords.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 585

Paramete
r

Sub-
Paramete
r

Description

Auto
Restart

N/A Once this feature is enabled, you can set the number of
restarts and whether to enable Unconditional auto
restart.
After you enable auto restart, ModelArts will handle
any exceptions caused by environmental issues during
a training job. It will either automatically handle the
exception or isolate the faulty node and then restart
the job, which helps to increase the success rate of the
training. To avoid losing training progress and make
full use of compute power, ensure that your code logic
supports resumable training before enabling this
function. For details, see Resumable Training.
The value ranges from 1 to 128. The default value is 3.
The value cannot be changed once the training job is
created. Set this parameter based on your needs.
If Unconditional auto restart is selected, the training
job will be restarted unconditionally once the system
detects a training exception. To prevent invalid restarts,
it supports a maximum of three consecutive
unconditional restarts.
ModelArts continuously monitors job processes to
detect suspension and optimize resource usage. When
Restart Upon Suspension is enabled, suspended jobs
can be automatically restarted at the process level.
However, ModelArts does not verify code logic, and
suspension detection is periodic, which may result in
false reports. By enabling this feature, you
acknowledge the possibility of false positives. To
prevent unnecessary restarts, ModelArts limits
consecutive restarts to three.
If auto restart is triggered during training, the system
records the restart information. You can check the fault
recovery details on the training job details page. For
details, see Training Job Rescheduling.

Configuring a Public Resource Pool
To configure a public resource pool, refer to Table 8-17.

Table 8-17 Configuring a public resource pool for a training job

Parameter Description

Resource Pool Select Public resource pool.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 586

Parameter Description

Resource Type Select the resource type required for training. This
parameter is mandatory. If a resource type has been
defined in the training code, select a proper resource
type based on algorithm constraints. For example, if
the resource type defined in the training code is CPU
and you select other types, the training fails. If some
resource types are invisible or unavailable for selection,
they are not supported.

Specifications Select the required resource specifications based on the
resource type.
If Data path is selected for Input, you can click Check
Input Size on the right to ensure the storage is larger
than the input data size.

NOTICE
The resource flavor GPU:n*tnt004 (n indicates a specific
number) does not support multi-process training.

Compute Nodes Select the number of instances as required. The default
value is 1.
● If only one instance is used, a single-node training

job is created. ModelArts starts one training
container on this node. The training container
exclusively uses the compute resources of the
selected flavor.

● If more than one instance is used, a distributed
training job is created. For more information about
distributed training configurations, see Overview.

Persistent Log Saving If you select CPU or GPU flavors, Persistent Log
Saving is available for you to configure.
● After this feature is enabled (default), configure Job

Log Path. The system permanently stores training
logs to the specified OBS path.

● After this feature is disabled, ModelArts
automatically stores the logs for 30 days. You can
download all logs on the job details page to a local
path.

Job Log Path When enabling Persistent Log Saving, select an empty
OBS directory for Job Log Path to store log files
generated by the training job.
Ensure that you have read and write permissions to the
selected OBS directory.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 587

Parameter Description

Event Notification Indicates whether to enable event notification.
● This feature is disabled by default, which means

SMN is disabled.
● After this feature is enabled, you will be notified of

specific events, such as job status changes or
suspected suspensions, via an SMS or email.
Notifications will be billed based on SMN pricing. In
this case, you must configure the topic name and
events.
– Topic: topic of event notifications. Click Create

Topic to create a topic on the SMN console.
– Event: events you want to subscribe to. Examples:

JobStarted, JobCompleted, JobFailed,
JobTerminated, and JobHanged.

NOTE
● After you create a topic on the SMN console, add a

subscription to the topic, and confirm the subscription.
Then, you will be notified of events. For details, see Adding
a Subscription.

● SMN charges you for the number of notification messages.
For details, see Billing.

● Only training jobs using GPUs or NPUs support JobHanged
events.

Auto Stop When using paid resources, you can determine whether
to enable auto stop.
● This function is disabled by default, the training job

keeps running until the training is completed.
● If this function is enabled, configure the auto stop

time. The value can be 1 hour, 2 hours, 4 hours, 6
hours, or Customize. The customized time must
range from 1 hour to 720 hours. When you enable
this feature, the training stops automatically when
the time limit is reached. The time limit does not
count down when the training is paused.

training_ssh_configure
_nodes

Whether to enable password-free SSH mutual trust
between nodes.
● This feature is disabled by default.
● Enabling this feature requires you to configure the

SSH key directory. This is where the automatically
generated SSH key file will be stored within the
training container. The default value is /home/ma-
user/.ssh.

Configuring a Dedicated Resource Pool
To configure a dedicated resource pool, refer to Table 8-18.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 588

https://support.huaweicloud.com/intl/en-us/usermanual-smn/smn_ug_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-smn/smn_ug_0008.html
https://support.huaweicloud.com/intl/en-us/productdesc-smn/smn_price.html

Table 8-18 Configuring a dedicated resource pool for a training job

Parameter Description

Resource Pool Select a dedicated resource pool.
If you select a dedicated resource pool, you can view
the status, node specifications, number of idle/
fragmented nodes, number of available/total nodes,
and number of cards of the resource pool. Hover over
View in the Idle/Fragmented Nodes column to check
fragment details and check whether the resource pool
meets the training requirements.

Specifications Select the required resource specifications based on the
resource type.
If Data path is selected for Input, you can click Check
Input Size on the right to ensure the storage is larger
than the input data size.

NOTICE
The resource flavor GPU:n*tnt004 (n indicates a specific
number) does not support multi-process training.

Compute Nodes Select the number of instances as required. The default
value is 1.
● If only one instance is used, a single-node training

job is created. ModelArts starts one training
container on this node. The training container
exclusively uses the compute resources of the
selected flavor.

● If more than one instance is used, a distributed
training job is created. For more information about
distributed training configurations, see Overview.

Job Priority When using a dedicated resource pool, you can set the
priority of the training job. The value ranges from 1 to
3. The default priority is 1, and the highest priority is 3.
● By default, the job priority can be set to 1 or 2. After

the permission to set the highest job priority is
configured, the priority can be set to 1 to 3.

● If a training job is in the Pending state for a long
time, you can change the job priority to reduce the
queuing duration. For details, see Priority of a
Training Job.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 589

Parameter Description

SFS Turbo When ModelArts and SFS Turbo are directly connected,
multiple SFS Turbo file systems can be mounted to a
training job to store training data. Click Add Mount
Configuration and set the following parameters:
● Name: Select an SFS Turbo file system.
● Mount Path: Enter the SFS Turbo mounting path in

the training container.
● Directory: Specify the SFS Turbo storage location. If

you have configured the folder control permission,
select a storage location. If you have not configured
the folder control permission, retain the default
value / or customize a location.

● Mounting Mode: Permission on the mounted SFS
Turbo file system. This parameter is displayed as
Read/Write or Read-only based on the permission
of the SFS Turbo storage location. If you have not
configured the folder control permission, this
parameter is unavailable.

● Mount Options: Configure SFS mount parameters
to accelerate and optimize training. For details
about the parameters, see Configuring SFS Turbo
Mount Options. Alternatively, retain the default
settings below:
mountOptions:
- vers=3
- timeo=600
- nolock
- hard

NOTE
● You can mount a file system multiple times, but each

mount path must be distinct. A maximum of five disks can
be mounted to a training job.

● The mounting path cannot be a / directory or a default
mounting path, such as /cache and /home/ma-user/
modelarts.

● For details about how to set permissions for SFS Turbo
folders, see Permissions Management.

Persistent Log Saving If you select CPU or GPU flavors, Persistent Log
Saving is available for you to configure.
● After this feature is enabled (default), configure Job

Log Path. The system permanently stores training
logs to the specified OBS path.

● After this feature is disabled, ModelArts
automatically stores the logs for 30 days. You can
download all logs on the job details page to a local
path.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 590

https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0626.html
https://support.huaweicloud.com/intl/en-us/usermanual-cce/cce_10_0626.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_24_0137.html

Parameter Description

Job Log Path When enabling Persistent Log Saving, select an empty
OBS directory for Job Log Path to store log files
generated by the training job.
Ensure that you have read and write permissions to the
selected OBS directory.

Event Notification Indicates whether to enable event notification.
● This feature is disabled by default, which means

SMN is disabled.
● After this feature is enabled, you will be notified of

specific events, such as job status changes or
suspected suspensions, via an SMS or email.
Notifications will be billed based on SMN pricing. In
this case, you must configure the topic name and
events.
– Topic: topic of event notifications. Click Create

Topic to create a topic on the SMN console.
– Event: events you want to subscribe to. Examples:

JobStarted, JobCompleted, JobFailed,
JobTerminated, and JobHanged.

NOTE
● After you create a topic on the SMN console, add a

subscription to the topic, and confirm the subscription.
Then, you will be notified of events. For details, see Adding
a Subscription.

● SMN charges you for the number of notification messages.
For details, see Billing.

● Only training jobs using GPUs or NPUs support JobHanged
events.

Auto Stop When using paid resources, you can determine whether
to enable auto stop.
● This feature is disabled by default, the training job

keeps running until the training is completed.
● If this feature is enabled, configure the auto stop

time. The value can be 1 hour, 2 hours, 4 hours, 6
hours, or Customize. The customized time must
range from 1 hour to 720 hours. When you enable
this feature, the training stops automatically when
the time limit is reached. The time limit does not
count down when the training is paused.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 591

https://support.huaweicloud.com/intl/en-us/usermanual-smn/smn_ug_0008.html
https://support.huaweicloud.com/intl/en-us/usermanual-smn/smn_ug_0008.html
https://support.huaweicloud.com/intl/en-us/productdesc-smn/smn_price.html

Parameter Description

training_ssh_configure
_nodes

Whether to enable password-free SSH mutual trust
between nodes.
● This feature is disabled by default.
● Enabling this feature requires you to configure the

SSH key directory. This is where the automatically
generated SSH key file will be stored within the
training container. The default value is /home/ma-
user/.ssh.

(Optional) Selecting a Training Mode

Select a training mode when you use a preset MindSpore engine and Ascend
resources. ModelArts provides three training modes for you to select. You can
obtain different diagnosis information based on the actual scenario.

● Common mode: It is the default training scenario.

● High performance mode: In this mode, certain O&M functions will be
adjusted or even disabled to accelerate the running speed, but this will
deteriorate fault locating. This mode is suitable for stable networks requiring
high performance.

● Fault diagnosis mode: In this mode, certain O&M functions will be enabled or
adjusted to collect more information for locating faults. This mode provides
fault diagnosis. You can select a diagnosis type as required.

(Optional) Adding Tags

If you want to manage training jobs by group using tags, select Configure Now
for Advanced Configuration to set tags for training jobs. For details about how to
use tags, see Using TMS Tags to Manage Resources by Group.

Follow-Up Operations

After parameter setting for creating a training job, click Submit. On the Confirm
dialog box, click OK.

A training job runs for a period of time. You can go to the training job list to view
the basic information about the training job.

● In the training job list, Status of a newly created training job is Pending.

● When the status of a training job changes to Completed, the training job is
finished, and the generated model is stored in the corresponding output path.

● If the status is Failed or Abnormal, click the job name to go to the job details
page and view logs for troubleshooting.

NO TE

You are billed for the resources you choose when your training job runs.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 592

8.7 Distributed Model Training

8.7.1 Overview
ModelArts provides the following capabilities:

● Extensive built-in images, meeting your requirements
● Custom development environments set up using built-in images
● Extensive tutorials, helping you quickly understand distributed training
● Distributed training debugging in development tools such as PyCharm, VS

Code, and JupyterLab

Constraints
● If the instance flavors are changed, you can only perform single-node

debugging. You cannot perform distributed debugging or submit remote
training jobs.

● Only the PyTorch and MindSpore AI frameworks can be used for multi-node
distributed debugging. If you want to use MindSpore, each node must be
equipped with eight cards.

● The OBS paths in the debugging code should be replaced with your OBS
paths.

● PyTorch is used to write debugging code in this document. The process is the
same for different AI frameworks. You only need to modify some parameters.

Advantages and Disadvantages of Single-Node Multi-Card Training Using
DataParallel

● Straightforward coding: Only one line of code needs to be modified.
● Bottlenecks in communication: The master GPU is used to update and

distribute parameter settings, which causes high communication costs.
● Unbalanced GPU loading: The master GPU is used to summarize outputs,

calculate loss, and update weights. Therefore, the GPU memory and usage are
higher than those of other GPUs.

Advantages of Multi-Node Multi-Card Training Using
DistributedDataParallel

● Fast communication
● Balanced load
● Fast running speed

Related Chapters
● Creating a Single-Node Multi-Card Distributed Training Job

(DataParallel): describes single-node multi-card training using DataParallel,
and corresponding code modifications.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 593

● Creating a Multiple-Node Multi-Card Distributed Training Job
(DistributedDataParallel): describes multi-node multi-card training using
DistributedDataParallel, and corresponding code modifications.

● Example: Creating a DDP Distributed Training Job (PyTorch + GPU):
describes the procedure and code example of distributed debugging
adaptation.

● Example: Creating a DDP Distributed Training Job (PyTorch + NPU):
provides a complete code sample of distributed parallel training for the
classification task of ResNet18 on the CIFAR-10 dataset.

● Debugging a Training Job: describes how to use the SDK to debug a single-
node or multi-node training job on the ModelArts development environment.

8.7.2 Creating a Single-Node Multi-Card Distributed Training
Job (DataParallel)

This section describes how to perform single-node multi-card parallel training
based on the PyTorch engine.

For details about the distributed training using the MindSpore engine, see the
MindSpore official website.

Training Process
The process of single-node multi-card parallel training is as follows:

1. A model is copied to multiple GPUs.
2. Data of each batch is distributed evenly to each worker GPU.
3. Each GPU does its own forward propagation and an output is obtained.
4. The master GPU with device ID 0 collects the output of each GPU and

calculates the loss.
5. The master GPU distributes the loss to each worker GPU. Each GPU does its

own backward propagation and calculates the gradient.
6. The master GPU collects gradients, updates parameter settings, and

distributes the settings to each worker GPU.

The detailed flowchart is as follows.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 594

https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0449.html
https://www.mindspore.cn/docs/programming_guide/en/r1.5/distributed_training.html
https://www.mindspore.cn/docs/programming_guide/en/r1.5/distributed_training.html

Figure 8-15 Single-node multi-card parallel training

Code Modifications
Model distribution: DataParallel(model)

The code is slightly changed and the following is a simple example:

import torch
class Net(torch.nn.Module):
 pass

model = Net().cuda()

DataParallel Begin
model = torch.nn.DataParallel(Net().cuda())
DataParallel End

8.7.3 Creating a Multiple-Node Multi-Card Distributed
Training Job (DistributedDataParallel)

To perform multi-node multi-card parallel training with PyTorch, follow the steps
in this section and refer to the code example below. This section also includes a
complete code sample for distributed parallel training on the CIFAR-10 dataset
with ResNet18 for classification tasks.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 595

Training Process
Compared with DataParallel, DistributedDataParallel can start multiple processes
for computing, greatly improving compute resource usage. Based on
torch.distributed, DistributedDataParallel has obvious advantages over
DataParallel in the distributed computing case. The process is as follows:

1. Initializes the process group.
2. Creates a distributed parallel model. Each process has the same model and

parameters.
3. Creates a distributed sampler for data distribution to enable each process to

load a unique subset of the original dataset in a mini batch.
4. Parameters are organized into buckets based on their shapes or sizes, which

are generally determined by each layer of the network that requires
parameter update in a neural network model.

5. Each process does its own forward propagation and computes its gradient.
6. After all parameter gradients at a bucket are obtained, communication is

performed for gradient averaging.
7. Each GPU updates model parameters.

The detailed flowchart is as follows.

Figure 8-16 Multi-node multi-card parallel training

Code Modifications
● Multi-process startup
● New variables such as rank ID and world_size are used along with the TCP

protocol.
● Sampler for data distribution to avoid duplicate data between different

processes
● Model distribution: DistributedDataParallel(model)
● Model saved in GPU 0
import torch
class Net(torch.nn.Module):

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 596

 pass

model = Net().cuda()

DistributedDataParallel Begin
model = torch.nn.parallel.DistributedDataParallel(Net().cuda())
DistributedDataParallel End

Multi-Node Distributed Debugging Adaptation and Code Example
In DistributedDataParallel, each process loads a subset of the original dataset in a
batch, and finally the gradients of all processes are averaged as the final gradient.
Due to a large number of samples, a calculated gradient is more reliable, and a
learning rate can be increased.

This section describes the code of single-node training and distributed parallel
training for the classification job of ResNet18 on the CIFAR-10 dataset. Directly
execute the code to perform multi-node distributed training with CPUs or GPUs;
comment out the distributed training settings in the code to perform single-node
single-card training.

The training code contains three input parameters: basic training parameters,
distributed parameters, and data parameters. The distributed parameters are
automatically input by the platform. custom_data indicates whether to use
custom data for training. If this parameter is set to true, torch-based random data
is used for training and validation.

CIFAR-10 dataset

In notebook instances, torchvision of the default version cannot be used to obtain
datasets. Therefore, the sample code provides three training data loading
methods.

Click CIFAR-10 python version on the download page to download the CIFAR-10
dataset.

● Download the CIFAR-10 dataset using torchvision.
● Download the CIFAR-10 dataset based on the URL and decompress the

dataset in a specified directory. The sizes of the training set and test set are
(50000, 3, 32, 32) and (10000, 3, 32, 32), respectively.

● Use Torch to obtain a random dataset similar to CIFAR-10. The sizes of the
training set and test set are (5000, 3, 32, 32) and (1000, 3, 32, 32),
respectively. The labels are still of 10 types. Set custom_data to true, and the
training task can be directly executed without loading data.

Training code

In the following code, those commented with ### Settings for distributed
training ... ### are code modifications for multi-node distributed training.

Do not modify the sample code. After the data path is changed to your path,
multi-node distributed training can be executed on ModelArts.

After the distributed code modifications are commented out, the single-node
single-card training can be executed. For details about the complete code, see
Code Example of Distributed Training.

● Importing dependency packages

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 597

http://www.cs.toronto.edu/~kriz/cifar.html

import datetime
import inspect
import os
import pickle
import random

import argparse
import numpy as np
import torch
import torch.distributed as dist
from torch import nn, optim
from torch.utils.data import TensorDataset, DataLoader
from torch.utils.data.distributed import DistributedSampler
from sklearn.metrics import accuracy_score

● Defining the method and random number for loading data (The code for
loading data is not described here due to its large amount.)
def setup_seed(seed):
 torch.manual_seed(seed)
 torch.cuda.manual_seed_all(seed)
 np.random.seed(seed)
 random.seed(seed)
 torch.backends.cudnn.deterministic = True

def get_data(path):
 pass

● Defining a network structure
class Block(nn.Module):

 def __init__(self, in_channels, out_channels, stride=1):
 super().__init__()
 self.residual_function = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
 nn.BatchNorm2d(out_channels),
 nn.ReLU(inplace=True),
 nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(out_channels)
)

 self.shortcut = nn.Sequential()
 if stride != 1 or in_channels != out_channels:
 self.shortcut = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
 nn.BatchNorm2d(out_channels)
)

 def forward(self, x):
 out = self.residual_function(x) + self.shortcut(x)
 return nn.ReLU(inplace=True)(out)

class ResNet(nn.Module):

 def __init__(self, block, num_classes=10):
 super().__init__()
 self.conv1 = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(64),
 nn.ReLU(inplace=True))
 self.conv2 = self.make_layer(block, 64, 64, 2, 1)
 self.conv3 = self.make_layer(block, 64, 128, 2, 2)
 self.conv4 = self.make_layer(block, 128, 256, 2, 2)
 self.conv5 = self.make_layer(block, 256, 512, 2, 2)
 self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
 self.dense_layer = nn.Linear(512, num_classes)

 def make_layer(self, block, in_channels, out_channels, num_blocks, stride):
 strides = [stride] + [1] * (num_blocks - 1)
 layers = []

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 598

 for stride in strides:
 layers.append(block(in_channels, out_channels, stride))
 in_channels = out_channels
 return nn.Sequential(*layers)

 def forward(self, x):
 out = self.conv1(x)
 out = self.conv2(out)
 out = self.conv3(out)
 out = self.conv4(out)
 out = self.conv5(out)
 out = self.avg_pool(out)
 out = out.view(out.size(0), -1)
 out = self.dense_layer(out)
 return out

● Training and validation
def main():
 file_dir = os.path.dirname(inspect.getframeinfo(inspect.currentframe()).filename)

 seed = datetime.datetime.now().year
 setup_seed(seed)

 parser = argparse.ArgumentParser(description='Pytorch distribute training',
 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('--enable_gpu', default='true')
 parser.add_argument('--lr', default='0.01', help='learning rate')
 parser.add_argument('--epochs', default='100', help='training iteration')

 parser.add_argument('--init_method', default=None, help='tcp_port')
 parser.add_argument('--rank', type=int, default=0, help='index of current task')
 parser.add_argument('--world_size', type=int, default=1, help='total number of tasks')

 parser.add_argument('--custom_data', default='false')
 parser.add_argument('--data_url', type=str, default=os.path.join(file_dir, 'input_dir'))
 parser.add_argument('--output_dir', type=str, default=os.path.join(file_dir, 'output_dir'))
 args, unknown = parser.parse_known_args()

 args.enable_gpu = args.enable_gpu == 'true'
 args.custom_data = args.custom_data == 'true'
 args.lr = float(args.lr)
 args.epochs = int(args.epochs)

 if args.custom_data:
 print('[warning] you are training on custom random dataset, '
 'validation accuracy may range from 0.4 to 0.6.')

 ### Settings for distributed training. Initialize DistributedDataParallel process. The init_method,
rank, and world_size parameters are automatically input by the platform. ###
 dist.init_process_group(init_method=args.init_method, backend="nccl", world_size=args.world_size,
rank=args.rank)
 ### Settings for distributed training. Initialize DistributedDataParallel process. The init_method,
rank, and world_size parameters are automatically input by the platform. ###

 tr_set, val_set = get_data(args.data_url, custom_data=args.custom_data)

 batch_per_gpu = 128
 gpus_per_node = torch.cuda.device_count() if args.enable_gpu else 1
 batch = batch_per_gpu * gpus_per_node

 tr_loader = DataLoader(tr_set, batch_size=batch, shuffle=False)

 ### Settings for distributed training. Create a sampler for data distribution to ensure that different
processes load different data. ###
 tr_sampler = DistributedSampler(tr_set, num_replicas=args.world_size, rank=args.rank)
 tr_loader = DataLoader(tr_set, batch_size=batch, sampler=tr_sampler, shuffle=False, drop_last=True)
 ### Settings for distributed training. Create a sampler for data distribution to ensure that different
processes load different data. ###

 val_loader = DataLoader(val_set, batch_size=batch, shuffle=False)

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 599

 lr = args.lr * gpus_per_node
 max_epoch = args.epochs
 model = ResNet(Block).cuda() if args.enable_gpu else ResNet(Block)

 ### Settings for distributed training. Build a DistributedDataParallel model. ###
 model = nn.parallel.DistributedDataParallel(model)
 ### Settings for distributed training. Build a DistributedDataParallel model. ###

 optimizer = optim.Adam(model.parameters(), lr=lr)
 loss_func = torch.nn.CrossEntropyLoss()

 os.makedirs(args.output_dir, exist_ok=True)

 for epoch in range(1, max_epoch + 1):
 model.train()
 train_loss = 0

 ### Settings for distributed training. DistributedDataParallel sampler. Random numbers are set
for the DistributedDataParallel sampler based on the current epoch number to avoid loading
duplicate data. ###
 tr_sampler.set_epoch(epoch)
 ### Settings for distributed training. DistributedDataParallel sampler. Random numbers are set
for the DistributedDataParallel sampler based on the current epoch number to avoid loading
duplicate data. ###

 for step, (tr_x, tr_y) in enumerate(tr_loader):
 if args.enable_gpu:
 tr_x, tr_y = tr_x.cuda(), tr_y.cuda()
 out = model(tr_x)
 loss = loss_func(out, tr_y)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 train_loss += loss.item()
 print('train | epoch: %d | loss: %.4f' % (epoch, train_loss / len(tr_loader)))

 val_loss = 0
 pred_record = []
 real_record = []
 model.eval()
 with torch.no_grad():
 for step, (val_x, val_y) in enumerate(val_loader):
 if args.enable_gpu:
 val_x, val_y = val_x.cuda(), val_y.cuda()
 out = model(val_x)
 pred_record += list(np.argmax(out.cpu().numpy(), axis=1))
 real_record += list(val_y.cpu().numpy())
 val_loss += loss_func(out, val_y).item()
 val_accu = accuracy_score(real_record, pred_record)
 print('val | epoch: %d | loss: %.4f | accuracy: %.4f' % (epoch, val_loss / len(val_loader), val_accu),
'\n')

 if args.rank == 0:
 # save ckpt every epoch
 torch.save(model.state_dict(), os.path.join(args.output_dir, f'epoch_{epoch}.pth'))

if __name__ == '__main__':
 main()

● Result comparison
100-epoch cifar-10 dataset training is completed using two resource types
respectively: single-node single-card and two-node 16-card. The training
duration and test set accuracy are as follows.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 600

Table 8-19 Training result comparison

Resource Type Single-Node Single-
Card

Two-Node 16-Card

Duration 60 minutes 20 minutes

Accuracy 80+ 80+

Code Example of Distributed Training

The following provides a complete code sample of distributed parallel training for
the classification task of ResNet18 on the CIFAR-10 dataset.

The content of the training boot file main.py is as follows (if you need to execute
a single-node and single-card training job, delete the code for distributed
reconstruction):

import datetime
import inspect
import os
import pickle
import random
import logging

import argparse
import numpy as np
from sklearn.metrics import accuracy_score
import torch
from torch import nn, optim
import torch.distributed as dist
from torch.utils.data import TensorDataset, DataLoader
from torch.utils.data.distributed import DistributedSampler

file_dir = os.path.dirname(inspect.getframeinfo(inspect.currentframe()).filename)

def load_pickle_data(path):
 with open(path, 'rb') as file:
 data = pickle.load(file, encoding='bytes')
 return data

def _load_data(file_path):
 raw_data = load_pickle_data(file_path)
 labels = raw_data[b'labels']
 data = raw_data[b'data']
 filenames = raw_data[b'filenames']

 data = data.reshape(10000, 3, 32, 32) / 255
 return data, labels, filenames

def load_cifar_data(root_path):
 train_root_path = os.path.join(root_path, 'cifar-10-batches-py/data_batch_')
 train_data_record = []
 train_labels = []
 train_filenames = []
 for i in range(1, 6):
 train_file_path = train_root_path + str(i)
 data, labels, filenames = _load_data(train_file_path)
 train_data_record.append(data)
 train_labels += labels
 train_filenames += filenames

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 601

 train_data = np.concatenate(train_data_record, axis=0)
 train_labels = np.array(train_labels)

 val_file_path = os.path.join(root_path, 'cifar-10-batches-py/test_batch')
 val_data, val_labels, val_filenames = _load_data(val_file_path)
 val_labels = np.array(val_labels)

 tr_data = torch.from_numpy(train_data).float()
 tr_labels = torch.from_numpy(train_labels).long()
 val_data = torch.from_numpy(val_data).float()
 val_labels = torch.from_numpy(val_labels).long()
 return tr_data, tr_labels, val_data, val_labels

def get_data(root_path, custom_data=False):
 if custom_data:
 train_samples, test_samples, img_size = 5000, 1000, 32
 tr_label = [1] * int(train_samples / 2) + [0] * int(train_samples / 2)
 val_label = [1] * int(test_samples / 2) + [0] * int(test_samples / 2)
 random.seed(2021)
 random.shuffle(tr_label)
 random.shuffle(val_label)
 tr_data, tr_labels = torch.randn((train_samples, 3, img_size, img_size)).float(),
torch.tensor(tr_label).long()
 val_data, val_labels = torch.randn((test_samples, 3, img_size, img_size)).float(), torch.tensor(
 val_label).long()
 tr_set = TensorDataset(tr_data, tr_labels)
 val_set = TensorDataset(val_data, val_labels)
 return tr_set, val_set
 elif os.path.exists(os.path.join(root_path, 'cifar-10-batches-py')):
 tr_data, tr_labels, val_data, val_labels = load_cifar_data(root_path)
 tr_set = TensorDataset(tr_data, tr_labels)
 val_set = TensorDataset(val_data, val_labels)
 return tr_set, val_set
 else:
 try:
 import torchvision
 from torchvision import transforms
 tr_set = torchvision.datasets.CIFAR10(root='./data', train=True,
 download=True, transform=transforms)
 val_set = torchvision.datasets.CIFAR10(root='./data', train=False,
 download=True, transform=transforms)
 return tr_set, val_set
 except Exception as e:
 raise Exception(
 f"{e}, you can download and unzip cifar-10 dataset manually, "
 "the data url is http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz")

class Block(nn.Module):

 def __init__(self, in_channels, out_channels, stride=1):
 super().__init__()
 self.residual_function = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
 nn.BatchNorm2d(out_channels),
 nn.ReLU(inplace=True),
 nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(out_channels)
)

 self.shortcut = nn.Sequential()
 if stride != 1 or in_channels != out_channels:
 self.shortcut = nn.Sequential(
 nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
 nn.BatchNorm2d(out_channels)
)

 def forward(self, x):

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 602

 out = self.residual_function(x) + self.shortcut(x)
 return nn.ReLU(inplace=True)(out)

class ResNet(nn.Module):

 def __init__(self, block, num_classes=10):
 super().__init__()
 self.conv1 = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
 nn.BatchNorm2d(64),
 nn.ReLU(inplace=True))
 self.conv2 = self.make_layer(block, 64, 64, 2, 1)
 self.conv3 = self.make_layer(block, 64, 128, 2, 2)
 self.conv4 = self.make_layer(block, 128, 256, 2, 2)
 self.conv5 = self.make_layer(block, 256, 512, 2, 2)
 self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
 self.dense_layer = nn.Linear(512, num_classes)

 def make_layer(self, block, in_channels, out_channels, num_blocks, stride):
 strides = [stride] + [1] * (num_blocks - 1)
 layers = []
 for stride in strides:
 layers.append(block(in_channels, out_channels, stride))
 in_channels = out_channels
 return nn.Sequential(*layers)

 def forward(self, x):
 out = self.conv1(x)
 out = self.conv2(out)
 out = self.conv3(out)
 out = self.conv4(out)
 out = self.conv5(out)
 out = self.avg_pool(out)
 out = out.view(out.size(0), -1)
 out = self.dense_layer(out)
 return out

def setup_seed(seed):
 torch.manual_seed(seed)
 torch.cuda.manual_seed_all(seed)
 np.random.seed(seed)
 random.seed(seed)
 torch.backends.cudnn.deterministic = True

def obs_transfer(src_path, dst_path):
 import moxing as mox
 mox.file.copy_parallel(src_path, dst_path)
 logging.info(f"end copy data from {src_path} to {dst_path}")

def main():
 seed = datetime.datetime.now().year
 setup_seed(seed)

 parser = argparse.ArgumentParser(description='Pytorch distribute training',
 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
 parser.add_argument('--enable_gpu', default='true')
 parser.add_argument('--lr', default='0.01', help='learning rate')
 parser.add_argument('--epochs', default='100', help='training iteration')

 parser.add_argument('--init_method', default=None, help='tcp_port')
 parser.add_argument('--rank', type=int, default=0, help='index of current task')
 parser.add_argument('--world_size', type=int, default=1, help='total number of tasks')

 parser.add_argument('--custom_data', default='false')
 parser.add_argument('--data_url', type=str, default=os.path.join(file_dir, 'input_dir'))

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 603

 parser.add_argument('--output_dir', type=str, default=os.path.join(file_dir, 'output_dir'))
 args, unknown = parser.parse_known_args()

 args.enable_gpu = args.enable_gpu == 'true'
 args.custom_data = args.custom_data == 'true'
 args.lr = float(args.lr)
 args.epochs = int(args.epochs)

 if args.custom_data:
 logging.warning('you are training on custom random dataset, '
 'validation accuracy may range from 0.4 to 0.6.')

 ### Settings for distributed training. Initialize DistributedDataParallel process. The init_method, rank,
and world_size parameters are automatically input by the platform. ###
 dist.init_process_group(init_method=args.init_method, backend="nccl", world_size=args.world_size,
rank=args.rank)
 ### Settings for distributed training. Initialize DistributedDataParallel process. The init_method, rank,
and world_size parameters are automatically input by the platform. ###

 tr_set, val_set = get_data(args.data_url, custom_data=args.custom_data)

 batch_per_gpu = 128
 gpus_per_node = torch.cuda.device_count() if args.enable_gpu else 1
 batch = batch_per_gpu * gpus_per_node

 tr_loader = DataLoader(tr_set, batch_size=batch, shuffle=False)

 ### Settings for distributed training. Create a sampler for data distribution to ensure that different
processes load different data. ###
 tr_sampler = DistributedSampler(tr_set, num_replicas=args.world_size, rank=args.rank)
 tr_loader = DataLoader(tr_set, batch_size=batch, sampler=tr_sampler, shuffle=False, drop_last=True)
 ### Settings for distributed training. Create a sampler for data distribution to ensure that different
processes load different data. ###

 val_loader = DataLoader(val_set, batch_size=batch, shuffle=False)

 lr = args.lr * gpus_per_node * args.world_size
 max_epoch = args.epochs
 model = ResNet(Block).cuda() if args.enable_gpu else ResNet(Block)

 ### Settings for distributed training. Build a DistributedDataParallel model. ###
 model = nn.parallel.DistributedDataParallel(model)
 ### Settings for distributed training. Build a DistributedDataParallel model. ###

 optimizer = optim.Adam(model.parameters(), lr=lr)
 loss_func = torch.nn.CrossEntropyLoss()

 os.makedirs(args.output_dir, exist_ok=True)

 for epoch in range(1, max_epoch + 1):
 model.train()
 train_loss = 0

 ### Settings for distributed training. DistributedDataParallel sampler. Random numbers are set for
the DistributedDataParallel sampler based on the current epoch number to avoid loading duplicate data.
###
 tr_sampler.set_epoch(epoch)
 ### Settings for distributed training. DistributedDataParallel sampler. Random numbers are set for
the DistributedDataParallel sampler based on the current epoch number to avoid loading duplicate data.
###

 for step, (tr_x, tr_y) in enumerate(tr_loader):
 if args.enable_gpu:
 tr_x, tr_y = tr_x.cuda(), tr_y.cuda()
 out = model(tr_x)
 loss = loss_func(out, tr_y)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 604

 train_loss += loss.item()
 print('train | epoch: %d | loss: %.4f' % (epoch, train_loss / len(tr_loader)))

 val_loss = 0
 pred_record = []
 real_record = []
 model.eval()
 with torch.no_grad():
 for step, (val_x, val_y) in enumerate(val_loader):
 if args.enable_gpu:
 val_x, val_y = val_x.cuda(), val_y.cuda()
 out = model(val_x)
 pred_record += list(np.argmax(out.cpu().numpy(), axis=1))
 real_record += list(val_y.cpu().numpy())
 val_loss += loss_func(out, val_y).item()
 val_accu = accuracy_score(real_record, pred_record)
 print('val | epoch: %d | loss: %.4f | accuracy: %.4f' % (epoch, val_loss / len(val_loader), val_accu), '\n')

 if args.rank == 0:
 # save ckpt every epoch
 torch.save(model.state_dict(), os.path.join(args.output_dir, f'epoch_{epoch}.pth'))

if __name__ == '__main__':
 main()

FAQs

1. How Do I Use Different Datasets in the Sample Code?

● To use the CIFAR-10 dataset in the preceding code, download and decompress
the dataset and upload it to the OBS bucket. The file directory structure is as
follows:
DDP
|--- main.py
|--- input_dir
|------ cifar-10-batches-py
|-------- data_batch_1
|-------- data_batch_2
|-------- ...

DDP is the code directory specified during training job creation, main.py is
the preceding code example (the boot file specified during training job
creation), and cifar-10-batches-py is the unzipped dataset folder (stored in
input_dir).

● To use user-defined random data, change the value of custom_data in the
code example to true.
parser.add_argument('--custom_data', default='true')

Then, run main.py. The parameters for creating a training job are the same as
those shown in the preceding figure.

2. Why Can I Leave the IP Address of the Master Node Blank for DDP?

The init method parameter in parser.add_argument('--init_method',
default=None, help='tcp_port') contains the IP address and port number of the
master node, which are automatically input by the platform.

8.7.4 Example: Creating a DDP Distributed Training Job
(PyTorch + GPU)

This topic describes three methods of using a training job to start PyTorch DDP
training and provides their sample code.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 605

● Use PyTorch preset images and run the mp.spawn command.
● Use custom images.

– Run the torch.distributed.launch command.
– Run the torch.distributed.run command.

Creating a Training Job
● Method 1: Use the preset PyTorch framework and run the mp.spawn

command to start a training job.
For details about parameters for creating a training job, see Table 8-20.

Table 8-20 Creating a training job (preset image)

Parameter Description

Algorithm Type Select Custom algorithm.

Boot Mode Select Preset image then PyTorch. Select a version as
needed.

Code Directory Select the training code path from your OBS bucket,
for example, obs://test-modelarts/code/.

Boot File Select the Python boot script of the training job in the
code directory, for example, obs://test-modelarts/
code/main.py.

Hyperparameter To use a single-node multi-card flavor, set the
hyperparameters world_size and rank.
If you choose a flavor with multiple instances, these
hyperparameters are automatically set by ModelArts.

● Method 2: Use a custom image and run the torch.distributed.launch

command to start a training job.
For details about parameters for creating a training job, see Table 8-21.

Table 8-21 Creating a training job (custom image +
torch.distributed.launch)

Parameter Description

Algorithm Type Select Custom algorithm.

Boot Mode Select Custom image.

Image Select a PyTorch image for training.

Code Directory Select the training code path from your OBS bucket,
for example, obs://test-modelarts/code/.

Boot Command Enter the Python boot command of the image, for
example:
bash ${MA_JOB_DIR}/code/torchlaunch.sh

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 606

● Method 3: Use a custom image and run the torch.distributed.run command
to start a training job.
For details about parameters for creating a training job, see Table 8-22.

Table 8-22 Creating a training job (custom image + torch.distributed.run)

Parameter Description

Algorithm Type Select Custom algorithm.

Boot Mode Select Custom image.

Image Select a PyTorch image for training.

Code Directory Select the training code path from your OBS bucket,
for example, obs://test-modelarts/code/.

Boot Command Enter the Python boot command of the image, for
example:
bash ${MA_JOB_DIR}/code/torchrun.sh

Code Example

Upload the following files to an OBS bucket:

code # Root directory of the code
 └─torch_ddp.py # Code file for PyTorch DDP training
 └─main.py # Boot file for starting training using the PyTorch preset image and the mp.spawn
command
 └─torchlaunch.sh # Boot file for starting training using the custom image and the
torch.distributed.launch command
 └─torchrun.sh # Boot file for starting training using the custom image and the
torch.distributed.run command

torch_ddp.py

import os
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP

Start training by running mp.spawn.
def init_from_arg(local_rank, base_rank, world_size, init_method):
 rank = base_rank + local_rank
 dist.init_process_group("nccl", rank=rank, init_method=init_method, world_size=world_size)
 ddp_train(local_rank)

Start training by running torch.distributed.launch or torch.distributed.run.
def init_from_env():
 dist.init_process_group(backend='nccl', init_method='env://')
 local_rank=int(os.environ["LOCAL_RANK"])
 ddp_train(local_rank)

def cleanup():
 dist.destroy_process_group()

class ToyModel(nn.Module):
 def __init__(self):
 super(ToyModel, self).__init__()
 self.net1 = nn.Linear(10, 10)

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 607

 self.relu = nn.ReLU()
 self.net2 = nn.Linear(10, 5)
 def forward(self, x):
 return self.net2(self.relu(self.net1(x)))

def ddp_train(device_id):
 # create model and move it to GPU with id rank
 model = ToyModel().to(device_id)
 ddp_model = DDP(model, device_ids=[device_id])
 loss_fn = nn.MSELoss()
 optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)
 optimizer.zero_grad()
 outputs = ddp_model(torch.randn(20, 10))
 labels = torch.randn(20, 5).to(device_id)
 loss_fn(outputs, labels).backward()
 optimizer.step()
 cleanup()

if __name__ == "__main__":
 init_from_env()

main.py

import argparse
import torch
import torch.multiprocessing as mp

parser = argparse.ArgumentParser(description='ddp demo args')
parser.add_argument('--world_size', type=int, required=True)
parser.add_argument('--rank', type=int, required=True)
parser.add_argument('--init_method', type=str, required=True)
args, unknown = parser.parse_known_args()

if __name__ == "__main__":
 n_gpus = torch.cuda.device_count()
 world_size = n_gpus * args.world_size
 base_rank = n_gpus * args.rank
 # Call the start function in the DDP sample code.
 from torch_ddp import init_from_arg
 mp.spawn(init_from_arg,
 args=(base_rank, world_size, args.init_method),
 nprocs=n_gpus,
 join=True)

torchlaunch.sh
#!/bin/bash
Default system environment variables. Do not modify them.
MASTER_HOST="$VC_WORKER_HOSTS"
MASTER_ADDR="${VC_WORKER_HOSTS%%,*}"
MASTER_PORT="6060"
JOB_ID="1234"
NNODES="$MA_NUM_HOSTS"
NODE_RANK="$VC_TASK_INDEX"
NGPUS_PER_NODE="$MA_NUM_GPUS"

Custom environment variables to specify the Python script and parameters.
PYTHON_SCRIPT=${MA_JOB_DIR}/code/torch_ddp.py
PYTHON_ARGS=""

CMD="python -m torch.distributed.launch \
 --nnodes=$NNODES \
 --node_rank=$NODE_RANK \
 --nproc_per_node=$NGPUS_PER_NODE \
 --master_addr $MASTER_ADDR \
 --master_port=$MASTER_PORT \
 --use_env \
 $PYTHON_SCRIPT \
 $PYTHON_ARGS
"

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 608

echo $CMD
$CMD

torchrun.sh

NO TICE

In PyTorch 2.1, you must set rdzv_backend to static: --rdzv_backend=static.

#!/bin/bash
Default system environment variables. Do not modify them.
MASTER_HOST="$VC_WORKER_HOSTS"
MASTER_ADDR="${VC_WORKER_HOSTS%%,*}"
MASTER_PORT="6060"
JOB_ID="1234"
NNODES="$MA_NUM_HOSTS"
NODE_RANK="$VC_TASK_INDEX"
NGPUS_PER_NODE="$MA_NUM_GPUS"

Custom environment variables to specify the Python script and parameters.
PYTHON_SCRIPT=${MA_JOB_DIR}/code/torch_ddp.py
PYTHON_ARGS=""

if [[$NODE_RANK == 0]]; then
 EXT_ARGS="--rdzv_conf=is_host=1"
else
 EXT_ARGS=""
fi

CMD="python -m torch.distributed.run \
 --nnodes=$NNODES \
 --node_rank=$NODE_RANK \
 $EXT_ARGS \
 --nproc_per_node=$NGPUS_PER_NODE \
 --rdzv_id=$JOB_ID \
 --rdzv_backend=c10d \
 --rdzv_endpoint=$MASTER_ADDR:$MASTER_PORT \
 $PYTHON_SCRIPT \
 $PYTHON_ARGS
 "
echo $CMD
$CMD

8.7.5 Example: Creating a DDP Distributed Training Job
(PyTorch + NPU)

This section describes how to use a custom image and boot command to start
PyTorch DDP training powered by Ascend accelerator cards.

Prerequisites

An Ascend accelerator card resource pool is available.

Creating a Training Job

The following table describes the parameters you need to configure during
training job creation.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 609

Table 8-23 Parameters for creating a training job

Parameter Description

Algorithm Type Select Custom algorithm.

Boot Mode Select Custom image.

Image Select a custom image for training.

Code Directory Select the code directory required for this training job, for
example, obs://test-modelarts/ascend/code/ in this
case.

Boot Command Python boot command of the image, for example, bash
${MA_JOB_DIR}/code/run_torch_ddp_npu.sh in this
case. For details about the complete code of the boot
script, see Code Example.

(Optional) Enabling Ranktable Dynamic Routing
To use ranktable dynamic routing for network acceleration, contact technical
support to enable cabinet scheduling permission. Additionally, the training job
must meet the following requirements:

● The training job must use Python 3.7 or 3.9.
● The training job must have at least 3 instances.
● The training job must use the same rank number in the code. The algorithm

accelerates routing by changing the rank number.

Follow these steps and start the training job to accelerate the network.

● Change NODE_RANK="$VC_TASK_INDEX" in the training boot script to
NODE_RANK="$RANK_AFTER_ACC".

● Change MASTER_ADDR="${VC_WORKER_HOSTS%%,*}" in the training boot
script to MASTER_ADDR="${MA_VJ_NAME}-${MA_TASK_NAME}-$
{MA_MASTER_INDEX}.${MA_VJ_NAME}".

● When creating the training job, set the environment variable ROUTE_PLAN to
true. For details, see Managing Environment Variables of a Training
Container.

Code Example
The following shows an example boot script of a training job.

NO TE

To store the generated plog data, you need to specify the path in the startup script as /
home/ma-user/modelarts/log/modelarts-job-{id}/worker-{index}/. The system will
automatically upload the *.log file in the /home/ma-user/modelarts/log/ directory to the
OBS log directory of your training job. The system will only upload the log files (larger than
0 MB) in the local directory to the corresponding parent directory. Unlike MindSpore,
PyTorch NPU plog logs are organized by worker instead of rank ID. PyTorch NPU does not
rely on the rank table file.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 610

#!/bin/bash

MA preset envs
MASTER_HOST="$VC_WORKER_HOSTS"
MASTER_ADDR="${VC_WORKER_HOSTS%%,*}"
NNODES="$MA_NUM_HOSTS"
NODE_RANK="$VC_TASK_INDEX"
also indicates NPU per node
NGPUS_PER_NODE="$MA_NUM_GPUS"

self-define, it can be changed to >=10000 port
MASTER_PORT="38888"

replace ${MA_JOB_DIR}/code/torch_ddp.py to the actutal training script
PYTHON_SCRIPT=${MA_JOB_DIR}/code/torch_ddp.py
PYTHON_ARGS=""

export HCCL_WHITELIST_DISABLE=1

set npu plog env
ma_vj_name=`echo ${MA_VJ_NAME} | sed 's:ma-job:modelarts-job:g'`
task_name="worker-${VC_TASK_INDEX}"
task_plog_path=${MA_LOG_DIR}/${ma_vj_name}/${task_name}

mkdir -p ${task_plog_path}
export ASCEND_PROCESS_LOG_PATH=${task_plog_path}

echo "plog path: ${ASCEND_PROCESS_LOG_PATH}"

set hccl timeout time in seconds
export HCCL_CONNECT_TIMEOUT=1800

replace ${ANACONDA_DIR}/envs/${ENV_NAME}/bin/python to the actual python
CMD="${ANACONDA_DIR}/envs/${ENV_NAME}/bin/python -m torch.distributed.launch \
 --nnodes=$NNODES \
 --node_rank=$NODE_RANK \
 --nproc_per_node=$NGPUS_PER_NODE \
 --master_addr=$MASTER_ADDR \
 --master_port=$MASTER_PORT \
 --use_env \
 $PYTHON_SCRIPT \
 $PYTHON_ARGS
"
echo $CMD
$CMD

8.8 Incremental Model Training

What Is Incremental Training?

Incremental learning is a machine learning method that enables AI models to
learn from new data without restarting the training process. It builds on existing
knowledge, allowing the model to expand its capabilities and improve its
performance over time.

Incremental learning allows for training on data in smaller chunks, reducing
storage needs and alleviating resource constraints. It also conserves computing
power and time, and lowers retraining costs.

Incremental training is ideal for these scenarios:

● Continuous data updates: It allows models to adapt to new data without
retraining.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 611

● Resource constraints: It is a more economical choice when retraining a model
is too costly.

● Avoiding knowledge loss: It retains old knowledge while learning new
information, preventing the model from forgetting what it has learned.

Incremental training is used in various fields, including natural language
processing, computer vision, and recommendation systems. It makes AI systems
more flexible and adaptable, allowing them to handle changing data in real-world
environments.

Implementing Incremental Training in ModelArts Standard
The checkpoint mechanism enables incremental training.

During model training, training results (including but not limited to epochs, model
weights, optimizer status, and scheduler status) are continuously saved. To add
data and resume a training job, load a checkpoint and use the checkpoint
information to initialize the training status. To do so, add reload ckpt to the code.

To incrementally train a model in ModelArts, configure the training output.

When creating a training job, set the data path to the training output, save
checkpoints in this data path, and set Predownload to Yes. If you set
Predownload to Yes, the system automatically downloads the checkpoint file in
the training output data path to a local directory of the training container before
the training job is started.

Figure 8-17 Configuring training output

reload ckpt for PyTorch
1. Use either of the following methods to save a PyTorch model.

– Save model parameters only.
state_dict = model.state_dict()
torch.save(state_dict, path)

– Save the entire model (not recommended).
torch.save(model, path)

2. Save the data generated during model training at regular intervals based on
steps and time.
The data includes the network weight, optimizer weight, and epoch, which
will be used to resume the interrupted training.
 checkpoint = {
 "net": model.state_dict(),
 "optimizer": optimizer.state_dict(),
 "epoch": epoch
 }
 if not os.path.isdir('model_save_dir'):

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 612

 os.makedirs('model_save_dir')
 torch.save(checkpoint,'model_save_dir/ckpt_{}.pth'.format(str(epoch)))

3. Check the complete code example below.
import os
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--train_url", type=str)
args, unparsed = parser.parse_known_args()
args = parser.parse_known_args()
train_url is set to /home/ma-user/modelarts/outputs/train_url_0.
train_url = args.train_url

Check whether there is a model file in the output path. If there is no file, the model will be trained
from the beginning by default. If there is a model file, the CKPT file with the maximum epoch value
will be loaded as the pre-trained model.
if os.listdir(train_url):
 print('> load last ckpt and continue training!!')
 last_ckpt = sorted([file for file in os.listdir(train_url) if file.endswith(".pth")])[-1]
 local_ckpt_file = os.path.join(train_url, last_ckpt)
 print('last_ckpt:', last_ckpt)
 # Load the checkpoint.
 checkpoint = torch.load(local_ckpt_file)
 # Load the parameters that can be learned by the model.
 model.load_state_dict(checkpoint['net'])
 # Load optimizer parameters.
 optimizer.load_state_dict(checkpoint['optimizer'])
 # Obtain the saved epoch. The model will continue to be trained based on the epoch value.
 start_epoch = checkpoint['epoch']
start = datetime.now()
total_step = len(train_loader)
for epoch in range(start_epoch + 1, args.epochs):
 for i, (images, labels) in enumerate(train_loader):
 images = images.cuda(non_blocking=True)
 labels = labels.cuda(non_blocking=True)
 # Forward pass
 outputs = model(images)
 loss = criterion(outputs, labels)
 # Backward and optimize
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 ...

 # Save the network weight, optimizer weight, and epoch during model training.
 checkpoint = {
 "net": model.state_dict(),
 "optimizer": optimizer.state_dict(),
 "epoch": epoch
 }
 if not os.path.isdir(train_url):
 os.makedirs(train_url)
 torch.save(checkpoint, os.path.join(train_url, 'ckpt_best_{}.pth'.format(epoch)))

8.9 Automatic Model Tuning (AutoSearch)

8.9.1 Overview
ModelArts automatically searches for optimal hyperparameters for your models,
saving time and effort.

During training, hyperparameters like learning_rate and weight_decay need to
be adjusted. ModelArts hyperparameter search optimizes these settings
automatically, outperforming manual tuning in speed and precision.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 613

ModelArts supports the following hyperparameter search algorithms:

● Bayesian Optimization (SMAC)
● Tree-structured Parzen Estimator (TPE)
● Simulated Annealing

Bayesian Optimization (SMAC)
Bayesian optimization assumes a functional relationship between
hyperparameters and the objective function. It estimates the mean and variance
of objective function values at other search points using Gaussian process
regression, based on the evaluation values of the searched hyperparameters. The
mean and variance are then used to construct the acquisition function, which
identifies the next search point as its maximum value. Bayesian optimization
reduces the number of iterations and search time by leveraging previous
evaluation results, but it can struggle to find the global optimal solution.

Table 8-24 Bayesian optimization parameters

Parameter Description Recommended Value

num_samples Number of hyperparameter
groups to search

This integer ranges from 10 to
20. Larger values increase search
time but improve results.

kind Acquisition function type This string defaults to ucb. Other
options are ei and poi, but it is
best to stick with the default.

kappa Adjustment parameter for
the ucb acquisition
function, representing the
upper confidence boundary

This float value should remain
unchanged.

xi Adjustment parameter for
poi and ei acquisition
functions.

This float value should remain
unchanged.

Tree-structured Parzen Estimator (TPE)
The TPE algorithm uses a Gaussian mixture model to learn model
hyperparameters. On each trial, TPE fits two Gaussian mixture models: one to the
best objective values and another to the remaining values. It selects the
hyperparameter value that maximizes the ratio of these two models.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 614

Table 8-25 TPE parameters

Parameter Description Recommended Value

num_samples Number of hyperparameter groups
to search

This integer ranges from
10 to 20. Larger values
increase search time but
improve results.

n_initial_point
s

Number of random evaluations of
the objective function before using
tree-structured parzen estimators

This integer should
remain unchanged.

gamma Quantile used by the TPE algorithm
to split l(x) and g(x)

This float value ranges
from 0 to 1 and should
remain unchanged.

Simulated Annealing
The simulated annealing algorithm is a simple and effective search method that
uses the smoothness of the response surface. It starts with a previous trial point
and samples each hyperparameter from a distribution similar to the prior, but with
a higher concentration around the chosen point. Over time, the algorithm focuses
on sampling points closer to the best ones. Occasionally, it may select a runner-up
trial as the best to avoid local optima with a certain probability.

Table 8-26 Simulated annealing parameters

Parameter Description Recommended Value

num_samples Number of hyperparameter groups
to search

This integer ranges from
10 to 20. Larger values
increase search time but
improve results.

avg_best_idx Mean of the geometric distribution
used to select trials for exploration,
based on their scores

This float value should
remain unchanged.

shrink_coef Rate at which the sampling
neighborhood size decreases as
more points are explored

This float value should
remain unchanged.

8.9.2 Creating a Training Job for Automatic Model Tuning

Context
To use ModelArts hyperparameter search, the AI engine must be either
pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 or tensorflow_2.1.0-
cuda_10.1-py_3.7-ubuntu_18.04-x86_64, and the hyperparameter to be
optimized must be a float value.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 615

To perform a hyperparameter search without any code modification, follow these
steps:

1. Preparations
2. Creating an Algorithm
3. Creating a Training Job
4. Viewing Details About a Hyperparameter Search Job

Preparations
● Create a dataset in ModelArts or upload a training dataset to an OBS

directory.
● Upload your training script to an OBS directory. For details about how to

develop a training script, see Developing Code for Training Using a Preset
Image.

● Print search indicator parameters in the training code.
● Create at least one empty folder in OBS for storing training outputs.
● Make sure your account is not in arrears, as training jobs consume resources.
● Make sure your OBS directory and ModelArts are in the same region.

Creating an Algorithm
Log in to the ModelArts console and create an algorithm by referring to Creating
an Algorithm. The image must use the pytorch_1.8.0-cuda_10.2-py_3.7-
ubuntu_18.04-x86_64 or tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-
x86_64 engine.

To define hyperparameters for optimization, specify the name, type, default value,
and constraints in Hyperparameter. For details, see Table 8-12.

To enable auto search for the algorithm, select autoSearch(S), print search
parameters in the code, and configure the following parameters. ModelArts uses a
regular expression to obtain search indicator parameters during an auto search,
and then performs hyperparameter optimization based on the specified
optimization direction.

Figure 8-18 Enabling auto search

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 616

● Search Indicator
The search indicator represents the value of the objective function, such as
loss or accuracy. By optimizing and converging this value in the desired
direction, you can find the optimal hyperparameters to enhance model
accuracy and convergence speed.

Table 8-27 Search indicator parameters

Parameter Description

Name Enter a search indicator name. This value must
be identical to the search indicator parameter in
the code.

Optimization Direction Select max or min.

Counter regularization Enter a regular expression or click Generate
Intelligently to generate a regular expression
automatically.

● Setting Automatic Search Parameters

Select hyperparameters from the Hyperparameters configuration. Only float-
type hyperparameters are supported. After selecting autoSearch(S), set the
value range.

● Search Algorithm Configuration
ModelArts has three built-in algorithms for hyperparameter search. You can
select one or more algorithms as needed. The algorithms and their parameter
description are as follows:
– bayes_opt_search: Bayesian Optimization (SMAC)
– tpe_search: Tree-structured Parzen Estimator (TPE)
– anneal_search: Simulated Annealing

After creating the algorithm, use it to create a training job.

Creating a Training Job
Log in to the ModelArts console and create a training job by referring to Creating
a Production Training Job.

If you select an algorithm that supports hyperparameter search, click the button
for range setting to enable hyperparameter search.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 617

Figure 8-19 Enabling hyperparameter search

After enabling the hyperparameter search, you can configure the search indicator,
search algorithm, and search algorithm parameters. These parameters have the
same values as the hyperparameters of the algorithm you created.

The hyperparameter search job will take some time to run after it is created.

Viewing Details About a Hyperparameter Search Job
After a training job is completed, you can review the results of the automated
hyperparameter search to evaluate the job's performance.

If the training job is a hyperparameter search job, go to the training job details
page and click the Auto Search Results tab to view the hyperparameter search
results.

Figure 8-20 Hyperparameter search results

8.10 High Model Training Reliability

8.10.1 Training Job Fault Tolerance Check
During model training, a training failure may occur due to a hardware fault. For
hardware faults, ModelArts provides fault tolerance check to isolate faulty nodes
to improve user experience in training.

The fault tolerance check involves environment pre-check and periodic hardware
check. If any fault is detected during either of the checks, ModelArts automatically

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 618

isolates the faulty hardware and issues the training job again. In distributed
training, the fault tolerance check will be performed on all compute nodes used by
the training job.

The following shows four failure scenarios, among which the failure in scenario 4
is not caused by a hardware fault. You can enable fault tolerance in the other
three scenarios to automatically resume the training job.

● Scenario 1: The environment pre-check fails, and the hardware is faulty. Then,
ModelArts automatically isolates all faulty nodes and issues the training job
again.

Figure 8-21 Pre-check failure and hardware fault

● Scenario 2: The environment pre-check fails but the hardware is functional.
Then, ModelArts randomly allocates nodes and issues the training job again.

Figure 8-22 Pre-check failure but functional hardware

● Scenario 3: The environment pre-check is successful and the user service
starts. A hardware fault occurs and the user service exits unexpectedly. Then,

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 619

ModelArts automatically isolates all faulty nodes and issues the training job
again.

Figure 8-23 Service failure and hardware fault

● Scenario 4: The environment pre-check is successful and the user service
starts. The hardware is functional. A fault occurs in the user service, the
training job ends in the failure state.

Figure 8-24 Service failure and functional hardware

After the faulty node is isolated, ModelArts creates a training job on new compute
nodes. If the resources provided by the resource pool are limited, the re-issued
training job will be queued with the highest priority. If the waiting time exceeds 30
minutes, the training job will automatically exit. This indicates that the resources
are so limited that the training job cannot start. In this case, buy a dedicated
resource pool to obtain dedicated resources.

If you use a dedicated resource pool to create a training job, the faulty nodes
identified during the fault tolerance check will be removed. The system
automatically adds healthy compute nodes to the dedicated resource pool. (This
function is coming soon.)

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 620

More details of a fault tolerance check:

1. Enabling Fault Tolerance Check
2. Check Items and Conditions
3. Effect of a Fault Tolerance Check
4. After the environment pre-check is successful, any hardware fault will

interrupt the user service. Add the reload ckpt code logic to the training so
that the pre-trained model saved before the training is interrupted can be
obtained. For details, see Resumable Training.

Enabling Fault Tolerance Check
To enable fault tolerance check, enable auto restart when creating a training job.

● Configure fault tolerance check on the ModelArts Standard console:
Enable Auto Restart on the ModelArts management console. Auto Restart is
disabled by default, indicating that the job will not be re-issued and the
environment pre-check will not be enabled. After Auto Restart is enabled, the
number of restart retries ranges from 1 to 128.

Figure 8-25 Auto Restart

● Configure fault tolerance check using an API:
Enable auto restart upon a fault using an API. When creating a training job,
configure the fault-tolerance/job-retry-num field in annotations of the
metadata field.
If the fault-tolerance/job-retry-num field is added, auto restart is enabled.
The value can be an integer ranging from 1 to 128. specifying the maximum
number of times that a job can be re-issued. If this hyperparameter is not
specified, the default value 0 is used, indicating that the job will not be re-
issued and the environment pre-check will not be enabled.

Figure 8-26 Setting the API

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 621

Check Items and Conditions

Check Item Item
(Log
Keywor
d)

Execution
Condition

Requirements for a Check

Domain
name
detection

dns None The domain names of the
volcano containers in the .host
file in /etc/volcano are
successfully resolved.

Disk size -
Container
root directory

disk-size
root

None The directory is greater than 32
GB.

Disk size
- /dev/shm

disk-size
shm

None The directory is greater than 1
GB.

Disk size - /
cache

disk-size
cache

None The directory is greater than 32
GB.

ulimit check ulimit An IB network is
used.

● Maximum locked memory >
16000

● Open files > 1000000
● Stack size > 8000
● Maximum user processes >

1000000

GPU check gpu-
check

GPU and the v2
training engine are
used.

GPUs are detected.

Effect of a Fault Tolerance Check
● If the fault tolerance check is passed, the logs of the check items will be

recorded, indicating that the check items are successful. You can search for
the keyword item in the log file. A fault tolerance check minimizes reported
runtime faults.

● If a fault tolerance check fails, check failure logs will be recorded. You can
search for the keyword item in the log file to view the failure information.

If the number of job restarts does not reach the specified time, the job will be
automatically issued again. You can search for keywords error,exiting to
obtain the logs recording a restarted job that ends with a failure.

Using reload ckpt to Resume an Interrupted Training
With fault tolerance enabled, if a training job is restarted due to a hardware fault,
you can obtain the pre-trained model in the code to restore the training to the
state before the restart. To do so, add reload ckpt to the code. For details, see
Resumable Training.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 622

8.10.2 Training Log Failure Analysis
If you encounter an issue during the execution of a ModelArts Standard training
job, view logs first. In most scenarios, you can locate the issue based on the error
information reported in logs.

If a training job fails, ModelArts Standard automatically identifies the failure cause
and displays a message on the log page. The message consists of possible causes,
recommended solutions, and error logs (marked in red).

Figure 8-27 Identifying training faults

ModelArts Standard provides possible causes (for reference only) and solutions for
some common training faults. Not all faults can be identified. For a distributed
job, only the analysis result of the current node is displayed. To obtain the failure
cause of a training job, check the analysis results of all nodes used by the training
job.

To rectify common training faults, perform the following steps:

1. Rectify the fault based on the analysis and suggestions provided on the log
page.
– Solution 1: A troubleshooting document is provided for you to follow.
– Solution 2: Rebuild the training job and run it again.

2. If the fault persists, analyze the error information in the logs to locate and
rectify the fault.

3. If the provided solutions cannot rectify your fault, you can submit a service
ticket for technical support.

8.10.3 Detecting Training Job Suspension

Overview
A training job may be suspended due to unknown reasons. If the suspension
cannot be detected promptly, resources cannot be released, leading to a waste. To
minimize resource cost and improve user experience, ModelArts provides
suspension detection for training jobs. With this function, suspension can be
automatically detected and displayed on the log details page. You can also enable
notification so that you can be promptly notified of job suspension.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 623

Detection Rules
Determine whether a job is suspended based on the monitored job process status
and resource usage. A process is started to periodically monitor the changes of the
two metrics.

● Job process status: If the process I/O of a training job changes, the next
detection period starts. If the process I/O of the job remains unchanged in
multiple detection periods, the resource usage detection starts.

● Resource usage: If the process I/O remains unchanged, the system collects the
GPU or NPU usage within a certain period of time and determines whether
the resource usage changes based on the variance and median of the GPU or
NPU usage within the period. If the GPU usage is not changed, the job is
suspended.

The environment variable MA_HANG_DETECT_TIME is set to 30 by default, which
means a job is considered suspended if its process I/O does not change for 30
minutes. To adjust this, update the value of the MA_HANG_DETECT_TIME
variable. For details, see Managing Environment Variables of a Training
Container.

CA UTION

● Due to the limitation of detection rules, there is a certain error probability in
suspension detection. If the suspension is caused by the logic of job code (for
example, long-time sleep), ignore it.

Constraints
Suspension can be detected only for training jobs that run on GPUs or NPUs.

Procedure
Suspension detection is automatically performed during job running. No additional
configuration is required. After detecting that a job is suspended, the system
displays a message on the training job details page, indicating that the job may be
suspended. If you want to be notified of suspension (by SMS or email), enable
event notification on the job creation page.

Case: Data Replication Suspension
Symptoms

The system stopped responding when mox.file.copy_parallel was called to copy
data.

Solution

● Run the following commands to copy files or folders:
import moxing as mox
mox.file.set_auth(is_secure=False)

● Run the following command to copy a single file that is greater than 5 GB:
from moxing.framework.file import file_io

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 624

https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/develop-modelarts-0104.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/develop-modelarts-0104.html

Run file_io._LARGE_FILE_METHOD to check the version of the MoXing API.
Output value 1 indicates V1 and 2 indicates V2.
Run file_io._NUMBER_OF_PROCESSES=1 to resolve the issue for the V1 API.
To resolve the issue for the V2 API, run file_io._LARGE_FILE_METHOD = 1 to
switch to V1 and perform operations required in V1. Alternatively, run
file_io._LARGE_FILE_TASK_NUM=1 to resolve this issue.

● Run the following command to copy a folder:
mox.file.copy_parallel(threads=0,is_processing=False)

Case: Suspension Before Training
If a job was trained on multiple nodes and suspension occurred before the job
started, add os.environ["NCCL_DEBUG"] = "INFO" to the code to view the NCCL
debugging information.

● Symptom 1
The job was suspended before the NCCL debugging information was printed
in logs.
Solution 1
Check the code for parameters such as master_ip and rank. Ensure that these
parameters are specified.

● Symptom 2
According to the distributed training logs, some nodes contain GDR
information, but some nodes do not. The suspension may be caused by GDR.
Logs of node A
modelarts-job-a7305e27-d1cf-4c71-ae6e-a12da6761d5a-worker-1:1136:1191 [2] NCCL INFO Channel
00 : 3[5f000] -> 10[5b000] [receive] via NET/IB/0/GDRDMA
modelarts-job-a7305e27-d1cf-4c71-ae6e-a12da6761d5a-worker-1:1140:1196 [6] NCCL INFO Channel
00 : 14[e1000] -> 15[e9000] via P2P/IPC
modelarts-job-a7305e27-d1cf-4c71-ae6e-a12da6761d5a-worker-1:1141:1187 [7] NCCL INFO Channel
00 : 15[e9000] -> 11[5f000] via P2P/IPC
modelarts-job-a7305e27-d1cf-4c71-ae6e-a12da6761d5a-worker-1:1138:1189 [4] NCCL INFO Channel
00 : 12[b5000] -> 14[e1000] via P2P/IPC
modelarts-job-a7305e27-d1cf-4c71-ae6e-a12da6761d5a-worker-1:1137:1197 [3] NCCL INFO Channel
00 : 11[5f000] -> 16[2d000] [send] via NET/IB/0/GDRDMA

Logs of node B
modelarts-job-a7305e27-d1cf-4c71-ae6e-a12da6761d5a-worker-2:1139:1198 [2] NCCL INFO Channel
00 : 18[5b000] -> 19[5f000] via P2P/IPC
modelarts-job-a7305e27-d1cf-4c71-ae6e-a12da6761d5a-worker-2:1144:1200 [7] NCCL INFO Channel
00 : 23[e9000] -> 20[b5000] via P2P/IPC
modelarts-job-a7305e27-d1cf-4c71-ae6e-a12da6761d5a-worker-2:1142:1196 [5] NCCL INFO Channel
00 : 21[be000] -> 17[32000] via P2P/IPC
modelarts-job-a7305e27-d1cf-4c71-ae6e-a12da6761d5a-worker-2:1143:1194 [6] NCCL INFO Channel
00 : 22[e1000] -> 21[be000] via P2P/IPC
modelarts-job-a7305e27-d1cf-4c71-ae6e-a12da6761d5a-worker-2:1141:1191 [4] NCCL INFO Channel
00 : 20[b5000] -> 22[e1000] via P2P/IPC

Solution 2
Set os.environ["NCCL_NET_GDR_LEVEL"] = '0' at the beginning of the
program to disable GDR or ask the O&M personnel to add the GDR
information to the affected nodes.

● Symptom 3
Communication information such as "Got completion with error 12, opcode 1,
len 32478, vendor err 129" was displayed. The current network was unstable.
Solution 3

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 625

Add the following environment variables:
– NCCL_IB_GID_INDEX=3: enables RoCEv2. RoCEv1 is enabled by default.

However, RoCEv1 does not support congestion control on switches, which
may lead to packet loss. In addition, later-version switches do not support
RoCEv1, leading to a RoCEv1 failure.

– NCCL_IB_TC=128: enables data packets to be transmitted through the
queue 4 of switches, which is RoCE-compliant.

– NCCL_IB_TIMEOUT=22: enables a longer timeout interval. Generally,
there is a network interruption lasting about 5s if the network is unstable
and then the timeout message is returned. Change the timeout interval
to 22s, indicating that the timeout message will be returned in about 20s
(4.096 µs x 2 ^ timeout).

Case: Suspension During Training
● Symptom 1

According to the logs of the nodes on which a training job ran, an error
occurred on a node but the job did not exit, leading to the job suspension.
Solution 1
Check the error cause and rectify the fault.

● Symptom 2
The job was stuck in sync-batch-norm or the training speed was lowered
down. If sync-batch-norm is enabled for PyTorch, the training speed is lowered
down because all node data must be synchronized on each batch
normalization layer in every iteration, which leads to heavy communication
traffic.
Solution 2
Disable sync-batch-norm, or upgrade the PyTorch version to 1.10.

● Symptom 3
The job is stuck in TensorBoard, and the following error is reported:
writer = Sumarywriter('./path)/to/log')

Solution 3
Set a local path for storage, for example, cache/tensorboard. Do not store
data in OBS.

● Symptom 4
When PyTorch DataLoader is used to read data, the job is stuck in data
reading, and logs stop to update.
Solution 4
When the DataLoader is used to read data, reduce the value of num_worker.

Case: Suspension in the Last Training Epoch
Symptoms

Logs showed that an error occurred in split data. As a result, processes are in
different epochs, and uncompleted processes are suspended because they do not
receive response from other processes. As shown in the following figure, some
processes are in epoch 48 while others are in epoch 49 at the same time.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 626

loss exit lane:0.12314446270465851
step loss is 0.29470521211624146
[2022-04-26 13:57:20,757][INFO][train_epoch]:Rank:2 Epoch:[48][20384/all] Data Time 0.000(0.000) Net
Time 0.705(0.890) Loss 0.3403(0.3792)LR 0.00021887
[2022-04-26 13:57:20,757][INFO][train_epoch]:Rank:1 Epoch:[48][20384/all] Data Time 0.000(0.000) Net
Time 0.705(0.891) Loss 0.3028(0.3466) LR 0.00021887
[2022-04-26 13:57:20,757][INFO][train_epoch]:Rank:4 Epoch:[49][20384/all] Data Time 0.000(0.147) Net
Time 0.705(0.709) Loss 0.3364(0.3414)LR 0.00021887
[2022-04-26 13:57:20,758][INFO][train_epoch]:Rank:3 Epoch:[49][20384/all] Data Time 0.000 (0.115) Net
Time 0.706(0.814) Loss 0.3345(0.3418) LR 0.00021887
[2022-04-26 13:57:20,758][INFO][train_epoch]:Rank:0 Epoch:[49][20384/all] Data Time 0.000(0.006) Net
Time 0.704(0.885) Loss 0.2947(0.3566) LR 0.00021887
[2022-04-26 13:57:20,758][INFO][train_epoch]:Rank:7 Epoch:[49][20384/all] Data Time 0.001 (0.000) Net
Time 0.706 (0.891) Loss 0.3782(0.3614) LR 0.00021887
[2022-04-26 13:57:20,759][INFO][train_epoch]:Rank:5 Epoch:[48][20384/all] Data Time 0.000(0.000) Net
Time 0.706(0.891) Loss 0.5471(0.3642) LR 0.00021887
[2022-04-26 13:57:20,763][INFO][train_epoch]:Rank:6 Epoch:[49][20384/all] Data Time 0.000(0.000) Net
Time 0.704(0.891) Loss 0.2643(0.3390)LR 0.00021887
stage 1 loss 0.4600560665130615 mul_cls_loss loss:0.01245919056236744 mul_offset_loss
0.44759687781333923 origin stage2_loss 0.048592399805784225
stage 1 loss:0.4600560665130615 stage 2 loss:0.048592399805784225 loss exit lane:0.10233864188194275

Solution

Split tensors to align data.

8.10.4 Training Job Rescheduling
When a training job fault occurs (such as process-level recovery, POD-level
rescheduling, and job-level rescheduling), the Fault Recovery Details tab appears
on the job details page, recording the start and stop details of the training job.

1. On the ModelArts console, choose Model Training > Training Jobs from the
navigation pane.

2. In the training job list, click the name of the target job to go to the training
job details page.

3. On the training job details page, click the Fault Recovery Details tab to view
the fault recovery information.

Figure 8-28 Viewing fault recovery details

8.10.5 Resumable Training

Overview
Resumable training indicates that an interrupted training job can be automatically
resumed from the checkpoint where the previous training was interrupted. This
method is applicable to model training that takes a long time.

The checkpoint mechanism enables resumable training.

During model training, training results (including but not limited to epochs, model
weights, optimizer status, and scheduler status) are continuously saved. In this
way, an interrupted training job can be automatically resumed from the
checkpoint where the previous training was interrupted.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 627

To resume a training job, load a checkpoint and use the checkpoint information to
initialize the training status. To do so, add reload ckpt to the code.

Implementing Resumable Training in ModelArts Standard
To resume model training or incrementally train a model in ModelArts Standard,
configure training output.

When creating a training job, set the data path to the training output, save
checkpoints in this data path, and set Predownload to Yes. If you set
Predownload to Yes, the system automatically downloads the checkpoint file in
the training output data path to a local directory of the training container before
the training job is started.

Figure 8-29 Configuring training output

Enable fault tolerance check (auto restart) for resumable training. On the training
job creation page, enable Auto Restart. If the environment pre-check fails, the
hardware is not functional, or the training job fails, ModelArts will automatically
issue the training job again.

reload ckpt for PyTorch
● Use either of the following methods to save a PyTorch model.

– Save model parameters only.
state_dict = model.state_dict()
torch.save(state_dict, path)

– Save the entire model (not recommended).
torch.save(model, path)

● Save the data generated during model training at regular intervals based on
steps and time.
The data includes the network weight, optimizer weight, and epoch, which
will be used to resume the interrupted training.
 checkpoint = {
 "net": model.state_dict(),
 "optimizer": optimizer.state_dict(),
 "epoch": epoch
 }
 if not os.path.isdir('model_save_dir'):
 os.makedirs('model_save_dir')
 torch.save(checkpoint,'model_save_dir/ckpt_{}.pth'.format(str(epoch)))

● Check the complete code example below.
import os
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--train_url", type=str)
args, unparsed = parser.parse_known_args()
args = parser.parse_known_args()
train_url is set to /home/ma-user/modelarts/outputs/train_url_0.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 628

train_url = args.train_url

Check whether there is a model file in the output path. If there is no file, the model will be trained
from the beginning by default. If there is a model file, the CKPT file with the maximum epoch value
will be loaded as the pre-trained model.
if os.listdir(train_url):
 print('> load last ckpt and continue training!!')
 last_ckpt = sorted([file for file in os.listdir(train_url) if file.endswith(".pth")])[-1]
 local_ckpt_file = os.path.join(train_url, last_ckpt)
 print('last_ckpt:', last_ckpt)
 # Load the checkpoint.
 checkpoint = torch.load(local_ckpt_file)
 # Load the parameters that can be learned by the model.
 model.load_state_dict(checkpoint['net'])
 # Load optimizer parameters.
 optimizer.load_state_dict(checkpoint['optimizer'])
 # Obtain the saved epoch. The model will continue to be trained based on the epoch value.
 start_epoch = checkpoint['epoch']
start = datetime.now()
total_step = len(train_loader)
for epoch in range(start_epoch + 1, args.epochs):
 for i, (images, labels) in enumerate(train_loader):
 images = images.cuda(non_blocking=True)
 labels = labels.cuda(non_blocking=True)
 # Forward pass
 outputs = model(images)
 loss = criterion(outputs, labels)
 # Backward and optimize
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 ...

 # Save the network weight, optimizer weight, and epoch during model training.
 checkpoint = {
 "net": model.state_dict(),
 "optimizer": optimizer.state_dict(),
 "epoch": epoch
 }
 if not os.path.isdir(train_url):
 os.makedirs(train_url)
 torch.save(checkpoint, os.path.join(train_url, 'ckpt_best_{}.pth'.format(epoch)))

8.10.6 Enabling Unconditional Auto Restart

Context

To prevent training failures and delays, use unconditional auto restart. This feature
automatically restarts a failed job, regardless of the cause, improving training
success rates and job stability. To prevent invalid restarts, the system limits
unconditional restarts to three consecutive attempts.

To avoid losing training progress, ensure your code can resume training from
where it is interrupted, and then enable unconditional auto restart to optimize
compute usage. For details, see Resumable Training.

If auto restart is triggered during training, the system records the restart
information. You can check the fault recovery details on the training job details
page. For details, see Training Job Rescheduling.

Procedure

You can enable unconditional auto restart either on the console or through an API.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 629

● Using the console
On the training job creation page, enable Auto Restart and select
Unconditional auto restart. If Unconditional auto restart is enabled, the
training job will be restarted unconditionally once the system detects a
training exception. If you enable auto restart but do not select Unconditional
auto restart, the training job will only automatically restart if it encounters
environmental issues. In case of any other problems, the status of the training
job will become Failed.

Figure 8-30 Enabling unconditional auto restart

● Using an API
When creating a training job through an API, input the fault-tolerance/job-
retry-num and fault-tolerance/job-unconditional-retry fields in
annotations of the metadata field. To enable auto restart, set fault-
tolerance/job-retry-num to a value ranging from 1 to 128. To enable
unconditional auto restart, set fault-tolerance/job-unconditional-retry to
true.
{
 "kind": "job",
 "metadata": {
 "annotations": {
 "fault-tolerance/job-retry-num": "8",
 "fault-tolerance/job-unconditional-retry": "true"
 }
 }
}

8.11 Managing Model Training Jobs

8.11.1 Viewing Training Job Details
1. Log in to the ModelArts console.
2. In the navigation pane, choose Model Training > Training Jobs.

In the job list, click Export to export training job details in a certain time
range as an Excel file. A maximum of 200 rows of data can be exported.

3. In the training job list, click the target job name to switch to the training job
details page.

4. On the left of the training job details page, view basic job settings and
algorithm parameters.
– Basic job settings

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 630

Table 8-28 Basic job settings

Parameter Description

Job ID Unique ID of the training job.

Status Status of the training job.

Created Time when the training job is created.

Duration Running duration of the training job.

Retries Number of times that the training job automatically
restarts upon a fault during training. This parameter is
available only when Auto Restart is enabled during
training job creation.

Description Description of the training job.
You can click the edit icon to update the description of a
training job.

Job Priority Priority of the training job.

– Algorithm parameters

Table 8-29 Algorithm parameters

Parameter Description

Algorithm
Name

Algorithm used in the training job. You can click the
algorithm name to go to the algorithm details page.

Preset images Preset image used by the training job This parameter
is available only for training jobs created using a
preset image.

Custom image Custom image used by the training job. This
parameter is available only for training jobs created
using a custom image.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 631

Parameter Description

Code
Directory

OBS path to the code directory of the training job.
You can click Edit Code on the right to edit the
training script code in OBS Online Editor. OBS Online
Editor is not available for a training job in the
Pending, Creating, or Running status.

NOTE
This parameter is not supported when you use a subscribed
algorithm to create a training job.

Boot File Location where the training boot file is stored.
NOTE

This parameter is not supported when you use a subscribed
algorithm to create a training job.

User ID ID of the user who runs the container.

Local Code
Directory

Path to the training code in the training container.

Work
Directory

Path to the training boot file in the training container.

Compute
Nodes

Number of instances for the training job.

Dedicated
resource pool

Dedicated resource pool information. This parameter is
available only when a training job uses a dedicated
resource pool.

Specifications Training specifications used by the training job.

Input > Input
Path

OBS path where the input data is stored.

Input >
Parameter
Name

Input path parameter specified in the algorithm code.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 632

Parameter Description

Input >
Obtained
from

Method of obtaining the training job input.

Input > Local
Path (Training
Parameter
Value)

Path for storing the input data in the ModelArts
backend container. After the training is started,
ModelArts downloads the data stored in OBS to the
backend container.

Output >
Output Path

OBS path where the output data is stored.

Output >
Parameter
Name

Output path parameter specified in the algorithm
code.

Output >
Obtained
from

Method of obtaining the training job output.

Output >
Local Path
(Training
Parameter
Value)

Path for storing the output data in the ModelArts
backend container.

Hyperparamet
er

Hyperparameters used in the training job.

Environment
Variable

Environment variables for the training job.

8.11.2 Viewing the Resource Usage of a Training Job

Notes and Constraints
Usage data of training job resources is stored for 30 days before being
automatically deleted.

Operations
1. On the ModelArts console, choose Model Training > Training Jobs from the

navigation pane.
2. In the training job list, click the name of the target job to go to the training

job details page.
3. On the training job details page, click the Resource Usages tab to view the

resource usage of the compute nodes. The data of at most the last three days
can be displayed. When the resource usage window is opened, the data is
loading and refreshed periodically.
Operation 1: If a training job uses multiple compute nodes, choose a node
from the drop-down list box to view its metrics.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 633

Operation 2: Click cpuUsage, gpuMemUsage, gpuUtil, memUsage,
npuMemUsage, or npuUtil to show or hide the usage chart of the parameter.

Operation 3: Hover the cursor on the graph to view the usage at the specific
time.

Figure 8-31 Resource Usages

Table 8-30 Parameters

Parameter Description

cpuUsage CPU usage

gpuMemUsage GPU memory usage

gpuUtil GPU usage

memUsage Memory usage

npuMemUsage NPU memory usage

npuUtil NPU usage

Alarms of Job Resource Usage

You can view the job resource usage on the training job list page. If the average
GPU/NPU usage of the job's worker-0 instance is lower than 50%, an alarm is
displayed in the training job list.

Figure 8-32 Job resource usage in the job list

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 634

The job resource usage here involves only GPU and NPU resources. The method of
calculating the average GPU/NPU usage of a job's worker-0 instance is:
Summarize the usage of each GPU/NPU accelerator card at each time point of the
job's worker-0 instance and calculate the average value.

Improving Job Resource Utilization
● Increasing the value of batch_size increases GPU and NPU usage. You must

decide the batch size that will not cause a memory overflow.
● If the time for reading data in a batch is longer than the time for GPUs or

NPUs to calculate data in a batch, GPU or NPU usage may fluctuate. In this
case, optimize the performance of data reading and data augmentation. For
example, read data in parallel or use tools such as NVIDIA Data Loading
Library (DALI) to improve the data augmentation speed.

● If a model is large and frequently saved, GPU or NPU usage is affected. In this
case, do not save models frequently. Similarly, make sure that other non-
GPU/NPU operations, such as log printing and training metric saving, do not
affect the training process for too much time.

8.11.3 Viewing the Model Evaluation Result
After a training job has been executed, ModelArts evaluates your model and
provides optimization diagnosis and suggestions.

● When you use a built-in algorithm to create a training job, you can view the
evaluation result without any configurations. The system automatically
provides optimization suggestions based on your model metrics. Read the
suggestions and guidance on the page carefully to further optimize your
model.

● For a training job created by writing a training script or using a custom image,
you need to add the evaluation code to the training code so that you can
view the evaluation result and diagnosis suggestions after the training job is
complete.

NO TE

● Only validation sets of the image type are supported.

● You can add the evaluation code only when the training scripts of the following
frequently-used frameworks are used:

● TF-1.13.1-python3.6

● TF-2.1.0-python3.6

● PyTorch-1.4.0-python3.6

This section describes how to use the evaluation code in a training job. To adapt
and modify the training code, three steps are involved, Adding the Output Path,
Copying the Dataset to the Local Host, and Mapping the Dataset Path to OBS.

Adding the Output Path

The code for adding the output path is simple. That is, add a path for storing the
evaluation result file to the code, which is called train_url, that is, the training
output path on the console. Add train_url to the analysis function and use
save_path to obtain train_url. The sample code is as follows:

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 635

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('model_url', '', 'path to saved model')
tf.app.flags.DEFINE_string('data_url', '', 'path to output files')
tf.app.flags.DEFINE_string('train_url', '', 'path to output files')
tf.app.flags.DEFINE_string('adv_param_json',
 '{"attack_method":"FGSM","eps":40}',
 'params for adversarial attacks')
FLAGS(sys.argv, known_only=True)

...

analyse
res = analyse(
 task_type=task_type,
 pred_list=pred_list,
 label_list=label_list,
 name_list=file_name_list,
 label_map_dict=label_dict,
 save_path=FLAGS.train_url)

Copying the Dataset to the Local Host

Copying a dataset to the local host is to prevent the OBS connection from being
interrupted due to long-time access. Therefore, copy the dataset to the local host
before performing operations.

There are two methods for copying datasets. The recommended method is to use
the OBS path.

● OBS path (recommended)
Call the copy_parallel API of MoXing to copy the corresponding OBS path.

● Dataset in ModelArts data management (manifest file format)
Call the copy_manifest API of MoXing to copy the file to the local host and
obtain the path of the new manifest file. Then, use SDK to parse the new
manifest file.

NO TE

ModelArts data management is being upgraded and is invisible to users who have not used
data management. It is recommended that new users store their training data in OBS
buckets.

if data_path.startswith('obs://'):
 if '.manifest' in data_path:
 new_manifest_path, _ = mox.file.copy_manifest(data_path, '/cache/data/')
 data_path = new_manifest_path
 else:
 mox.file.copy_parallel(data_path, '/cache/data/')
 data_path = '/cache/data/'
 print('------------- download dataset success ------------')

Mapping the Dataset Path to OBS

The actual path of the image file, that is, the OBS path, needs to be entered in the
JSON body. Therefore, after analysis and evaluation are performed on the local
host, the original local dataset path needs to be mapped to the OBS path, and the
new list needs to be sent to the analysis API.

If the OBS path is used as the input of data_url, you only need to replace the
string of the local path.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 636

if FLAGS.data_url.startswith('obs://'):
 for idx, item in enumerate(file_name_list):
 file_name_list[idx] = item.replace(data_path, FLAGS.data_url)

If the manifest file is used, the original manifest file needs to be parsed again to
obtain the list and then the list is sent to the analysis API.

if or FLAGS.data_url.startswith('obs://'):
 if 'manifest' in FLAGS.data_url:
 file_name_list = []
 manifest, _ = get_sample_list(
 manifest_path=FLAGS.data_url, task_type='image_classification')
 for item in manifest:
 if len(item[1]) != 0:
 file_name_list.append(item[0])

An example code for image classification that can be used to create training jobs
is as follows:

import json
import logging
import os
import sys
import tempfile

import h5py
import numpy as np
from PIL import Image

import moxing as mox
import tensorflow as tf
from deep_moxing.framework.manifest_api.manifest_api import get_sample_list
from deep_moxing.model_analysis.api import analyse, tmp_save
from deep_moxing.model_analysis.common.constant import TMP_FILE_NAME

logging.basicConfig(level=logging.DEBUG)

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('model_url', '', 'path to saved model')
tf.app.flags.DEFINE_string('data_url', '', 'path to output files')
tf.app.flags.DEFINE_string('train_url', '', 'path to output files')
tf.app.flags.DEFINE_string('adv_param_json',
 '{"attack_method":"FGSM","eps":40}',
 'params for adversarial attacks')
FLAGS(sys.argv, known_only=True)

def _preprocess(data_path):
 img = Image.open(data_path)
 img = img.convert('RGB')
 img = np.asarray(img, dtype=np.float32)
 img = img[np.newaxis, :, :, :]
 return img

def softmax(x):
 x = np.array(x)
 orig_shape = x.shape
 if len(x.shape) > 1:
 # Matrix
 x = np.apply_along_axis(lambda x: np.exp(x - np.max(x)), 1, x)
 denominator = np.apply_along_axis(lambda x: 1.0 / np.sum(x), 1, x)
 if len(denominator.shape) == 1:
 denominator = denominator.reshape((denominator.shape[0], 1))
 x = x * denominator
 else:
 # Vector
 x_max = np.max(x)
 x = x - x_max

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 637

 numerator = np.exp(x)
 denominator = 1.0 / np.sum(numerator)
 x = numerator.dot(denominator)
 assert x.shape == orig_shape
 return x

def get_dataset(data_path, label_map_dict):
 label_list = []
 img_name_list = []
 if 'manifest' in data_path:
 manifest, _ = get_sample_list(
 manifest_path=data_path, task_type='image_classification')
 for item in manifest:
 if len(item[1]) != 0:
 label_list.append(label_map_dict.get(item[1][0]))
 img_name_list.append(item[0])
 else:
 continue
 else:
 label_name_list = os.listdir(data_path)
 label_dict = {}
 for idx, item in enumerate(label_name_list):
 label_dict[str(idx)] = item
 sub_img_list = os.listdir(os.path.join(data_path, item))
 img_name_list += [
 os.path.join(data_path, item, img_name) for img_name in sub_img_list
]
 label_list += [label_map_dict.get(item)] * len(sub_img_list)
 return img_name_list, label_list

def deal_ckpt_and_data_with_obs():
 pb_dir = FLAGS.model_url
 data_path = FLAGS.data_url

 if pb_dir.startswith('obs://'):
 mox.file.copy_parallel(pb_dir, '/cache/ckpt/')
 pb_dir = '/cache/ckpt'
 print('------------- download success ------------')
 if data_path.startswith('obs://'):
 if '.manifest' in data_path:
 new_manifest_path, _ = mox.file.copy_manifest(data_path, '/cache/data/')
 data_path = new_manifest_path
 else:
 mox.file.copy_parallel(data_path, '/cache/data/')
 data_path = '/cache/data/'
 print('------------- download dataset success ------------')
 assert os.path.isdir(pb_dir), 'Error, pb_dir must be a directory'
 return pb_dir, data_path

def evalution():
 pb_dir, data_path = deal_ckpt_and_data_with_obs()
 index_file = os.path.join(pb_dir, 'index')
 try:
 label_file = h5py.File(index_file, 'r')
 label_array = label_file['labels_list'][:].tolist()
 label_array = [item.decode('utf-8') for item in label_array]
 except Exception as e:
 logging.warning(e)
 logging.warning('index file is not a h5 file, try json.')
 with open(index_file, 'r') as load_f:
 label_file = json.load(load_f)
 label_array = label_file['labels_list'][:]
 label_map_dict = {}
 label_dict = {}
 for idx, item in enumerate(label_array):
 label_map_dict[item] = idx

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 638

 label_dict[idx] = item
 print(label_map_dict)
 print(label_dict)

 data_file_list, label_list = get_dataset(data_path, label_map_dict)

 assert len(label_list) > 0, 'missing valid data'
 assert None not in label_list, 'dataset and model not match'

 pred_list = []
 file_name_list = []
 img_list = []

 for img_path in data_file_list:
 img = _preprocess(img_path)
 img_list.append(img)
 file_name_list.append(img_path)

 config = tf.ConfigProto()
 config.gpu_options.allow_growth = True
 config.gpu_options.visible_device_list = '0'
 with tf.Session(graph=tf.Graph(), config=config) as sess:
 meta_graph_def = tf.saved_model.loader.load(
 sess, [tf.saved_model.tag_constants.SERVING], pb_dir)
 signature = meta_graph_def.signature_def
 signature_key = 'predict_object'
 input_key = 'images'
 output_key = 'logits'
 x_tensor_name = signature[signature_key].inputs[input_key].name
 y_tensor_name = signature[signature_key].outputs[output_key].name
 x = sess.graph.get_tensor_by_name(x_tensor_name)
 y = sess.graph.get_tensor_by_name(y_tensor_name)
 for img in img_list:
 pred_output = sess.run([y], {x: img})
 pred_output = softmax(pred_output[0])
 pred_list.append(pred_output[0].tolist())

 label_dict = json.dumps(label_dict)
 task_type = 'image_classification'

 if FLAGS.data_url.startswith('obs://'):
 if 'manifest' in FLAGS.data_url:
 file_name_list = []
 manifest, _ = get_sample_list(
 manifest_path=FLAGS.data_url, task_type='image_classification')
 for item in manifest:
 if len(item[1]) != 0:
 file_name_list.append(item[0])
 for idx, item in enumerate(file_name_list):
 file_name_list[idx] = item.replace(data_path, FLAGS.data_url)
 # analyse
 res = analyse(
 task_type=task_type,
 pred_list=pred_list,
 label_list=label_list,
 name_list=file_name_list,
 label_map_dict=label_dict,
 save_path=FLAGS.train_url)

if __name__ == "__main__":
 evalution()

8.11.4 Viewing Training Job Events
Any key event of a training job will be recorded at the backend after the training
job is displayed for you. You can check events on the training job details page.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 639

This helps you better understand the running process of a training job and locate
faults more accurately when a task exception occurs. The following job events are
supported:

● Training job created.
● Training job failures:
● Preparations timed out. The possible cause is that the cross-region algorithm

synchronization or creating shared storage timed out.
● The training job is queuing and awaiting resource allocation.
● Failed to be queued.
● The training job starts to run.
● Training job executed.
● Failed to run the training job.
● The training job is preempted.
● The system detects that your training job may be suspended. Go to the job

details page to view the cause and handle the issue.
● The training job has been restarted.
● The training job has been manually stopped.
● The training job has been stopped. (Maximum running duration: 1 hour)
● The training job has been stopped. (Maximum running duration: 3 hours)
● The training job has been manually deleted.
● Billing information synchronized.
● [worker-0] The training environment is being pre-checked.
● [worker-0] [Duration: second] Pre-check completed.
● [worker-0] [Duration: second] Pre-check failed. Error: xxx
● [worker-0] [Duration: second] Pre-check failed. Error: xxx
● [worker-0] The training code is being downloaded.
● [worker-0] [Duration: second] Training code downloaded.
● [worker-0] [Duration: second] Failed to download the training code. Failure

cause:
● [worker-0] The training input is being downloaded.
● [worker-0] [Duration: second] Training input (parameter: xxx) downloaded.
● [worker-0] [Duration: second] Failed to download the training input

(parameter: xxx). Failure cause:
● [worker-0] Python dependency packages are being installed. Import the

following files:
● [worker-0] [Duration: second] Python dependency packages installed. Import

the following files:
● [worker-0] The training job starts to run.
● [worker-0] Training job executed.
● [worker-0] The training input is being uploaded.
● [worker-0] [Duration: second] Training output (parameter: xxx) uploaded.

During the training process, key events can be manually or automatically
refreshed.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 640

Notes and Constraints

The system automatically stores training job events for 30 days, and any expired
events will be deleted.

Procedure
1. On the ModelArts console, choose Model Training > Training Jobs from the

navigation pane.

2. In the training job list, click the name of the target job to go to the training
job details page.

3. Click Events to view events.

Figure 8-33 Events

8.11.5 Viewing Training Job Logs

Overview

Training logs record the runtime process and exception information of training
jobs and provide useful details for fault location. The standard output and
standard error information in your code are displayed in training logs. If you
encounter an issue during the execution of a ModelArts training job, view logs
first. In most scenarios, you can locate the issue based on the error information
reported in logs.

Training logs include common training logs and Ascend logs.

● Common Logs: When resources other than Ascend are used for training, only
common training logs are generated. Common logs include the logs for pip-
requirement.txt, training process, and ModelArts.

● Ascend Logs: When Ascend resources are used for training, device logs, plog
logs, proc log for single-card training logs, MindSpore logs, and common logs
are generated.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 641

Figure 8-34 ModelArts training logs

NO TE

Separate MindSpore logs are generated only in the MindSpore+Ascend training scenario.
Logs of other AI engines are contained in common logs.

Retention Period
Logs are classified into the following types based on the retention period:

● Real-time logs: generated during training job running and can be viewed on
the ModelArts training job details page.

● Historical logs: After a training job is completed, you can view its historical
logs on the ModelArts training job details page. ModelArts automatically
stores the logs for 30 days.

● Permanent logs: These logs are dumped to your OBS bucket. When creating a
training job, you can enable persistent log saving and set a job log path for
dumping.

Figure 8-35 Enabling persistent log saving

Real-time logs and historical logs have no difference in content. In the Ascend
training scenario, permanent logs contain Ascend logs, which are not displayed on
ModelArts.

Common Logs
Common logs include the logs for pip-requirement.txt, training process, and
ModelArts Standard.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 642

Table 8-31 Common log types

Type Description

Training process log Standard output of your training code.

Installation logs for
pip-requirement.txt

If pip-requirement.txt is defined in training code, pip
package installation logs are generated.

ModelArts logs ModelArts logs are used by O&M personnel to locate
service faults.

The format of a common log file is as follows. task id is the node ID of a training
job.

Unified log format: modelarts-job-[job id]-[task id].log
Example: log/modelarts-job-95f661bd-1527-41b8-971c-eca55e513254-worker-0.log

● Single-node training jobs generate a log file, and task id defaults to
worker-0.

● Distributed training generates multiple node log files, which are distinguished
by task id, such as worker-0 and worker-1.

Common logs include the logs for pip-requirement.txt, training process, and
ModelArts.

ModelArts logs can be filtered in the common log file modelarts-job-[job id]-
[task id].log using the following keywords: [ModelArts Service Log] or
Platform=ModelArts-Service.

● Type 1: [ModelArts Service Log] xxx
[ModelArts Service Log][init] download code_url: s3://dgg-test-user/snt9-test-cases/mindspore/lenet/

● Type 2: time="xxx" level="xxx" msg="xxx" file="xxx" Command=xxx
Component=xxx Platform=xxx
time="2021-07-26T19:24:11+08:00" level=info msg="start the periodic upload task, upload period = 5
seconds " file="upload.go:46" Command=obs/upload Component=ma-training-toolkit
Platform=ModelArts-Service

Ascend Logs
Ascend logs are generated when Ascend resources are used to for training. When
Ascend resources are used for training, device logs, plog logs, proc logs for single-
card training logs, MindSpore logs, and common logs are generated.

Common logs in the Ascend training scenario include the logs for pip-
requirement.txt, ma-pre-start, davincirun, training process, and ModelArts.

The following is an example of the Ascend log structure:
obs://dgg-test-user/snt9-test-cases/log-out/ # Job log path
├──modelarts-job-9ccf15f2-6610-42f9-ab99-059ba049a41e
 ├── ascend
 ├── process_log
 ├── rank_0
 ├── plog # Plog logs
 ...
 ├── device-0 # Device logs
 ...
 ├── mindspore # MindSpore logs
├──modelarts-job-95f661bd-1527-41b8-971c-eca55e513254-worker-0.log # Common logs

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 643

├──modelarts-job-95f661bd-1527-41b8-971c-eca55e513254-proc-rank-0-device-0.txt # proc log for
single-card training logs

Table 8-32 Ascend log description

Type Description Name

Device
logs

User process AICPU and HCCP
logs generated on the device
and sent back to the host
(training container).
If any of the following
situations occur, device logs
cannot be obtained:
● The compute node restarts

unexpectedly.
● The compute node stops

expectedly.
After the training process
ends, the log is generated in
the training container. The
device logs for training using
the preset MindSpore image
are automatically uploaded to
OBS. To automatically upload
device logs for training using
other preset images or
custom images to OBS,
specify
ASCEND_PROCESS_LOG_PAT
H in the code. For details, see
this sample code.
set npu plog env
ma_vj_name=`echo ${MA_VJ_NAME} |
sed 's:ma-job:modelarts-job:g'`
task_name="worker-$
{VC_TASK_INDEX}"
task_plog_path=${MA_LOG_DIR}/$
{ma_vj_name}/${task_name}

mkdir -p ${task_plog_path}
export ASCEND_PROCESS_LOG_PATH=$
{task_plog_path}

~/ascend/log/device-{device-id}/
device-{pid}_{timestamp}.log
In the preceding command, pid
indicates the user process ID on
the host.
Example:
device-166_20220718191853764.l
og

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 644

Type Description Name

Plog logs User process logs, for
example, ACL/GE.
Plog logs are generated in the
training container. The plog
logs for training using the
preset MindSpore image are
automatically uploaded to
OBS. To automatically upload
plog logs for training using
custom images to OBS,
specify
ASCEND_PROCESS_LOG_PAT
H in the code. For details, see
this sample code.
set npu plog env
ma_vj_name=`echo ${MA_VJ_NAME} |
sed 's:ma-job:modelarts-job:g'`
task_name="worker-$
{VC_TASK_INDEX}"
task_plog_path=${MA_LOG_DIR}/$
{ma_vj_name}/${task_name}

mkdir -p ${task_plog_path}
export ASCEND_PROCESS_LOG_PATH=$
{task_plog_path}

~/ascend/log/plog/plog-
{pid}_{timestamp}.log
In the preceding command, pid
indicates the user process ID on
the host.
Example:
plog-166_20220718191843620.log

proc log proc log is a redirection file of
single-node training logs,
helping you quickly obtain
logs of a compute node.
Training jobs using custom
images do not involve proc
log. proc log for training
using a preset image is
generated in the training
container and automatically
saved in OBS.

[modelarts-job-uuid]-proc-rank-
[rank id]-device-[device logic
id].txt
● device id indicates the ID of

the NPU used in the training
job. The value is 0 for a single
NPU and 0 to 7 for eight NPUs.
For example, if the Ascend
specification is 8*Snt9, the
value of device id ranges from
0 to 7. If the Ascend
specification is 1*Snt9, the
value of device id is 0.

● rank id indicates the global
NPU ID of the training job. The
value ranges from 0 to the
number of instances multiplied
by the number of NPUs minus
1. If a single instance is used,
the value of rank id is the
same as that of device id.

Example:
modelarts-
job-95f661bd-1527-41b8-971c-
eca55e513254-proc-rank-0-
device-0.txt

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 645

Type Description Name

MindSpore
logs

Separate MindSpore logs are
generated in the MindSpore
+Ascend training scenario.
MindSpore logs are generated
in the training container. The
plog logs for training using
the preset MindSpore image
are automatically uploaded to
OBS. To automatically upload
plog logs for training using
custom images to OBS,
specify
ASCEND_PROCESS_LOG_PAT
H in the code. For details, see
this sample code.
set npu plog env
ma_vj_name=`echo ${MA_VJ_NAME} |
sed 's:ma-job:modelarts-job:g'`
task_name="worker-$
{VC_TASK_INDEX}"
task_plog_path=${MA_LOG_DIR}/$
{ma_vj_name}/${task_name}

mkdir -p ${task_plog_path}
export ASCEND_PROCESS_LOG_PATH=$
{task_plog_path}

For details about MindSpore logs,
visit the MindSpore official
website.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 646

https://www.mindspore.cn/docs/en/r2.0/index.html
https://www.mindspore.cn/docs/en/r2.0/index.html

Type Description Name

Common
training
logs

Common training logs are
generated in the /home/ma-
user/modelarts/log directory
of the training container and
automatically uploaded to
OBS. The common training
logs include these types:
● Logs for ma-pre-start

(specific to Ascend
training): If the ma-pre-
start script is defined, the
script execution log is
generated.

● Logs for davincirun
(specific to Ascend
training): log generated
when the Ascend training
process is started using the
davincirun.py file

● Training process logs:
standard output of user
training code

● Logs for pip-
requirement.txt: If pip-
requirement.txt is defined
in training code, pip
package installation logs
are generated.

● ModelArts logs: used by
O&M personnel to locate
service faults.

Contained in the modelarts-job-
[job id]-[task id].log file.
task id indicates the instance ID.
If a single node is used, the value
is worker-0. If multiple nodes are
used, the value is worker-0,
worker-1, ..., or worker-{n-1}. n
indicates the number of instances.
Example:
modelarts-
job-95f661bd-1527-41b8-971c-
eca55e513254-worker-0.log

In the Ascend training scenario, after the training process exits, ModelArts uploads
the log files in the training container to the OBS directory specified by Job Log
Path. On the job details page, you can obtain the job log path and click the OBS
address to go to the OBS console to check logs.

Figure 8-36 Job Log Path

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 647

You can run the ma-pre-start script to modify the default environment variable
configurations.

ASCEND_GLOBAL_LOG_LEVEL=3 # Log level, 0 for debug, 1 for info, 2 for warning, and 3 for error.
ASCEND_SLOG_PRINT_TO_STDOUT=1 # Whether to display plog logs. The value 1 indicates that plog logs
are displayed by default.
ASCEND_GLOBAL_EVENT_ENABLE=1 # Event log level, 0 for disabling event logging and 1 for enabling
event logging.

Place the ma-pre-start.sh or ma-pre-start.py script in the directory at the same
level as the training boot file.

Before the training boot file is executed, the system executes the ma-pre-start
script in /home/work/user-job-dir/. This method can be used to update the
Ascend RUN package installed in the container image or set some additional
global environment variables required for training.

Viewing Training Job Logs

On the training job details page, you can preview logs, download logs, search for
logs by keyword, and filter system logs in the log pane.

● Previewing logs
You can preview training logs on the system log pane. If multiple compute
nodes are used, you can choose the target node from the drop-down list on
the right.

Figure 8-37 Viewing logs of different compute nodes

If a log file is oversized, the system displays only the latest logs in the log
pane. To view all logs, click the link in the upper part of the log pane, which
will direct you to a new page. Then you will be redirected to a new page.

Figure 8-38 Viewing all logs

NO TE

● If the total size of all logs exceeds 500 MB, the log page may be frozen. In this
case, download the logs to view them locally.

● A log preview link can be accessed by anyone within one hour after it is generated.
You can share the link with others.

● Ensure that no privacy information is contained in the logs. Otherwise,
information leakage may occur.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 648

● Downloading logs
Training logs are retained for only 30 days. To permanently store logs, click
the download icon in the upper right corner of the log pane. You can
download the logs of multiple compute nodes in a batch. You can also enable
Persistent Log Saving and set a log path when you create a training job. In
this way, the logs will be automatically stored in the specified OBS path.
If a training job is created on Ascend compute nodes, certain system logs
cannot be downloaded in the training log pane. To obtain these logs, go to
the Job Log Path you set when you created the training job.

Figure 8-39 Downloading logs

● Searching for logs by keyword
In the upper right corner of the log pane, enter a keyword in the search box
to search for logs, as shown in Figure 8-40.

Figure 8-40 Searching for logs by keyword

The system will highlight the keyword and redirect you between search
results. Only the logs loaded in the log pane can be searched for. If the logs
are not fully displayed (see the message displayed on the page), obtain all
the logs by downloading them or clicking the full log link and then search for
the logs. On the page redirected by the full log link, press Ctrl+F to search for
logs.

● Filtering system logs

Figure 8-41 System logs

If System logs is selected, system logs and user logs are displayed. If System
logs is deselected, only user logs are displayed.

8.11.6 Priority of a Training Job
When using a dedicated resource pool for training jobs, you can set the job
priority when creating a training job or adjust the priority when a job is in the
Pending state for a long time. By adjusting the job priority, you can reduce the job
queuing duration.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 649

Overview
Some training jobs, such as unimportant tests or experiments, are of low priority.
In this case, you need to prioritize training tasks (jobs). A task with a higher
priority is queued earlier than a task with a lower priority.

You can adjust the job execution sequence by configuring the priority of training
jobs to ensure normal running of important services at peak hours.

Constraints
● You can set the priority of a training job only if it is created using a new-

version dedicated resource pool.
● The value ranges from 1 to 3. The default priority is 1, and the highest priority

is 3. You can set the job priority to 1 or 2 by default. Once permission to set
the highest priority is granted, you can set it to 1, 2, or 3.

Configuring the Priority
Set the priority when you create a training job. The value ranges from 1 to 3. The
default priority is 1, and the highest priority is 3.

Changing the Priority
On the Training Jobs page, locate a training job in the Pending state and click

 in the Job Priority column. In the dialog box that appears, change the priority
and click OK.

Figure 8-42 Changing the job priority

Assigning the Permission to Set the Highest Job Priority to an IAM User
You can set the job priority to 1 or 2 by default. Once permission to set the
highest priority is granted, you can set it to 1, 2, or 3.

1. Log in to the Huawei Cloud management console as a tenant user, hover the
cursor over your username in the upper right corner, and choose Identity and
Access Management from the drop-down list to switch to the IAM
management console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
configure the following parameters.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 650

– Policy Name: Enter a custom policy name, for example, Allowing Users
to Set the Highest Job Priority.

– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:trainJob:setHighPriority, and default resources.
3. In the navigation pane, choose User Groups. Then, click Authorize in the

Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.
After the configuration, all users in the user group have the permission to use
Cloud Shell to log in to a running training container.
If no user group is available, create a user group, add users using the user
group management function, and configure authorization. If the target user is
not in a user group, you can add the user to a user group through the user
group management function.

8.11.7 Using Cloud Shell to Debug a Production Training Job
ModelArts Standard provides Cloud Shell, which allows you to log in to a running
container to debug training jobs in the production environment.

Constraints
Only dedicated resource pools allow logging in to training containers using Cloud
Shell. The training job must be running.

Preparation: Assigning the Cloud Shell Permission to an IAM User
1. Log in to the Huawei Cloud management console as a tenant user, hover the

cursor over your username in the upper right corner, and choose Identity and
Access Management from the drop-down list to switch to the IAM
management console.

2. On the IAM console, choose Permissions > Policies/Roles from the
navigation pane, click Create Custom Policy in the upper right corner, and
configure the following parameters.
– Policy Name: Enter a custom policy name, for example, Using Cloud

Shell to access a running job.
– Policy View: Select Visual editor.
– Policy Content: Select Allow, ModelArts Service,

modelarts:trainJob:exec, and default resources.
3. In the navigation pane, choose User Groups. Then, click Authorize in the

Operation column of the target user group. On the Authorize User Group
page, select the custom policies created in 2, and click Next. Then, select the
scope and click OK.
After the configuration, all users in the user group have the permission to use
Cloud Shell to log in to a running training container.
If no user group is available, create a user group, add users using the user
group management function, and configure authorization. If the target user is
not in a user group, you can add the user to a user group through the user
group management function.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 651

Using Cloud Shell
1. Configure parameters based on Preparation: Assigning the Cloud Shell

Permission to an IAM User.
2. Log in to the ModelArts console. In the navigation pane, choose Model

Training > Training Jobs.
3. In the training job list, click the name of the target job to go to the training

job details page.
4. On the training job details page, click the Cloud Shell tab and log in to the

training container.
Verify that the login is successful, as shown in the following figure.

Figure 8-43 Cloud Shell page

If the job is not running or the permission is insufficient, Cloud Shell cannot
be used. In this case, locate the fault as prompted.

Figure 8-44 Error message

NO TE

If you encounter a path display issue when logging in to Cloud Shell, press Enter to
resolve the problem.

Figure 8-45 Path display issue

Keeping a Training Job Running
You can only log in to Cloud Shell when the training job is in Running state. This
section describes how to log in to a running training container through Cloud
Shell.

Using the sleep Command

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 652

● For training jobs using a preset image

When creating a training job, set Algorithm Type to Custom algorithm and
Boot Mode to Preset image, add sleep.py to the code directory, and use the
script as the boot file. The training job keeps running for 60 minutes. You can
access the container through Cloud Shell for debugging.

Example of sleep.py
import os
os.system('sleep 60m')

Figure 8-46 Using a preset image

● For training jobs using a custom image

When creating a training job, set Algorithm Type to Custom algorithm and
Boot Mode to Custom image, and enter sleep 60m in Boot Command. The
training job keeps running for 60 minutes. You can access the container
through Cloud Shell for debugging.

Figure 8-47 Using a custom image

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 653

Keeping a Failed Job Running
When creating a training job, add || sleep 5h at the end of the boot command
and start the training job. For example:
cmd || sleep 5h

If the training fails, the sleep command is executed. In this case, you can log in to
the container image through Cloud Shell for debugging.

NO TE

To debug a multi-node training job in Cloud Shell, you need to switch between worker-0
and worker-1 in Cloud Shell and run the boot command on each node. Otherwise, the task
will wait for other nodes to join.

Preventing Cloud Shell Session from Disconnection
To run a job for a long time, you can use the screen command to run the job in a
remote terminal that stays active even if you disconnect. This prevents the job
from failing due to disconnection.

1. If screen is not installed in the image, run apt-get install screen to install it.
2. Create a screen terminal.

Use -S to create a screen terminal named name.
screen -S name

3. View the created screen terminals.
screen -ls
There are screens on:
2433.pts-3.linux (2013-10-20 16:48:59) (Detached)
2428.pts-3.linux (2013-10-20 16:48:05) (Detached)
2284.pts-3.linux (2013-10-20 16:14:55) (Detached)
2276.pts-3.linux (2013-10-20 16:13:18) (Detached)
4 Sockets in /var/run/screen/S-root.

4. Connect to the screen terminal whose screen_id is 2276.
screen -r 2276

5. Press Ctrl+A+D to exit the screen terminal. After the exit, the screen session is
still active and can be reconnected at any time.

For details about how to use screens, see Screen User's Manual.

Analyzing the Call Stack of the Suspended Process Using the py-spy Tool
Use py-spy to analyze the call stack of a suspended process and identify the issue.

Step 1 On the ModelArts Standard console, choose Model Training > Training Jobs.

Step 2 Click the target training job to go to its details page. On the page that appears,
click the Cloud Shell tab and log in to the training container (the training job
must be in the Running state).

Step 3 Install the py-spy tool.
Use the utils.sh script to automatically configure the Python environment.
source /home/ma-user/modelarts/run/utils.sh

Install py-spy.
pip install py-spy

If the message "connection broken by 'ProxyError('Cannot connect to proxy.')" is displayed, disable the
proxy.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 654

https://www.gnu.org/software/screen/manual/screen.html#Getting-Started

export no_proxy=$no_proxy,repo.myhuaweicloud.com (Replace it with the pip source address of the
corresponding region.)
pip install py-spy

Step 4 View the stack. For details about how to use the py-spy tool, see the py-spy
official document.
Find the PID of the training process.
ps -ef

Check the process stack of process 12345.
For a training job using eight cards, run the following command to check the stacks of the eight
processes started by the main process in sequence.
py-spy dump --pid 12345

----End

8.11.8 Rebuilding, Stopping, or Deleting a Training Job

Saving As an Algorithm
To modify the algorithm of a training job, click Save As Algorithm in the upper
right corner of the training job details page.

On the Algorithms page, the algorithm parameters for the last training job are
automatically set. You can modify the settings.

NO TE

A subscribed algorithm cannot be saved as a new algorithm.

Rebuilding a Training Job
If you are not satisfied with a created training job, click Rebuild in the Operation
column to rebuild it. The page for creating a training job is displayed. On this
page, the parameter settings for the previous training job are automatically
retained. You only need to modify certain parameter settings.

Stopping a Training Job
In the training job list, click Stop in the Operation column of a training job that is
in creating, pending, or running state to stop the job.

After a training job is stopped, its billing stops on ModelArts.

A training job in completed, failed, terminated, or abnormal state cannot be
stopped.

Deleting a Training Job
Release resources of a training job when not in use to avoid unnecessary charges.

NO TE

Deleted training jobs cannot be restored.

● On the Training Jobs page, click Delete in the Operation column. In the
displayed dialog box, click OK to delete the training job.

● Go to OBS and delete the OBS bucket and files used by the training job.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 655

https://github.com/benfred/py-spy
https://github.com/benfred/py-spy

Searching for a Training Job
If you log in to ModelArts using an IAM account, all training jobs under this
account are displayed in the training job list. To quickly search for a training job,
use the following methods:

Method 1: Click Only my jobs. Then, only jobs created under the current IAM user
account are displayed in the training job list.

Method 2: Search for jobs by name, ID, job type, status, creation time, algorithm,
and resource pool.

Method 3: Click the refresh button in the upper right corner of the job list to
refresh it.

Method 4: Configure the custom columns and other basic settings.

Figure 8-48 Searching for a training job

8.11.9 Managing Environment Variables of a Training
Container

What Is an Environment Variable
This section describes environment variables preset in a training container. The
environment variables include:

● Path environment variables
● Environment variables of a distributed training job
● Nvidia Collective multi-GPU Communication Library (NCCL) environment

variables
● OBS environment variables
● Environment variables of the pip source
● Environment variables of the API Gateway address
● Environment variables of job metadata

Notes and Constraints
When defining custom environment variables, avoid using names that start with
MA_ to prevent conflicts with system environment variables.

Configuring Environment Variables
When you create a training job, you can add environment variables or modify
environment variables preset in the training container.

NO TE

To ensure data security, do not enter sensitive information, such as plaintext passwords.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 656

Environment Variables Preset in a Training Container
Table 8-33, Table 8-34, Table 8-35, Table 8-36, Table 8-37, Table 8-38, and
Table 8-39 list environment variables preset in a training container.

The environment variable values are examples only.

Table 8-33 Path environment variables

Variable Description Example

PATH Executable file paths PATH=/usr/local/bin:/usr/local/
cuda/bin:/usr/local/sbin:/usr/
local/bin:/usr/sbin:/usr/bin:/
sbin:/bin

LD_LIBRARY_P
ATH

Dynamic load library
paths

LD_LIBRARY_PATH=/usr/local/
seccomponent/lib:/usr/local/
cuda/lib64:/usr/local/cuda/
compat:/root/miniconda3/
lib:/usr/local/lib:/usr/local/
nvidia/lib64

LIBRARY_PATH Static library paths LIBRARY_PATH=/usr/local/cuda/
lib64/stubs

MA_HOME Main directory of a
training job

MA_HOME=/home/ma-user

MA_JOB_DIR Parent directory of the
training algorithm folder

MA_JOB_DIR=/home/ma-user/
modelarts/user-job-dir

MA_MOUNT_P
ATH

Path mounted to a
ModelArts training
container, which is used
to temporarily store
training algorithms,
algorithm input,
algorithm output, and
logs

MA_MOUNT_PATH=/home/ma-
user/modelarts

MA_LOG_DIR Training log directory MA_LOG_DIR=/home/ma-user/
modelarts/log

MA_SCRIPT_IN
TERPRETER

Training script interpreter MA_SCRIPT_INTERPRETER=

WORKSPACE Training algorithm
directory

WORKSPACE=/home/ma-user/
modelarts/user-job-dir/code

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 657

Table 8-34 Environment variables of a distributed training job

Variable Description Example

MA_CURRENT_
IP

IP address of a job
container.

MA_CURRENT_IP=192.168.23.38

MA_NUM_GPU
S

Number of accelerator
cards in a job container.

MA_NUM_GPUS=8

MA_TASK_NAM
E

Name of a job container,
for example:
● worker in MindSpore

and PyTorch
● learner or worker in

reinforcement learning
engines

● ps or worker in
TensorFlow

MA_TASK_NAME=worker

MA_NUM_HOS
TS

Number of instances
which is automatically
obtained from Compute
Nodes.

MA_NUM_HOSTS=4

VC_TASK_INDE
X

Container index, starting
from 0. This parameter is
invalid for single-node
training. In multi-node
training jobs, you can use
this parameter to
determine the algorithm
logic of the container.

VC_TASK_INDEX=0

VC_WORKER_N
UM

Instances required for a
training job.

VC_WORKER_NUM=4

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 658

Variable Description Example

VC_WORKER_H
OSTS

Domain name of each
node for multi-node
training. Use commas (,)
to separate the domain
names in sequence. You
can obtain the IP address
through domain name
resolution.

VC_WORKER_HOSTS=modelarts
-job-
a0978141-1712-4f9b-8a83-0000
00000000-worker-0.modelarts-
job-
a0978141-1712-4f9b-8a83-0000
00000000,modelarts-job-
a0978141-1712-4f9b-8a83-0000
00000000-worker-1.ob-
a0978141-1712-4f9b-8a83-0000
00000000,modelarts-job-
a0978141-1712-4f9b-8a83-0000
00000000-worker-2.modelarts-
job-
a0978141-1712-4f9b-8a83-0000
00000000,ob-
a0978141-1712-4f9b-8a83-0000
00000000-worker-3.modelarts-
job-
a0978141-1712-4f9b-8a83-0000
00000000

$
{MA_VJ_NAME}
-$
{MA_TASK_NA
ME}-N.$
{MA_VJ_NAME}

Communication domain
name of a node. For
example, the
communication domain
name of node 0 is $
{MA_VJ_NAME}-$
{MA_TASK_NAME}-0.$
{MA_VJ_NAME}.
N indicates the number
of instances.

For example, if there are four
instances, the environment
variables are as follows:
${MA_VJ_NAME}-$
{MA_TASK_NAME}-0.$
{MA_VJ_NAME}
${MA_VJ_NAME}-$
{MA_TASK_NAME}-1.$
{MA_VJ_NAME}
${MA_VJ_NAME}-$
{MA_TASK_NAME}-2.$
{MA_VJ_NAME}
${MA_VJ_NAME}-$
{MA_TASK_NAME}-3.$
{MA_VJ_NAME}

Table 8-35 NCCL environment variables

Variable Description Example

NCCL_VERSION NCCL version NCCL_VERSION=2.7.8

NCCL_DEBUG NCCL log level NCCL_DEBUG=INFO

NCCL_IB_HCA InfiniBand NIC to use for
communication

NCCL_IB_HCA=^mlx5_bond_0

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 659

Variable Description Example

NCCL_SOCKET_
IFNAME

IP interface to use for
communication

NCCL_SOCKET_IFNAME=bond0,
eth0

Table 8-36 OBS environment variables

Variable Description Example

S3_ENDPOINT OBS endpoint N/A

S3_VERIFY_SSL Whether to use SSL to
access OBS

S3_VERIFY_SSL=0

S3_USE_HTTPS Whether to use HTTPS to
access OBS

S3_USE_HTTPS=1

Table 8-37 Environment variables of the pip source and API Gateway address

Variable Description Example

MA_PIP_HOST Domain name of the pip
source

MA_PIP_HOST=repo.myhuaweic
loud.com

MA_PIP_URL Address of the pip source MA_PIP_URL=http://
repo.myhuaweicloud.com/
repository/pypi/simple/

MA_APIGW_EN
DPOINT

ModelArts API Gateway
address

MA_APIGW_ENDPOINT=https:/
/modelarts.region.cn-
east-3.myhuaweicloud.com

Table 8-38 Environment variables of job metadata

Variable Description Example

MA_CURRENT_I
NSTANCE_NAM
E

Name of the current node
for multi-node training

MA_CURRENT_INSTANCE_NAM
E=modelarts-job-
a0978141-1712-4f9b-8a83-000
000000000-worker-1

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 660

Table 8-39 Precheck environment variables

Variable Description Example

MA_SKIP_IMAGE
_DETECT

Whether to enable
ModelArts precheck. The
default value is 1, which
indicates that the pre-
check is enabled; the
value 0 indicates that the
pre-check is disabled.
It is good practice to
enable precheck to detect
node and driver faults
before they affect
services.

1

Table 8-40 Suspension detection environment variables

Variable Description Example

MA_HANG_DET
ECT_TIME

Suspension detection
time. The job is
considered suspended if
its process I/O does not
change for this time.
Value range: 10 to 720
Unit: minute
Default value: 30

30

How Do I View Training Environment Variables?
When creating a training job, set the boot command to env and retain default
settings of other parameters.

After the training job is complete, view the Logs tab on the training job details
page. The logs contain information about all environment variables.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 661

Figure 8-49 Viewing logs

8.11.10 Viewing Training Job Tags
You can add tags to a training job for quick search.

1. On the ModelArts console, choose Model Training > Training Jobs from the
navigation pane.

2. In the training job list, click the name of the target job to go to the training
job details page.

3. Click Tags.
Tags can be added, modified, and deleted. For details about how to use tags,
see Using TMS Tags to Manage Resources by Group.

Figure 8-50 Viewing training tags

NO TE

You can add up to 20 tags to a training job.

ModelArts
User Guide (ModelArts Standard) 8 Model Training

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 662

9 Inference Deployment

9.1 Overview
You can import and deploy AI models as inference services. These services can be
integrated into your IT platform by calling APIs or generate batch results.

Figure 9-1 Introduction to inference

1. Train a model: Models can be trained in ModelArts or your local development
environment. A locally developed model must be uploaded to Huawei Cloud
OBS.

2. Create a model: Import the model file and inference file to the ModelArts
model repository and manage them by version. Use these files to build an
executable model.

3. Deploy a service: Deploy the model as a service type based on your needs.
– Deploying a Model as Real-Time Inference Jobs

Deploy a model as a web service with real-time UI and monitoring. This
service provides you a callable API.

– Deploying a Model as a Batch Inference Service
Deploy an AI application as a batch service that performs inference on
batch data and automatically stops after data processing is complete.

Figure 9-2 Different inference scenarios

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 663

9.2 Creating a Model

9.2.1 Creation Methods
AI development and optimization require frequent iterations and debugging.
Modifications in datasets, training code, or parameters affect the quality of
models. If the metadata of the development process cannot be centrally managed,
the optimal model may fail to be reproduced.

With ModelArts, you can create models using meta models from training jobs,
OBS, or container images, and centrally manage all iterated and debugged
models.

Constraints
● After deploying a model in an ExeML project, it is automatically added to the

model list. ExeML-generated models can only be deployed, not downloaded.
● All users can create models and manage model versions at no cost.

Meta Model Sources
● Importing a Meta Model from a Training Job: Create a training job in

ModelArts to train a model. After obtaining a desired model, use it to create a
model for service deployment.

● Importing a Meta Model from OBS: If you use a mainstream framework to
develop and train a model locally, you can upload the model to an OBS
bucket based on the model package specifications, import the model from
OBS to ModelArts, and use the model for service deployment.

● Importing a Meta Model from a Container Image: If an AI engine is not
supported by ModelArts, you can use it to build a model, import the model to
ModelArts as a custom image, and use the image to create a model for
service deployment.

Supported AI Engines for ModelArts Inference
If you import a model from OBS to ModelArts, the following AI engines and
versions are supported.

NO TE

● A runtime environment of a unified image is named in the following format: <AI engine
and version> - <Hardware and version: CPU, CUDA, or CANN> - <Python version> - <OS
version> - <CPU architecture>

● Each preset AI engine has its default model start command. Do not modify it unless
necessary.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 664

Table 9-1 Supported AI engines, their runtime environments, and default start
commands

Engine Runtime
Environment

Note

TensorFlow python3.6
python2.7
(unavailable soon)
tf1.13-python3.6-gpu
tf1.13-python3.6-cpu
tf1.13-python3.7-cpu
tf1.13-python3.7-gpu
tf2.1-python3.7
(unavailable soon)
tensorflow_2.1.0-
cuda_10.1-py_3.7-
ubuntu_18.04-x86_64
(recommended)

● TensorFlow 1.8.0 is used in
python2.7 and python3.6.

● The model can run on both CPUs
and GPUs when using python3.6,
python2.7, or tf2.1-python3.7. If
the runtime environment has a
suffix of cpu or gpu, the model
can only run on CPUs or GPUs
respectively.

● The default runtime environment
is python2.7.

● Default start command: sh /
home/mind/run.sh

Spark_MLlib python2.7
(unavailable soon)
python3.6
(unavailable soon)

● Spark_MLlib 2.3.2 is used in
python2.7 and python3.6.

● The default runtime environment
is python2.7.

● python2.7 and python3.6 can
only be used to run models on
CPUs.

● Default start command: bash /
home/work/predict/bin/run.sh

Scikit_Learn python2.7
(unavailable soon)
python3.6
(unavailable soon)

● Scikit_Learn 0.18.1 is used in
python2.7 and python3.6.

● The default runtime environment
is python2.7.

● python2.7 and python3.6 can
only be used to run models on
CPUs.

● Default start command: bash /
home/work/predict/bin/run.sh

XGBoost python2.7
(unavailable soon)
python3.6
(unavailable soon)

● XGBoost 0.80 is used in python2.7
and python3.6.

● The default runtime environment
is python2.7.

● python2.7 and python3.6 can
only be used to run models on
CPUs.

● Default start command: bash /
home/work/predict/bin/run.sh

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 665

Engine Runtime
Environment

Note

PyTorch python2.7
(unavailable soon)
python3.6
python3.7
pytorch1.4-python3.7
pytorch1.5-python3.7
(unavailable soon)

pytorch_1.8.0-
cuda_10.2-py_3.7-
ubuntu_18.04-x86_64
(recommended)

● PyTorch 1.0 is used in python2.7,
python3.6, and python3.7.

● The model can run on both CPUs
and GPUs when using python2.7,
python3.6, python3.7,
pytorch1.4-python3.7, or
pytorch1.5-python3.7.

● The default runtime environment
is python2.7.

● Default start command: sh /
home/mind/run.sh

MindSpore aarch64
(recommended)

aarch64 can only be used to run
models on Snt3 chips.
● Default start command: sh /

home/mind/run.sh

9.2.2 Importing a Meta Model from a Training Job
Create a training job in ModelArts to obtain a satisfactory model. The model can
then be imported to create an AI application for centralized management. The
application can be quickly deployed as a service.

Constraints
● You can directly import a model generated from a training job that uses a

subscribed algorithm to ModelArts, without needing to use the inference code
or configuration file.

● If the meta model is from a container image, ensure the size of the meta
model complies with Restrictions on the Size of an Image for Importing a
Model.

Prerequisites
● The training job has been executed, and the model has been stored in the

OBS directory where the training output is stored (the input parameter is
train_url).

● If the training job uses a mainstream framework or custom image, upload the
inference code and configuration file to the model storage directory by
referring to Model Package Structure.

● The OBS directory you use must be in the same region as ModelArts.

Procedure
1. Log in to the ModelArts console and choose Model Management in the

navigation pane on the left.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 666

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_13_0211.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_13_0211.html

2. Click Create Model.

3. Configure parameters.

a. Set basic information about the model. For details about the parameters,
see Table 9-2.

Table 9-2 Basic information

Parameter Description

Name Model name. The value can contain 1 to 64 visible
characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Version Model version. The default value is 0.0.1 for the first
import.
NOTE

After a model is created, you can create new versions using
different meta models for optimization.

Description Brief description of the model.

b. Set Meta Model Source to Training job. For details, see Table 9-3.

Figure 9-3 Importing a meta model from a training job

Table 9-3 Meta model source parameters

Parameter Description

Meta
Model
Source

Select Training job.
● Choose a training job from the Training Job drop-

down list.
● Dynamic loading: You can enable it for quick model

deployment and update. When it is enabled, model
files and runtime dependencies are only pulled during
an actual deployment. Enable this feature if a single
model file is larger than 5 GB.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 667

Parameter Description

AI Engine Inference engine used by the meta model, which is
automatically matched based on the training job you
select.

Inference
Code

Inference code customizing the inference logic of the
model. You can directly copy the inference code URL for
use.

Runtime
Dependenc
y

Dependencies that the selected model has on the
environment. For example, if you need to install
tensorflow using pip, make sure the version is 1.8.0 or
newer.

Model
Description

Model descriptions to help other developers better
understand and use your model. Click Add Model
Description and set the document name and URL. You
can add up to three model descriptions.

Deploymen
t Type

Choose the service types for model deployment. The
service types you select will be the only options available
for deployment. For example, selecting Real-Time
Services means the model can only be deployed as real-
time services.

c. Confirm the configurations and click Create now.

In the model list, you can view the created model and its version. When
the status changes to Normal, the model is created. On this page, you
can perform such operations as creating new versions and quickly
deploying services.

Follow-Up Operations

Deploying a service: In the model list, click Deploy in the Operation column of
the target model. Locate the target version, click Deploy and choose a service type
selected during model creation.

9.2.3 Importing a Meta Model from OBS
Import a model trained using a mainstream AI engine to ModelArts to create a
model for centralized management.

Constraints
● The imported model, inference code, and configuration file must comply with

ModelArts model package specifications. For details, see Model Package
Structure, Specifications for Editing a Model Configuration File, and
Specifications for Writing a Model Inference Code File.

● If the meta model is from a container image, ensure the size of the meta
model complies with Restrictions on the Size of an Image for Importing a
Model.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 668

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_13_0211.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_13_0211.html

Prerequisites
● The trained model uses an AI engine supported by ModelArts. For details, see

Supported AI Engines for ModelArts Inference.
● The model package, inference code, and configuration file have been

uploaded to OBS.
● The OBS directory you use and ModelArts are in the same region.

Procedure
1. Log in to the ModelArts console and choose Model Management in the

navigation pane on the left.
2. Click Create Model.
3. Configure parameters.

a. Set basic information about the model. For details about the parameters,
see Table 9-4.

Table 9-4 Basic information

Parameter Description

Name Model name. The value can contain 1 to 64 visible
characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Version Model version. The default value is 0.0.1 for the first
import.
NOTE

After a model is created, you can create new versions using
different meta models for optimization.

Description Brief description of the model.

b. Set Meta Model Source to OBS. For details, see Table 9-5.

To import a meta model from OBS, edit the inference code and
configuration file by following model package specifications and place
the inference code and configuration file in the model folder storing the
meta model. If the selected directory does not comply with the model
package specifications, the model cannot be created.

Figure 9-4 Importing a meta model from OBS

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 669

Table 9-5 Meta model source parameters

Parameter Description

Meta
Model
Source

Select OBS.

Meta
Model

OBS path for storing the meta model.
The OBS path cannot contain spaces. Otherwise, the
model creation will fail.

AI Engine AI engine, which is automatically set according to the
model storage path you select, used by the meta model.

Container
API

This parameter is displayed when AI Engine is set to
Custom.
Set the protocol and port number of the inference API
defined by the model. The default values are HTTPS and
8080, respectively.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 670

Parameter Description

Health
Check

Specifies health check on a model. This parameter is
displayed when AI Engine is set to Custom. Once you
select a non-custom engine and runtime environment,
this parameter is displayed if this engine supports health
check.
Once you select a custom engine, you must select a
container image for the engine package. The health
check can be set up only if the container image includes
a health check API. Otherwise, the model creation will
fail.
The following probes are supported:
● Startup Probe: This probe checks if the application

instance has started. If a startup probe is provided, all
other probes are disabled until it succeeds. If the
startup probe fails, the instance is restarted. If no
startup probe is provided, the default status is Success.

● Readiness Probe: This probe verifies whether the
application instance is ready to handle traffic. If the
readiness probe fails (meaning the instance is not
ready), the instance is taken out of the service load
balancing pool. Traffic will not be routed to the
instance until the probe succeeds.

● Liveness Probe: This probe monitors the application
health status. If the liveness probe fails (indicating the
application is unhealthy), the instance is automatically
restarted.

The parameters of the three types of probes are as
follows:
● Check Mode: Retain the default setting HTTP request.
● Health Check URL: Retain the default setting /health.
● Health Check Period (s): Enter an integer ranging

from 1 to 2147483647.
● Delay (s): Set a delay for the health check to occur

after the instance has started. The value should be an
integer between 0 and 2147483647.

● Timeout (s): Set the timeout interval for each health
check. The value should be an integer between 0 and
2147483647.

● Maximum Failures: Enter an integer ranging from 1
to 2147483647. If the service fails the specified
number of consecutive health checks during startup, it
will enter the abnormal state. If the service fails the
specified number of consecutive health checks during
operation, it will enter the alarm state.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 671

Parameter Description

NOTE
To use a custom engine to create an AI application, ensure that
the custom engine complies with the specifications for custom
engines. For details, see Creating a Model Using a Custom
Engine.
If health check is enabled for a model, the associated services
will stop three minutes after receiving the stop instruction.

Dynamic
loading

You can enable it for quick model deployment and
update. When it is enabled, model files and runtime
dependencies are only pulled during an actual
deployment. Enable this feature if a single model file is
larger than 5 GB.

Runtime
Dependenc
y

Dependencies that the selected model has on the
environment. For example, if you need to install
tensorflow using pip, make sure the version is 1.8.0 or
newer.

Model
Description

Model descriptions to help other developers better
understand and use your model. Click Add Model
Description and set the document name and URL. You
can add up to three descriptions.

Configurati
on File

The system associates the configuration file stored in OBS
by default. After enabling this feature, you can review
and edit the model configuration file.
NOTE

This feature is to be discontinued. After that, you can modify the
model configuration by setting AI Engine, Runtime
Dependency, and API Configuration.

Deploymen
t Type

Choose the service types for model deployment. The
service types you select will be the only options available
for deployment. For example, selecting Real-Time
Services means the model can only be deployed as real-
time services.

Start
Command

Customizable start command of the model. This
parameter is optional.
When using a preset AI engine, the default start
command is used if no start command is entered. For
details, see Table 9-1. If a start command is entered, it
replaces the default command.
NOTE

Start commands containing $, |, >, <, `, !, \n, \, ?, -v, --volume, --
mount, --tmpfs, --privileged, or --cap-add will be emptied when
a model is being published.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 672

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_04_0230.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_04_0230.html

Parameter Description

API
Configurati
on

After enabling this feature, you can edit RESTful APIs to
define the input and output formats of a model. The
model APIs must comply with ModelArts specifications.
For details, see the apis parameter description in
Specifications for Editing a Model Configuration File.
For details about the code example, see Code Example
of apis Parameters.

c. Confirm the configurations and click Create now.

In the model list, you can view the created model and its version. When
the status changes to Normal, the model is created. On this page, you
can perform such operations as creating new versions and quickly
deploying services.

Follow-Up Operations

Deploying a service: In the model list, click Deploy in the Operation column of
the target model. Locate the target version, click Deploy and choose a service type
selected during model creation.

9.2.4 Importing a Meta Model from a Container Image
For AI engines that are not supported by ModelArts, you can import the models
from custom images.

Constraints
● For details about the specifications and description of custom images, see

Specifications for Custom Images Used for Importing Models.

● If the meta model is from a container image, ensure the size of the meta
model complies with restrictions on the size of an image for importing a
model.

Prerequisites

The OBS directory you use and ModelArts are in the same region.

Procedure
1. Log in to the ModelArts console and choose Model Management in the

navigation pane on the left.

2. Click Create Model.

3. Configure parameters.

a. Set basic information about the model. For details about the parameters,
see Table 9-6.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 673

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_13_0211.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_13_0211.html

Table 9-6 Basic information

Parameter Description

Name Model name. The value can contain 1 to 64 visible
characters. Only letters, digits, hyphens (-), and
underscores (_) are allowed.

Version Model version. The default value is 0.0.1 for the first
import.
NOTE

After a model is created, you can create new versions using
different meta models for optimization.

Description Brief description of the model.

b. Select the meta model source and configure related parameters. Set

Meta Model Source to Container image. For details, see Table 9-7.

Figure 9-5 Importing a meta model from a container image

Table 9-7 Meta model source parameters

Parameter Description

Container Image
Path Click to import the container image. You do not

need to use swr_location in the configuration file
to specify the image location.
For details about how to create a custom image,
see Specifications for Custom Images Used for
Importing Models.
NOTE

The model image you select will be shared with the
system administrator, so ensure you have the permission
to share the image (images shared by other accounts are
not supported). ModelArts will deploy the image as an
inference service. Ensure that your image can be properly
started and provide an inference API.

Container API Set the protocol and port number of the inference
API defined by the model.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 674

Parameter Description

Image
Replication

Indicates whether to copy the model image in the
container image to ModelArts.
● After this feature is disabled, the model image is

not copied, models can be rapidly created, but
modifying or deleting an image in the SWR
source directory will affect service deployment.

● After this feature is enabled, the model image is
copied, models cannot be rapidly created, and
modifying or deleting an image in the SWR
source directory will not affect service
deployment.

NOTE
You must enable this feature if you want to use images
shared by others. Otherwise, models will fail to be created.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 675

Parameter Description

Health Check Specifies health check on a model. This parameter
is configurable only when a health check API is
configured in the custom image. Otherwise, the
model creation will fail. The following probes are
supported:
● Startup Probe: This probe checks if the

application instance has started. If a startup
probe is provided, all other probes are disabled
until it succeeds. If the startup probe fails, the
instance is restarted. If no startup probe is
provided, the default status is Success.

● Readiness Probe: This probe verifies whether the
application instance is ready to handle traffic. If
the readiness probe fails (meaning the instance
is not ready), the instance is taken out of the
service load balancing pool. Traffic will not be
routed to the instance until the probe succeeds.

● Liveness Probe: This probe monitors the
application health status. If the liveness probe
fails (indicating the application is unhealthy), the
instance is automatically restarted.

The parameters of the three types of probes are as
follows:
● Check Mode: Select HTTP request or

Command.
● Health Check URL: Enter the health check URL,

which defaults to /health. This parameter is
displayed when Check Mode is set to HTTP
request.

● Health Check Command: Enter the health check
command. This parameter is displayed when
Check Mode is set to Command.

● Health Check Period (s): Enter an integer
ranging from 1 to 2147483647.

● Delay (s): Set a delay for the health check to
occur after the instance has started. The value
should be an integer between 0 and
2147483647.

● Timeout (s): Set the timeout interval for each
health check. The value should be an integer
between 0 and 2147483647.

● Maximum Failures: Enter an integer ranging
from 1 to 2147483647. If the service fails the
specified number of consecutive health checks
during startup, it will enter the abnormal state. If
the service fails the specified number of

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 676

Parameter Description

consecutive health checks during operation, it
will enter the alarm state.

NOTE
If health check is enabled for a model, the associated
services will stop three minutes after receiving the stop
instruction.

Model
Description

Model descriptions to help other developers better
understand and use your model. Click Add Model
Description and set the document name and URL.
You can add up to three descriptions.

Deployment
Type

Choose the service types for model deployment.
The service types you select will be the only options
available for deployment. For example, selecting
Real-Time Services means the model can only be
deployed as real-time services.

Start Command Customizable start command of a model.
NOTE

Start commands containing $, |, >, <, `, !, \n, \, ?, -v, --
volume, --mount, --tmpfs, --privileged, or --cap-add will
be emptied when a model is being published.

API
Configuration

After enabling this feature, you can edit RESTful
APIs to define the input and output formats of a
model. The model APIs must comply with
ModelArts specifications. For details, see the apis
parameter description in Specifications for Editing
a Model Configuration File. For details about the
code example, see Code Example of apis
Parameters.

c. Confirm the configurations and click Create now.

In the model list, you can view the created model and its version. When
the status changes to Normal, the model is created. On this page, you
can perform such operations as creating new versions and quickly
deploying services.

Follow-Up Operations
Deploying a service: In the model list, click Deploy in the Operation column of
the target model. Locate the target version, click Deploy and choose a service type
selected during model creation.

9.3 Model Creation Specifications

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 677

9.3.1 Model Package Structure
When creating a model, make sure that any meta model imported from OBS
complies with specifications.

NO TE

● The model package specifications apply when you import one model. For multiple
models, such as multiple files, use custom images instead.

● If you want to use an AI engine that is not supported by ModelArts, use a custom
image.

● For details about how to create a custom image, see Specifications for Custom Images
and Creating a Custom Image on ECS.

● For more examples of custom scripts, see Examples of Custom Scripts.

The model package must contain the model directory. The model directory stores
the model file, model configuration file, and model inference code file.

● Model files: The requirements for model files vary according to the model
package structure. For details, see Model Package Example.

● Model configuration file: The model configuration file must be available and
its name is consistently to be config.json. There must be only one model
configuration file. For details about how to edit a model configuration file, see
Specifications for Editing a Model Configuration File.

● Model inference code file: It is mandatory. The file name is consistently to be
customize_service.py. There must be only one model inference code file. For
details about how to edit model inference code, see Specifications for
Writing a Model Inference Code File.
– The .py file on which customize_service.py depends can be directly

stored in the model directory. Use relative import for the custom
package.

– The other files on which customize_service.py depends can be stored in
the model directory. Use absolute paths to access these files. For details,
see Obtaining an Absolute Path.

ModelArts provides samples and sample code for multiple engines. You can edit
your configuration files and inference code by referring to ModelArts Samples.
ModelArts also provides custom script examples of common AI engines. For
details, see Examples of Custom Scripts.

If you encounter any problem when importing a meta model, contact Huawei
Cloud technical support.

Model Package Example
● Structure of the TensorFlow-based model package

When publishing the model, you only need to specify the ocr directory.
OBS bucket or directory name
|── ocr
| ├── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| │ ├── <<Custom Python package>> (Optional) Your Python package, which can be directly
referenced in model inference code
| │ ├── saved_model.pb (Mandatory) Protocol buffer file, which contains the graph description of
the model
| │ ├── variables Name of a fixed sub-directory, which contains the weight and deviation rate of

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 678

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_10_0014.html
https://www.huaweicloud.com/intl/en-us/service/help-tools.html
https://www.huaweicloud.com/intl/en-us/service/help-tools.html

the model. It is mandatory for the main file of a *.pb model.
| │ │ ├── variables.index Mandatory
| │ │ ├── variables.data-00000-of-00001 Mandatory
| │ ├──config.json (Mandatory) Model configuration file. The file name is fixed to config.json.
Only one model configuration file is allowed.
| │ ├──customize_service.py (Mandatory) Model inference code. The file name is fixed to
customize_service.py. Only one model inference code file is allowed.
The files on which customize_service.py depends can be directly stored in the model directory.

● Structure of the PyTorch-based model package
When publishing the model, you only need to specify the resnet directory.
OBS bucket or directory name
|── resnet
| ├── model (Mandatory) Name of a fixed subdirectory, which is used to store model-related files
| │ ├── <<Custom Python package>> (Optional) Your Python package, which can be directly
referenced in model inference code
| │ ├── resnet50.pth (Mandatory) PyTorch model file, which contains variable and weight
information and is saved as state_dict
| │ ├──config.json (Mandatory) Model configuration file. The file name is fixed to config.json.
Only one model configuration file is allowed.
| │ ├──customize_service.py (Mandatory) Model inference code. The file name is fixed to
customize_service.py. Only one model inference code file is allowed. The files on which
customize_service.py depends can be directly stored in the model directory.

● Structure of a custom model package depends on the AI engine in your
custom image. For example, if the AI engine in your custom image is
TensorFlow, the model package uses the TensorFlow structure.

9.3.2 Specifications for Editing a Model Configuration File
You must edit the config.json file when publishing a model. The configuration file
describes the model usage, computing framework, accuracy, inference code
dependency package, and model API.

Configuration File Format
The configuration file is in JSON format. Table 9-8 describes the parameters.

Table 9-8 Parameters

Paramete
r

Mand
atory

Type Description

model_alg
orithm

Yes String Model algorithm, which shows the model usage.
The value must start with a letter and contain no
more than 36 characters. Chinese characters and
special characters (&!'\"<>=) are not allowed.
Major model algorithms include
image_classification, object_detection, and
predict_analysis.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 679

Paramete
r

Mand
atory

Type Description

model_typ
e

Yes String Model AI engine, which indicates the computing
framework used by a model. Major AI engines
and Image are supported.
● For details about supported AI engines, see

Supported AI Engines for ModelArts
Inference.

● If model_type is set to Image, a model will be
created using a custom image. In this case, the
swr_location parameter is mandatory. For
details about how to create an image, see
Specifications for Custom Images.

runtime No String Model runtime environment. Python 2.7 is used
by default. The value of runtime depends on
model_type. If model_type is set to Image, you
do not need to set runtime. If model_type is set
to a mainstream framework, select a runtime
environment matching the engine. For details
about the supported runtime environments, see
Supported AI Engines for ModelArts Inference.
If your model must run on specified CPUs or
GPUs, select the CPUs or GPUs based on the
runtime suffix. If the runtime does not contain
the CPU or GPU information, check the runtime
description in Supported AI Engines for
ModelArts Inference.

metrics No Objec
t

Model precision information, including the F1
score, recall, precision, and accuracy. For details
about the metrics object structure, see Table
9-9.
The result is displayed in the model precision
area on the model details page.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 680

Paramete
r

Mand
atory

Type Description

apis No API
array

Structure data of requests received and returned
by a model.
It is a RESTful API array provided by a model. For
details about the API structure, see Table 9-10.
For details about the code example, see Code
Example of apis Parameters.
● If model_type is set to Image, an AI

application will be created using a custom
image. APIs with different paths can be
declared in apis based on the request path
exposed by the image.

● If model_type is not Image, only one API
whose request path is / can be declared in
apis because the preconfigured AI engine
exposes only one inference API whose request
path is /.

dependen
cies

No Depen
dency
array

Package on which the model inference code
depends, which is structure data.
You must provide the package name, installation
method, and version constraints. The dependency
package can be installed only using pip. Table
9-13 describes the dependency array.
If the model package does not contain the
customize_service.py inference code file, you do
not need to set dependencies. Dependency
packages cannot be installed for custom image
models.
NOTE

The dependencies parameter accepts multiple
dependency arrays in a list format. It applies to
scenarios where the default installation packages have
dependency relationships. The top packages are
installed first. The wheel package can be used for
dependency installation, and it must be stored in the
same directory as the model file. For details, see How
Do I Edit the Installation Package Dependency
Parameters in a Model Configuration File When
Importing a Model?

health No healt
h
data
struct
ure

Health check API configuration. This parameter is
mandatory only when model_type is set to
Image.
To ensure uninterrupted services during a rolling
upgrade, ModelArts requires a health check API.
For details about the health data structure, see
Table 9-15.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 681

https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0161.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0161.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0161.html
https://support.huaweicloud.com/intl/en-us/modelarts_faq/modelarts_05_0161.html

Table 9-9 metrics object

Paramete
r

Mand
atory

Type Description

f1 No Numb
er

F1 score. The value is rounded to 17 decimal
places.

recall No Numb
er

Recall. The value is rounded to 17 decimal places.

precision No Numb
er

Precision. The value is rounded to 17 decimal
places.

accuracy No Numb
er

Accuracy. The value is rounded to 17 decimal
places.

Table 9-10 api structure

Paramet
er

Manda
tory

Type Description

url No String Request path. The default value is a slash (/). For
a custom image model (model_type is Image),
set this parameter to the actual request path
exposed in the image. For a non-custom image
model (model_type is not Image), the URL can
only be /.

method No String Request method. The default value is POST.

request No Object Request body. For details, see Table 9-11.

response No Object Response body. For details, see Table 9-12.

Table 9-11 request structure

Paramet
er

Mandat
ory

Type Description

Content-
type

No for
real-time
services
Yes for
batch
services

String Data is sent in a specified content format. The
default value is application/json.
The options are as follows:
● application/json: JSON data is uploaded.
● multipart/form-data: A file is uploaded.
NOTE

For machine learning models, only application/json
is supported.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 682

Paramet
er

Mandat
ory

Type Description

data No for
real-time
services
Yes for
batch
services

String The request body is described in JSON schema.
For details about the parameter description,
see the official guide.

Table 9-12 response structure

Paramet
er

Mandat
ory

Type Description

Content-
type

No for
real-time
services
Yes for
batch
services

String Data is sent in a specified content format. The
default value is application/json.
NOTE

For machine learning models, only application/json
is supported.

data No for
real-time
services
Yes for
batch
services

String The response body is described in JSON
schema. For details about the parameter
description, see the official guide.

Table 9-13 dependency array

Parameter Mandatory Type Description

installer Yes String Installation method. Only pip is
supported.

packages Yes package array Dependency package collection.
For details about the package
array, see Table 9-14.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 683

https://json-schema.org/understanding-json-schema/reference/array.html
https://json-schema.org/understanding-json-schema/reference/array.html

Table 9-14 Package array

Parameter Mandatory Type Description

package_na
me

Yes String Dependency package name.
Chinese characters and special
characters (&!'"<>=) are not
allowed.

package_ver
sion

No String Dependency package version.
Leave it blank if it is not
required. Chinese characters and
special characters (&!'"<>=) are
not allowed.

restraint No String Version restriction. This
parameter is mandatory only
when package_version is
configured. Possible values are
EXACT, ATLEAST, and ATMOST.
● EXACT indicates that a

specified version is installed.
● ATLEAST indicates that the

installed version is not earlier
than the specified version.

● ATMOST indicates that the
installed version is not later
than the specified version.
NOTE

● If there are specific
requirements on the version,
preferentially use EXACT. If
EXACT conflicts with the
system installation packages,
you can select ATLEAST.

● If there is no specific
requirement on the version,
retain only the
package_name parameter
and leave restraint and
package_version blank.

Table 9-15 Health check data structure

Parameter Mandatory Type Description

check_meth
od

Yes String Health check method. The value
can be HTTP or EXEC.
● HTTP: Use an HTTP request.
● EXEC: Execute a command.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 684

Parameter Mandatory Type Description

command No String Health check command. This
parameter is mandatory when
check_method is set to EXEC.

url No String Request URL of a health check
API. This parameter is
mandatory when check_method
is set to HTTP.

protocol No String Request protocol of a health
check API. The default value is
http. This parameter is
mandatory when check_method
is set to HTTP.

initial_delay
_seconds

No String Delay for initializing the health
check.

timeout_sec
onds

No String Health check timeout.

period_seco
nds

Yes String Health check period, in seconds.
Enter a positive integer no more
than 2147483647.

failure_thres
hold

Yes String Maximum number of health
check failures. Enter a positive
integer no more than
2147483647.

Code Example of apis Parameters
[{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "mnist_result": {
 "type": "array",
 "item": [
 {
 "type": "string"
 }
]

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 685

 }
 }
 }
 }
}]

Example of an Object Detection Model Configuration File

The following code uses the TensorFlow engine as an example. You can modify
the model_type parameter based on the actual engine type.

● Model input
Key: images
Value: image files

● Model output
{
 "detection_classes": [
 "face",
 "arm"
],
 "detection_boxes": [
 [
 33.6,
 42.6,
 104.5,
 203.4
],
 [
 103.1,
 92.8,
 765.6,
 945.7
]
],
 "detection_scores": [0.99, 0.73]
}

● Configuration file
{
 "model_type": "TensorFlow",
 "model_algorithm": "object_detection",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 686

 "detection_classes": {
 "type": "array",
 "items": [{
 "type": "string"
 }]
 },
 "detection_boxes": {
 "type": "array",
 "items": [{
 "type": "array",
 "minItems": 4,
 "maxItems": 4,
 "items": [{
 "type": "number"
 }]
 }]
 },
 "detection_scores": {
 "type": "array",
 "items": [{
 "type": "number"
 }]
 }
 }
 }
 }
 }],
 "dependencies": [{
 "installer": "pip",
 "packages": [{
 "restraint": "EXACT",
 "package_version": "1.15.0",
 "package_name": "numpy"
 },
 {
 "restraint": "EXACT",
 "package_version": "5.2.0",
 "package_name": "Pillow"
 }
]
 }]
}

Example of an Image Classification Model Configuration File

The following code uses the TensorFlow engine as an example. You can modify
the model_type parameter based on the actual engine type.

● Model input
Key: images
Value: image files

● Model output
{
 "predicted_label": "flower",
 "scores": [
 ["rose", 0.99],
 ["begonia", 0.01]
]
}

● Configuration file
{
 "model_type": "TensorFlow",
 "model_algorithm": "image_classification",
 "metrics": {
 "f1": 0.345294,

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 687

 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "predicted_label": {
 "type": "string"
 },
 "scores": {
 "type": "array",
 "items": [{
 "type": "array",
 "minItems": 2,
 "maxItems": 2,
 "items": [
 {
 "type": "string"
 },
 {
 "type": "number"
 }
]
 }]
 }
 }
 }
 }
 }],
 "dependencies": [{
 "installer": "pip",
 "packages": [{
 "restraint": "ATLEAST",
 "package_version": "1.15.0",
 "package_name": "numpy"
 },
 {
 "restraint": "",
 "package_version": "",
 "package_name": "Pillow"
 }
]
 }]
}

The following code uses the MindSpore engine as an example. You can modify the
model_type parameter based on the actual engine type.

● Model input
Key: images
Value: image files

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 688

● Model output
"[[-2.404526 -3.0476532 -1.9888215 0.45013925 -1.7018927 0.40332815\n -7.1861157
11.290332 -1.5861531 5.7887416]]"

● Configuration file
{
 "model_algorithm": "image_classification",
 "model_type": "MindSpore",
 "metrics": {
 "f1": 0.124555,
 "recall": 0.171875,
 "precision": 0.0023493892851938493,
 "accuracy": 0.00746268656716417
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "mnist_result": {
 "type": "array",
 "item": [{
 "type": "string"
 }]
 }
 }
 }
 }
 }
],
 "dependencies": []
 }

Example of a Predictive Analytics Model Configuration File
The following code uses the TensorFlow engine as an example. You can modify
the model_type parameter based on the actual engine type.

● Model input
{
 "data": {
 "req_data": [
 {
 "buying_price": "high",
 "maint_price": "high",
 "doors": "2",
 "persons": "2",
 "lug_boot": "small",
 "safety": "low",
 "acceptability": "acc"
 },
 {
 "buying_price": "high",
 "maint_price": "high",

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 689

 "doors": "2",
 "persons": "2",
 "lug_boot": "small",
 "safety": "low",
 "acceptability": "acc"
 }
]
 }
}

● Model output
{
 "data": {
 "resp_data": [
 {
 "predict_result": "unacc"
 },
 {
 "predict_result": "unacc"
 }
]
 }
}

● Configuration file

NO TE

In the code, the data parameter in the request and response structures is described in
JSON Schema. The content in data and properties corresponds to the model input
and output.

{
 "model_type": "TensorFlow",
 "model_algorithm": "predict_analysis",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [
 {
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "items": [
 {
 "type": "object",
 "properties": {}
 }
],
 "type": "array"
 }
 }
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 690

 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "resp_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {}
 }
]
 }
 }
 }
 }
 }
 }
 }
],
 "dependencies": [
 {
 "installer": "pip",
 "packages": [
 {
 "restraint": "EXACT",
 "package_version": "1.15.0",
 "package_name": "numpy"
 },
 {
 "restraint": "EXACT",
 "package_version": "5.2.0",
 "package_name": "Pillow"
 }
]
 }
]
}

Example of a Custom Image Model Configuration File
The model input and output are similar to those in Example of an Object
Detection Model Configuration File.

● Here is an example of how to make a model prediction request for image
files.
To upload files, click the file upload button on the inference page.
{
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
}

● Here is an example of how to make a model prediction request for JSON
data.
The input parameter is of string type. To enter prediction requests, use the
text box on the inference page.
{
 "Content-type": "application/json",

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 691

 "data": {
 "type": "object",
 "properties": {
 "input": {
 "type": "string"
 }
 }
 }
}

A complete request example is as follows:

{
 "model_algorithm": "image_classification",
 "model_type": "Image",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "required": [
 "predicted_label",
 "scores"
],
 "properties": {
 "predicted_label": {
 "type": "string"
 },
 "scores": {
 "type": "array",
 "items": [{
 "type": "array",
 "minItems": 2,
 "maxItems": 2,
 "items": [{
 "type": "string"
 },
 {
 "type": "number"
 }
]
 }]
 }
 }
 }
 }
 }]
}

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 692

Example of a Machine Learning Model Configuration File

The following uses XGBoost as an example:

● Model input
{
 "req_data": [
 {
 "sepal_length": 5,
 "sepal_width": 3.3,
 "petal_length": 1.4,
 "petal_width": 0.2
 },
 {
 "sepal_length": 5,
 "sepal_width": 2,
 "petal_length": 3.5,
 "petal_width": 1
 },
 {
 "sepal_length": 6,
 "sepal_width": 2.2,
 "petal_length": 5,
 "petal_width": 1.5
 }
]
}

● Model output
{
 "resp_data": [
 {
 "predict_result": "Iris-setosa"
 },
 {
 "predict_result": "Iris-versicolor"
 }
]
}

● Configuration file
{
 "model_type": "XGBoost",
 "model_algorithm": "xgboost_iris_test",
 "runtime": "python2.7",
 "metrics": {
 "f1": 0.345294,
 "accuracy": 0.462963,
 "precision": 0.338977,
 "recall": 0.351852
 },
 "apis": [
 {
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json",
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "items": [
 {
 "type": "object",
 "properties": {}
 }
],
 "type": "array"

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 693

 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "resp_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "predict_result": {}
 }
 }
]
 }
 }
 }
 }
 }
]
}

Example of the Model Configuration File Using a Custom Dependency
Package

The following example defines the NumPy 1.16.4 dependency environment.

{
 "model_algorithm": "image_classification",
 "model_type": "TensorFlow",
 "runtime": "python3.6",
 "apis": [
 {
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "mnist_result": {
 "type": "array",
 "item": [
 {
 "type": "string"
 }
]
 }
 }
 }
 }

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 694

 }
],
 "metrics": {
 "f1": 0.124555,
 "recall": 0.171875,
 "precision": 0.00234938928519385,
 "accuracy": 0.00746268656716417
 },
 "dependencies": [
 {
 "installer": "pip",
 "packages": [
 {
 "restraint": "EXACT",
 "package_version": "1.16.4",
 "package_name": "numpy"
 }
]
 }
]
}

9.3.3 Specifications for Writing a Model Inference Code File
This section describes the general method of editing model inference code in
ModelArts. For details about the custom script examples (including inference code
examples) of mainstream AI engines, see Examples of Custom Scripts. This
section also provides an inference code example for the TensorFlow engine and an
example of customizing the inference logic in the inference script.

Due to the limitation of API Gateway, the duration of a single prediction in
ModelArts cannot exceed 40s. The model inference code must be logically clear
and concise for satisfactory inference performance.

Specifications for Writing Inference Code
1. In the model inference code file customize_service.py, add a child model

class. This child model class inherits properties from its parent model class.
For details about the import statements of different types of parent model
classes, see Table 9-16. The ModelArts environment has already configured
the necessary Python packages for import statements, so you do not need to
install them separately.

Table 9-16 Parent class and import statement of each model type

Model Type Parent Class Import Statement

TensorFlow TfServingBaseService from model_service.tfserving_model_service
import TfServingBaseService

PyTorch PTServingBaseService from model_service.pytorch_model_service
import PTServingBaseService

MindSpore SingleNodeService from model_service.model_service import
SingleNodeService

2. The following methods can be overridden.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 695

Table 9-17 Methods to be overridden

Method Description

__init__(self,
model_name,
model_path)

Initialization method, which is suitable for models
created based on deep learning frameworks. Models
and labels are loaded using this method. To implement
model loading logic, override this method for PyTorch
and Caffe-based models.

__init__(self,
model_path)

Initialization method, which is suitable for models
created based on machine learning frameworks. This
method initializes the model path (self.model_path).
In Spark_MLlib, this method also initializes
SparkSession (self.spark).

_preprocess(self,
data)

Preprocess method, which is called before an inference
request and converts API request data into the model's
expected input format.

_inference(self,
data)

Inference request method. You are advised not to
override this method, as it will replace the built-in
inference process in ModelArts with your custom logic.

_postprocess(self,
data)

Postprocess method, which is called after an inference
request is complete and converts the model output to
the API output.

NO TE

● You can override the preprocess and postprocess methods for preprocessing the API
input and postprocessing the inference output.

● Overriding the init method of the parent model class may cause a model to run
abnormally.

3. The attribute that can be used is the local path to the model. The attribute
name is self.model_path. Additionally, PySpark-based models can use
self.spark to obtain the SparkSession object in customize_service.py.

NO TE

The inference code requires an absolute file path for reading files. You can obtain the
local path to the model from the self.model_path attribute.
● When TensorFlow, Caffe, or MXNet is used, self.model_path indicates the path to

the model file. The following provides an example:
Reads the label.json file in the model directory.
with open(os.path.join(self.model_path, 'label.json')) as f:
 self.label = json.load(f)

● When PyTorch, Scikit_Learn, or PySpark is used, self.model_path indicates the path
to the model file. The following provides an example:
Reads the label.json file in the model directory.
dir_path = os.path.dirname(os.path.realpath(self.model_path))
with open(os.path.join(dir_path, 'label.json')) as f:
 self.label = json.load(f)

4. The API accepts data in either multipart/form-data or application/json
format for pre-processing, actual inference, and post-processing.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 696

– multipart/form-data request
curl -X POST \
 <modelarts-inference-endpoint> \
 -F image1=@cat.jpg \
 -F images2=@horse.jpg

The input data is as follows:
[
 {
 "image1":{
 "cat.jpg":"<cat.jpg file io>"
 }
 },
 {
 "image2":{
 "horse.jpg":"<horse.jpg file io>"
 }
 }
]

– application/json request
 curl -X POST \
 <modelarts-inference-endpoint> \
 -d '{
 "images":"base64 encode image"
 }'

The input data is python dict.
 {
 "images":"base64 encode image"
 }

TensorFlow Inference Script Example

The following is an example of TensorFlow MnistService. For more TensorFlow
inference code examples, see Tensorflow and Tensorflow2.1.
● Inference code

from PIL import Image
import numpy as np
from model_service.tfserving_model_service import TfServingBaseService

class MnistService(TfServingBaseService):

 def _preprocess(self, data):
 preprocessed_data = {}

 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((1, 784))
 preprocessed_data[k] = image1

 return preprocessed_data

 def _postprocess(self, data):

 infer_output = {}

 for output_name, result in data.items():

 infer_output["mnist_result"] = result[0].index(max(result[0]))

 return infer_output

● Request
curl -X POST \ Real-time service address \ -F images=@test.jpg

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 697

● Response
{"mnist_result": 7}

The preceding sample code resizes images imported to the user's form to adapt to
the model input shape. The 32×32 image is read from the Pillow library and
resized to 1×784 to match the model input. In subsequent processing, convert the
model output into a list for the RESTful API to display.

Inference Script Example of Custom Inference Logic
Customize a dependency package in the configuration file by referring to Example
of the Model Configuration File Using a Custom Dependency Package. Then,
use the following code example to load the model in saved_model format for
inference.

NO TE

Python logging used by inference base images allows the display of only warning logs. To
query INFO logs, set the log level to INFO in the code.

-*- coding: utf-8 -*-
import json
import os
import threading
import numpy as np
import tensorflow as tf
from PIL import Image
from model_service.tfserving_model_service import TfServingBaseService
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class MnistService(TfServingBaseService):
 def __init__(self, model_name, model_path):
 self.model_name = model_name
 self.model_path = model_path
 self.model_inputs = {}
 self.model_outputs = {}

 # The label file can be loaded here and used in the post-processing function.
 # Directories for storing the label.txt file on OBS and in the model package

 # with open(os.path.join(self.model_path, 'label.txt')) as f:
 # self.label = json.load(f)

 # Load the model in saved_model format in non-blocking mode to prevent blocking timeout.
 thread = threading.Thread(target=self.get_tf_sess)
 thread.start()

 def get_tf_sess(self):
 # Load the model in saved_model format.
 # The session will be reused. Do not use the with statement.
 sess = tf.Session(graph=tf.Graph())
 meta_graph_def = tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING],
self.model_path)
 signature_defs = meta_graph_def.signature_def
 self.sess = sess
 signature = []

 # only one signature allowed
 for signature_def in signature_defs:
 signature.append(signature_def)
 if len(signature) == 1:
 model_signature = signature[0]
 else:
 logger.warning("signatures more than one, use serving_default signature")

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 698

 model_signature = tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY

 logger.info("model signature: %s", model_signature)

 for signature_name in meta_graph_def.signature_def[model_signature].inputs:
 tensorinfo = meta_graph_def.signature_def[model_signature].inputs[signature_name]
 name = tensorinfo.name
 op = self.sess.graph.get_tensor_by_name(name)
 self.model_inputs[signature_name] = op

 logger.info("model inputs: %s", self.model_inputs)

 for signature_name in meta_graph_def.signature_def[model_signature].outputs:
 tensorinfo = meta_graph_def.signature_def[model_signature].outputs[signature_name]
 name = tensorinfo.name
 op = self.sess.graph.get_tensor_by_name(name)
 self.model_outputs[signature_name] = op

 logger.info("model outputs: %s", self.model_outputs)

 def _preprocess(self, data):
 # Two HTTPS request formats
 # 1. Request in form-data format: data = {"Request key value":{"File name":<File io>}}
 # 2. Request in JSON format: data = json.loads("JSON body passed in the API")
 preprocessed_data = {}

 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((1, 28, 28))
 preprocessed_data[k] = image1

 return preprocessed_data

 def _inference(self, data):
 feed_dict = {}
 for k, v in data.items():
 if k not in self.model_inputs.keys():
 logger.error("input key %s is not in model inputs %s", k, list(self.model_inputs.keys()))
 raise Exception("input key %s is not in model inputs %s" % (k, list(self.model_inputs.keys())))
 feed_dict[self.model_inputs[k]] = v

 result = self.sess.run(self.model_outputs, feed_dict=feed_dict)
 logger.info('predict result : ' + str(result))
 return result

 def _postprocess(self, data):
 infer_output = {"mnist_result": []}
 for output_name, results in data.items():

 for result in results:
 infer_output["mnist_result"].append(np.argmax(result))

 return infer_output

 def __del__(self):
 self.sess.close()

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 699

NO TE

To load multiple models or models that are not supported by ModelArts, specify the
loading path using the __init__ method. Example code:
-*- coding: utf-8 -*-
import os
from model_service.tfserving_model_service import TfServingBaseService

class MnistService(TfServingBaseService):
 def __init__(self, model_name, model_path):
 # Obtain the path to the model folder.
 root = os.path.dirname(os.path.abspath(__file__))
 # test.onnx is the name of the model file to be loaded and must be stored in the model folder.
 self.model_path = os.path.join(root, test.onnx)

 # Load multiple models, for example, test2.onnx.
 # self.model_path2 = os.path.join(root, test2.onnx)

9.3.4 Specifications for Using a Custom Engine to Create a
Model

When using a custom engine to create a model, you can select your image stored
in SWR as the engine and specify a file directory in OBS as the model package. In
this way, bring-your-own images can be used to meet your dedicated
requirements.

Before deploying such a model as a service, ModelArts downloads the SWR image
to the cluster and starts the image as a container as the user whose UID is 1000
and GID is 100. Then, ModelArts downloads the OBS file to the /home/mind/
model directory in the container and runs the boot command preset in the SWR
image. ModelArts registers an inference API with API Gateway for you to access
the service.

Specifications for Using a Custom Engine to Create a Model

To use a custom engine to create a model, ensure the SWR image, OBS model
package, and file size comply with the following requirements:

● SWR image specifications

– A common user named ma-user in group ma-group must be built in the
SWR image. Additionally, the UID and GID of the user must be 1000 and
100, respectively. The following is the dockerfile command for the built-in
user:
groupadd -g 100 ma-group && useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-
user

– Specify a command for starting the image. In the dockerfile, specify cmd.
The following shows an example:
CMD sh /home/mind/run.sh

Customize the boot file run.sh. The following is an example:
#!/bin/bash

User-defined script content
...

run.sh calls app.py to start the server. For details about app.py, see "HTTPS Example".
python app.py

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 700

NO TE

You can also customize the boot command for starting an image. Enter the
customized command during model creation.

– The provided service can use the HTTPS/HTTP protocol and listening
container port. Set the protocol and port number based on the inference
API defined by the model. For details about the HTTPS protocol, see
HTTPS Example.

– (Optional) On port provided by the service for external access, enable
health check with URL /health. (The health check URL must be /health.)

● OBS model package specifications
The name of the model package must be model. For details about the model
package specifications, see Model Package Specifications.

● File size specifications
When a public resource pool is used, the total size of the downloaded SWR
image (not the compressed image displayed on the SWR page) and the OBS
model package cannot exceed 30 GB.

HTTPS Example
Use Flask to start HTTPS. The following is an example of the web server code:

from flask import Flask, request
import json

app = Flask(__name__)

@app.route('/greet', methods=['POST'])
def say_hello_func():
 print("----------- in hello func ----------")
 data = json.loads(request.get_data(as_text=True))
 print(data)
 username = data['name']
 rsp_msg = 'Hello, {}!'.format(username)
 return json.dumps({"response":rsp_msg}, indent=4)

@app.route('/goodbye', methods=['GET'])
def say_goodbye_func():
 print("----------- in goodbye func ----------")
 return '\nGoodbye!\n'

@app.route('/', methods=['POST'])
def default_func():
 print("----------- in default func ----------")
 data = json.loads(request.get_data(as_text=True))
 return '\n called default func !\n {} \n'.format(str(data))

@app.route('/health', methods=['GET'])
def healthy():
 return "{\"status\": \"OK\"}"

host must be "0.0.0.0", port must be 8080
if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8080, ssl_context='adhoc')

Debugging on a Local Computer
Perform the following operations on a local computer with Docker installed to
check whether a custom engine complies with specifications:

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 701

1. Download the custom image, for example, custom_engine:v1 to the local
computer.

2. Copy the model package folder model to the local computer.
3. Run the following command in the same directory as the model package

folder to start the service:
docker run --user 1000:100 -p 8080:8080 -v model:/home/mind/model custom_engine:v1

NO TE

This command is used for simulation only because the directory mounted to -v is
assigned the root permission. In the cloud environment, after the model file is
downloaded from OBS to /home/mind/model, the file owner will be changed to ma-
user.

4. Start another terminal on the local computer and run the following command
to obtain the expected inference result:
curl https://127.0.0.1:8080/${Request path to the inference service}

Deployment Example

The following section describes how to use a custom engine to create a model.

1. Create a model and view model details.
Log in to the ModelArts console, choose Model Management from the
navigation pane and click Create Model. Configure the following parameters:
– Meta Model Source: Select OBS.
– Meta Model: Select a model package from OBS.
– AI Engine: Select Custom.
– Engine Package: Select a container image from SWR.

Retain default settings for other parameters.
Click Create now. Wait until the model status changes to Normal.

Figure 9-6 Creating a model

Click the model name to access its details page.
2. Deploy the AI application as a service and view service details.

On the model details page, choose Deploy > Real-Time Services in the upper
right corner. On the Deploy page, select a proper instance flavor (for
example, CPU: 2 vCPUs 8 GB), retain default settings for other parameters,
and click Next. When the service status changes to Running, the service has
been deployed.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 702

https://docs.docker.com/engine/reference/commandline/run/

Click the service name. On the displayed page, view the service details. Click
the Logs tab to view the service logs.

Figure 9-7 Service logs

3. Use the service for prediction.
On the service details page, click the Prediction tab to use the service for
prediction.

Figure 9-8 Service prediction

9.3.5 Examples of Custom Scripts
To create a model in ModelArts by importing a model file from OBS, the
model file package needs to comply with the ModelArts model package
specifications. Additionally, the inference code and configuration file must also
meet the requirements set by ModelArts.

This section provides custom script examples (including inference code examples)
for common AI engines. For details about how to write model inference code, see
Specifications for Writing a Model Inference Code File.

Tensorflow
There are two types of TensorFlow APIs, Keras and tf. They use different code for
training and saving models, but the same code for inference.

Training a Model (Keras API)

from keras.models import Sequential
model = Sequential()
from keras.layers import Dense
import tensorflow as tf

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 703

Import a training dataset.
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

print(x_train.shape)

from keras.layers import Dense
from keras.models import Sequential
import keras
from keras.layers import Dense, Activation, Flatten, Dropout

Define a model network.
model = Sequential()
model.add(Flatten(input_shape=(28,28)))
model.add(Dense(units=5120,activation='relu'))
model.add(Dropout(0.2))

model.add(Dense(units=10, activation='softmax'))

Define an optimizer and loss functions.
model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.summary()
Train the model.
model.fit(x_train, y_train, epochs=2)
Evaluate the model.
model.evaluate(x_test, y_test)

Saving a Model (Keras API)

from keras import backend as K

K.get_session().run(tf.global_variables_initializer())

Define the inputs and outputs of the prediction API.
The keys of the inputs and outputs dictionaries are used as the index keys for the input and output
tensors of the model.
 # The input and output definitions of the model must match the custom inference script.
predict_signature = tf.saved_model.signature_def_utils.predict_signature_def(
 inputs={"images" : model.input},
 outputs={"scores" : model.output}
)

Define a save path.
builder = tf.saved_model.builder.SavedModelBuilder('./mnist_keras/')

builder.add_meta_graph_and_variables(

 sess = K.get_session(),
 # The tf.saved_model.tag_constants.SERVING tag needs to be defined for inference and deployment.
 tags=[tf.saved_model.tag_constants.SERVING],
 """
 signature_def_map: Only one items can exist, or the corresponding key needs to be defined as follows:
 tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY
 """
 signature_def_map={
 tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
 predict_signature
 }

)
builder.save()

Training a Model (tf API)

from __future__ import print_function

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 704

import gzip
import os
import urllib

import numpy
import tensorflow as tf
from six.moves import urllib

Training data is obtained from the Yann LeCun official website http://yann.lecun.com/exdb/mnist/.
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000

def maybe_download(filename, work_directory):
 """Download the data from Yann's website, unless it's already here."""
 if not os.path.exists(work_directory):
 os.mkdir(work_directory)
 filepath = os.path.join(work_directory, filename)
 if not os.path.exists(filepath):
 filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
 statinfo = os.stat(filepath)
 print('Successfully downloaded %s %d bytes.' % (filename, statinfo.st_size))
 return filepath

def _read32(bytestream):
 dt = numpy.dtype(numpy.uint32).newbyteorder('>')
 return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]

def extract_images(filename):
 """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
 print('Extracting %s' % filename)
 with gzip.open(filename) as bytestream:
 magic = _read32(bytestream)
 if magic != 2051:
 raise ValueError(
 'Invalid magic number %d in MNIST image file: %s' %
 (magic, filename))
 num_images = _read32(bytestream)
 rows = _read32(bytestream)
 cols = _read32(bytestream)
 buf = bytestream.read(rows * cols * num_images)
 data = numpy.frombuffer(buf, dtype=numpy.uint8)
 data = data.reshape(num_images, rows, cols, 1)
 return data

def dense_to_one_hot(labels_dense, num_classes=10):
 """Convert class labels from scalars to one-hot vectors."""
 num_labels = labels_dense.shape[0]
 index_offset = numpy.arange(num_labels) * num_classes
 labels_one_hot = numpy.zeros((num_labels, num_classes))
 labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
 return labels_one_hot

def extract_labels(filename, one_hot=False):
 """Extract the labels into a 1D uint8 numpy array [index]."""
 print('Extracting %s' % filename)
 with gzip.open(filename) as bytestream:
 magic = _read32(bytestream)
 if magic != 2049:
 raise ValueError(
 'Invalid magic number %d in MNIST label file: %s' %

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 705

 (magic, filename))
 num_items = _read32(bytestream)
 buf = bytestream.read(num_items)
 labels = numpy.frombuffer(buf, dtype=numpy.uint8)
 if one_hot:
 return dense_to_one_hot(labels)
 return labels

class DataSet(object):
 """Class encompassing test, validation and training MNIST data set."""

 def __init__(self, images, labels, fake_data=False, one_hot=False):
 """Construct a DataSet. one_hot arg is used only if fake_data is true."""

 if fake_data:
 self._num_examples = 10000
 self.one_hot = one_hot
 else:
 assert images.shape[0] == labels.shape[0], (
 'images.shape: %s labels.shape: %s' % (images.shape,
 labels.shape))
 self._num_examples = images.shape[0]

 # Convert shape from [num examples, rows, columns, depth]
 # to [num examples, rows*columns] (assuming depth == 1)
 assert images.shape[3] == 1
 images = images.reshape(images.shape[0],
 images.shape[1] * images.shape[2])
 # Convert from [0, 255] -> [0.0, 1.0].
 images = images.astype(numpy.float32)
 images = numpy.multiply(images, 1.0 / 255.0)
 self._images = images
 self._labels = labels
 self._epochs_completed = 0
 self._index_in_epoch = 0

 @property
 def images(self):
 return self._images

 @property
 def labels(self):
 return self._labels

 @property
 def num_examples(self):
 return self._num_examples

 @property
 def epochs_completed(self):
 return self._epochs_completed

 def next_batch(self, batch_size, fake_data=False):
 """Return the next `batch_size` examples from this data set."""
 if fake_data:
 fake_image = [1] * 784
 if self.one_hot:
 fake_label = [1] + [0] * 9
 else:
 fake_label = 0
 return [fake_image for _ in range(batch_size)], [
 fake_label for _ in range(batch_size)
]
 start = self._index_in_epoch
 self._index_in_epoch += batch_size
 if self._index_in_epoch > self._num_examples:
 # Finished epoch
 self._epochs_completed += 1

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 706

 # Shuffle the data
 perm = numpy.arange(self._num_examples)
 numpy.random.shuffle(perm)
 self._images = self._images[perm]
 self._labels = self._labels[perm]
 # Start next epoch
 start = 0
 self._index_in_epoch = batch_size
 assert batch_size <= self._num_examples
 end = self._index_in_epoch
 return self._images[start:end], self._labels[start:end]

def read_data_sets(train_dir, fake_data=False, one_hot=False):
 """Return training, validation and testing data sets."""

 class DataSets(object):
 pass

 data_sets = DataSets()

 if fake_data:
 data_sets.train = DataSet([], [], fake_data=True, one_hot=one_hot)
 data_sets.validation = DataSet([], [], fake_data=True, one_hot=one_hot)
 data_sets.test = DataSet([], [], fake_data=True, one_hot=one_hot)
 return data_sets

 local_file = maybe_download(TRAIN_IMAGES, train_dir)
 train_images = extract_images(local_file)

 local_file = maybe_download(TRAIN_LABELS, train_dir)
 train_labels = extract_labels(local_file, one_hot=one_hot)

 local_file = maybe_download(TEST_IMAGES, train_dir)
 test_images = extract_images(local_file)

 local_file = maybe_download(TEST_LABELS, train_dir)
 test_labels = extract_labels(local_file, one_hot=one_hot)

 validation_images = train_images[:VALIDATION_SIZE]
 validation_labels = train_labels[:VALIDATION_SIZE]
 train_images = train_images[VALIDATION_SIZE:]
 train_labels = train_labels[VALIDATION_SIZE:]

 data_sets.train = DataSet(train_images, train_labels)
 data_sets.validation = DataSet(validation_images, validation_labels)
 data_sets.test = DataSet(test_images, test_labels)
 return data_sets

training_iteration = 1000

modelarts_example_path = './modelarts-mnist-train-save-deploy-example'

export_path = modelarts_example_path + '/model/'
data_path = './'

print('Training model...')
mnist = read_data_sets(data_path, one_hot=True)
sess = tf.InteractiveSession()
serialized_tf_example = tf.placeholder(tf.string, name='tf_example')
feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32), }
tf_example = tf.parse_example(serialized_tf_example, feature_configs)
x = tf.identity(tf_example['x'], name='x') # use tf.identity() to assign name
y_ = tf.placeholder('float', shape=[None, 10])
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.global_variables_initializer())
y = tf.nn.softmax(tf.matmul(x, w) + b, name='y')
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 707

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
values, indices = tf.nn.top_k(y, 10)
table = tf.contrib.lookup.index_to_string_table_from_tensor(
 tf.constant([str(i) for i in range(10)]))
prediction_classes = table.lookup(tf.to_int64(indices))
for _ in range(training_iteration):
 batch = mnist.train.next_batch(50)
 train_step.run(feed_dict={x: batch[0], y_: batch[1]})
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
print('training accuracy %g' % sess.run(
 accuracy, feed_dict={
 x: mnist.test.images,
 y_: mnist.test.labels
 }))
print('Done training!')

Saving a Model (tf API)
Export the model.
The model needs to be saved using the saved_model API.
print('Exporting trained model to', export_path)
builder = tf.saved_model.builder.SavedModelBuilder(export_path)

tensor_info_x = tf.saved_model.utils.build_tensor_info(x)
tensor_info_y = tf.saved_model.utils.build_tensor_info(y)

Define the inputs and outputs of the prediction API.
The keys of the inputs and outputs dictionaries are used as the index keys for the input and output
tensors of the model.
 # The input and output definitions of the model must match the custom inference script.
prediction_signature = (
 tf.saved_model.signature_def_utils.build_signature_def(
 inputs={'images': tensor_info_x},
 outputs={'scores': tensor_info_y},
 method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))

legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder.add_meta_graph_and_variables(
 # Set tag to serve/tf.saved_model.tag_constants.SERVING.
 sess, [tf.saved_model.tag_constants.SERVING],
 signature_def_map={
 'predict_images':
 prediction_signature,
 },
 legacy_init_op=legacy_init_op)

builder.save()

print('Done exporting!')

Inference Code (Keras and tf APIs)

In the model inference code file customize_service.py, add a child model class
which inherits properties from its parent model class. For details about the parent
class and import statement of each model type, see Table 9-16. This example calls
the parent class inference request method _inference(self, data). The method
does not need to be overridden in the following code.
from PIL import Image
import numpy as np
from model_service.tfserving_model_service import TfServingBaseService

class MnistService(TfServingBaseService):

 # Match the model input with the user's HTTPS API input during preprocessing.
 # The model input corresponding to the preceding training part is {"images":<array>}.
 def _preprocess(self, data):

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 708

 preprocessed_data = {}
 images = []
 # Iterate the input data.
 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((1,784))
 images.append(image1)
 # Return the numpy array.
 images = np.array(images,dtype=np.float32)
 # Perform batch processing on multiple input samples and ensure that the shape is the same as that
inputted during training.
 images.resize((len(data), 784))
 preprocessed_data['images'] = images
 return preprocessed_data

 # The output corresponding to model saving in the preceding training part is {"scores":<array>}.
 # Postprocess the HTTPS output.
 def _postprocess(self, data):
 infer_output = {"mnist_result": []}
 # Iterate the model output.
 for output_name, results in data.items():
 for result in results:
 infer_output["mnist_result"].append(result.index(max(result)))
 return infer_output

Tensorflow2.1
Training and Saving a Model

from __future__ import absolute_import, division, print_function, unicode_literals

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dense(256, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 # Name the output layer output, which is used to obtain the result during model inference.
 tf.keras.layers.Dense(10, activation='softmax', name="output")
])

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=10)

tf.keras.models.save_model(model, "./mnist")

Inference Code

In the model inference code file customize_service.py, add a child model class
which inherits properties from its parent model class. For details about the parent
class and import statement of each model type, see Table 9-16.

import logging
import threading

import numpy as np

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 709

import tensorflow as tf
from PIL import Image

from model_service.tfserving_model_service import TfServingBaseService

logger = logging.getLogger()
logger.setLevel(logging.INFO)

class MnistService(TfServingBaseService):

 def __init__(self, model_name, model_path):
 self.model_name = model_name
 self.model_path = model_path
 self.model = None
 self.predict = None

 # The label file can be loaded here and used in the post-processing function.
 # Directories for storing the label.txt file on OBS and in the model package

 # with open(os.path.join(self.model_path, 'label.txt')) as f:
 # self.label = json.load(f)
 # Load the model in saved_model format in non-blocking mode to prevent blocking timeout.
 thread = threading.Thread(target=self.load_model)
 thread.start()

 def load_model(self):
 # Load the model in saved_model format.
 self.model = tf.saved_model.load(self.model_path)

 signature_defs = self.model.signatures.keys()

 signature = []
 # only one signature allowed
 for signature_def in signature_defs:
 signature.append(signature_def)

 if len(signature) == 1:
 model_signature = signature[0]
 else:
 logging.warning("signatures more than one, use serving_default signature from %s", signature)
 model_signature = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY

 self.predict = self.model.signatures[model_signature]

 def _preprocess(self, data):
 images = []
 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((28, 28, 1))
 images.append(image1)

 images = tf.convert_to_tensor(images, dtype=tf.dtypes.float32)
 preprocessed_data = images

 return preprocessed_data

 def _inference(self, data):

 return self.predict(data)

 def _postprocess(self, data):

 return {
 "result": int(data["output"].numpy()[0].argmax())
 }

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 710

Pytorch

Training a Model

from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

Define a network structure.
class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 # The second dimension of the input must be 784.
 self.hidden1 = nn.Linear(784, 5120, bias=False)
 self.output = nn.Linear(5120, 10, bias=False)

 def forward(self, x):
 x = x.view(x.size()[0], -1)
 x = F.relu((self.hidden1(x)))
 x = F.dropout(x, 0.2)
 x = self.output(x)
 return F.log_softmax(x)

def train(model, device, train_loader, optimizer, epoch):
 model.train()
 for batch_idx, (data, target) in enumerate(train_loader):
 data, target = data.to(device), target.to(device)
 optimizer.zero_grad()
 output = model(data)
 loss = F.cross_entropy(output, target)
 loss.backward()
 optimizer.step()
 if batch_idx % 10 == 0:
 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
 epoch, batch_idx * len(data), len(train_loader.dataset),
 100. * batch_idx / len(train_loader), loss.item()))

def test(model, device, test_loader):
 model.eval()
 test_loss = 0
 correct = 0
 with torch.no_grad():
 for data, target in test_loader:
 data, target = data.to(device), target.to(device)
 output = model(data)
 test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
 pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
 correct += pred.eq(target.view_as(pred)).sum().item()

 test_loss /= len(test_loader.dataset)

 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
 test_loss, correct, len(test_loader.dataset),
 100. * correct / len(test_loader.dataset)))

device = torch.device("cpu")

batch_size=64

kwargs={}

train_loader = torch.utils.data.DataLoader(
 datasets.MNIST('.', train=True, download=True,
 transform=transforms.Compose([
 transforms.ToTensor()

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 711

])),
 batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
 datasets.MNIST('.', train=False, transform=transforms.Compose([
 transforms.ToTensor()
])),
 batch_size=1000, shuffle=True, **kwargs)

model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
optimizer = optim.Adam(model.parameters())

for epoch in range(1, 2 + 1):
 train(model, device, train_loader, optimizer, epoch)
 test(model, device, test_loader)

Saving a Model

The model must be saved using state_dict and can be deployed remotely.
torch.save(model.state_dict(), "pytorch_mnist/mnist_mlp.pt")

Inference Code

In the model inference code file customize_service.py, add a child model class
which inherits properties from its parent model class. For details about the parent
class and import statement of each model type, see Table 9-16.

from PIL import Image
import log
from model_service.pytorch_model_service import PTServingBaseService
import torch.nn.functional as F

import torch.nn as nn
import torch
import json

import numpy as np

logger = log.getLogger(__name__)

import torchvision.transforms as transforms

Define model preprocessing.
infer_transformation = transforms.Compose([
 transforms.Resize((28,28)),
 # Convert data to tensor.
 transforms.ToTensor()
])

import os

class PTVisionService(PTServingBaseService):

 def __init__(self, model_name, model_path):
 # Call the constructor of the parent class.
 super(PTVisionService, self).__init__(model_name, model_path)
 # Call the custom function to load the model.
 self.model = Mnist(model_path)
 # Load labels.
 self.label = [0,1,2,3,4,5,6,7,8,9]
 # Labels can also be loaded by label file.
 # Reads the label.json file in the model directory.
 dir_path = os.path.dirname(os.path.realpath(self.model_path))
 with open(os.path.join(dir_path, 'label.json')) as f:
 self.label = json.load(f)

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 712

 def _preprocess(self, data):

 preprocessed_data = {}
 for k, v in data.items():
 input_batch = []
 for file_name, file_content in v.items():
 with Image.open(file_content) as image1:
 # Gray processing
 image1 = image1.convert("L")
 if torch.cuda.is_available():
 input_batch.append(infer_transformation(image1).cuda())
 else:
 input_batch.append(infer_transformation(image1))
 input_batch_var = torch.autograd.Variable(torch.stack(input_batch, dim=0), volatile=True)
 print(input_batch_var.shape)
 preprocessed_data[k] = input_batch_var

 return preprocessed_data

 def _postprocess(self, data):
 results = []
 for k, v in data.items():
 result = torch.argmax(v[0])
 result = {k: self.label[result]}
 results.append(result)
 return results

 def _inference(self, data):

 result = {}
 for k, v in data.items():
 result[k] = self.model(v)

 return result

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.hidden1 = nn.Linear(784, 5120, bias=False)
 self.output = nn.Linear(5120, 10, bias=False)

 def forward(self, x):
 x = x.view(x.size()[0], -1)
 x = F.relu((self.hidden1(x)))
 x = F.dropout(x, 0.2)
 x = self.output(x)
 return F.log_softmax(x)

def Mnist(model_path, **kwargs):
 # Generate a network.
 model = Net()
 # Load the model.
 if torch.cuda.is_available():
 device = torch.device('cuda')
 model.load_state_dict(torch.load(model_path, map_location="cuda:0"))
 else:
 device = torch.device('cpu')
 model.load_state_dict(torch.load(model_path, map_location=device))
 # CPU or GPU mapping
 model.to(device)
 # Set the model to evaluation mode.
 model.eval()

 return model

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 713

9.4 Deploying a Model as Real-Time Inference Jobs

9.4.1 Deploying and Using Real-Time Inference
After creating a model, you can deploy it as a real-time service. If a real-time
service is in the Running status, it has been deployed. This service provides a
standard, callable RESTful API. When accessing a real-time service, you can choose
the authentication method, access channel, and transmission protocol that best
suit your needs. These three elements make up your access requests and can be
mixed and matched without any interference. For example, you can use different
authentication methods for different access channels and transmission protocols.

Figure 9-9 Authentication method, access channel, and transmission protocol

ModelArts supports the following authentication methods for accessing real-time
services (HTTPS requests are used as examples):

● Token-based authentication: The validity period of a token is 24 hours.
When using a token for authentication, cache it to prevent frequent calls.

● AK/SK-based authentication: AK/SK is used to sign requests and the
signature is then added to the request for authentication. AK/SK-based
authentication supports API requests with a body not larger than 12 MB. For
API requests with a larger body, token-based authentication is recommended.

● App authentication: Add a parameter to the request header to complete the
authentication. The authentication is simple and permanently valid.

ModelArts allows you to call APIs to access real-time services in the following
ways (HTTPS requests are used as examples):

● Accessing a Real-Time Service Through a Public Network: By default,
ModelArts inference uses the public network to access real-time services. A
standard, callable RESTful API is provided after deployment of a real-time
service.

● Accessing a Real-Time Service Through a VPC High-Speed Channel: When
using VPC peering for high-speed access, your service requests are sent

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 714

directly to instances via VPC peering, bypassing the inference platform. This
results in faster service access.

Real-time service APIs are accessed using HTTPS by default. Additionally, the
following transmission protocols are also supported:

● Accessing a Real-Time Service Using WebSocket: WebSocket simplifies data
exchange between the client and server and allows the server to proactively
push data to the client. In the WebSocket API, if the initial handshake
between the client and the server is successful, a persistent connection will be
established between them and data can be transferred bidirectionally.

● Accessing a Real-Time Service Using Server-Sent Events: Server-Sent Events
(SSE) primarily facilitates unidirectional real-time communication from the
server to the client, such as streaming ChatGPT responses. In contrast to
WebSockets, which provide bidirectional real-time communication, SSE is
designed to be more lightweight and simpler to implement.

9.4.2 Deploying a Model as a Real-Time Service
After a model is ready, deploy it as a real-time service. Then, you can call the
service for prediction.

Constraints
A user can create up to 20 real-time services.

Prerequisites
● A ModelArts model in the Normal state is available.
● The account is not in arrears to ensure available resources for service running.
● To deploy a service, the image owner must have the te_admin permission.

Otherwise, the error message "failed to set image shared, please check the
agency permission" will be displayed during service deployment.

Procedure
1. Log in to the ModelArts console. In the navigation pane, choose Model

Deployment > Real-Time Services.
2. In the real-time service list, click Deploy in the upper left corner.
3. Configure parameters.

a. Configure basic parameters. For details, see Table 9-18.

Table 9-18 Basic parameters

Parameter Description

Name Name of a real-time service.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 715

Parameter Description

Auto Stop Time for your service to automatically stop running.
This helps you avoid unnecessary billing. If you disable
this feature, your real-time service will continue
running and you will be billed accordingly. By default,
this feature is enabled and set to stop the service 1
hour after it starts.
The options are 1 hour, 2 hours, 4 hours, 6 hours, and
Custom. If you select Custom, you can enter any
integer from 1 to 24.

Description Brief description for a real-time service.

b. Enter key information including the resource pool and model

configurations. For details, see Table 9-19.

Table 9-19 Parameters

Param
eter

Sub-
Parame
ter

Description

Resour
ce Pool

Public
Resourc
e Pool

CPU/GPU resource pools are available for you to
select. The pricing for resource pools varies
depending on their flavors. For details, see Product
Pricing Details. Public resource pools only support
the pay-per-use billing mode.

Dedicat
ed
Resourc
e Pool

Select a dedicated resource pool flavor. The
physical pools with logical subpools created are not
supported temporarily.

Model
and
Config
uration

Model
Source

Choose My Model or My Subscriptions as needed.

Model
and
Version

Select the model and version that are in the
Normal state.

Traffic
Ratio
(%)

Data proportion of the current AI application
version. Service calling requests are allocated to
the current version based on this proportion.
If you deploy only one version of a model, set this
parameter to 100. If you select multiple versions
for gray release, ensure that the sum of the traffic
ratios of these versions is 100%.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 716

https://www.huaweicloud.com/intl/en-us/pricing/index.html?tab=detail#/ecs
https://www.huaweicloud.com/intl/en-us/pricing/index.html?tab=detail#/ecs

Param
eter

Sub-
Parame
ter

Description

Instance
Flavor

Select available flavors based on the list displayed
on the console. The flavors in gray cannot be used
in the current environment.
If no public resource pool flavors are available, In
this case, use a dedicated resource pool.
NOTE

When deploying the service with the selected flavor, there
will be necessary system consumptions. This means that
the actual resources required will be greater than the
flavor.

Instance
s

Number of instances for the current model version.
If you set the number of instances to 1, the
standalone computing mode is used. If you set the
number of instances to a value greater than 1, the
distributed computing mode is used. Select a
computing mode based on your actual needs.

Environ
ment
Variable

Set environment variables and inject them to the
pod. To ensure data security, do not enter sensitive
information, such as plaintext passwords, in
environment variables.

Timeout Timeout of a single model, including both the
deployment and startup time. The default value is
20 minutes. The value must range from 3 to 120.

Add
Model
and
Configu
ration

If the selected model has multiple versions, you
can add multiple versions and configure a traffic
ratio. You can use gray release to smoothly
upgrade the model version.
NOTE

Free compute specifications do not support gray release
of multiple versions.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 717

Param
eter

Sub-
Parame
ter

Description

Mount
Storage

This parameter is displayed when the resource pool
is a dedicated resource pool. This feature will
mount a storage volume to compute nodes
(instances) as a local directory when the service is
running. This is a good option to consider when
dealing with large input data or models.
SFS Turbo
● File System Name: Select the target SFS Turbo

file system. A cross-region SFS Turbo file system
cannot be selected.

● Mount Path: Enter the mount path of the
container, for example, /sfs-turbo-mount/.
Select a new directory. If you select an existing
directory, any existing files within it will be
replaced.
NOTE

● A file system can be mounted only once and to
only one path. Each mount path must be unique.
A maximum of 8 disks can be mounted to a
training job.

● Storage mounting is allowed only for services
deployed in a dedicated resource pool which has
interconnected with a VPC or associated with SFS
Turbo.
- To interconnect a VPC is to interconnect the VPC
where SFS Turbo belongs to a dedicated resource
pool network. For details, see Interconnect with a
VPC.
- You can associate HPC SFS Turbo file systems
with dedicated resource pool networks.

● If you need to mount multiple file systems, do not
use same or similar paths, for example, /obs-
mount/ and /obs-mount/tmp/.

● Once you have chosen SFS Turbo, avoid deleting
the interconnected VPC or disassociating SFS
Turbo. Otherwise, mounting will not be possible.
When you mount the backend OBS storage on the
SFS Turbo page, make sure to set the client's
umask permission to 777 for normal use.

Traffic
Limit

N/A Maximum number of times a service can be
accessed within a second. You can configure this
parameter as needed.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 718

Param
eter

Sub-
Parame
ter

Description

WebSo
cket

N/A Whether to deploy a real-time service as a
WebSocket service. For details about WebSocket
real-time services, see Full-Process Development
of WebSocket Real-Time Services.
NOTE

● This feature is supported only if the model is
WebSocket-compliant and comes from a container
image.

● After this feature is enabled, Traffic Limit and Data
Collection cannot be set.

● This parameter cannot be changed after the service is
deployed.

Applic
ation
Authen
ticatio
n

Applicat
ion

This feature is disabled by default. To enable this
feature, see Accessing a Real-Time Service
Through App Authentication for details and
configure parameters as required.

c. (Optional) Configure advanced settings.

Table 9-20 Advanced settings

Parameter Description

Auto Restart After this function is enabled, the system
automatically redeploys the real-time service when
detecting that the real-time service is abnormal.
For details, see Configuring Auto Restart upon a
Real-Time Service Fault.

Tags ModelArts can work with Tag Management Service
(TMS). When creating resource-consuming tasks in
ModelArts, for example, training jobs, configure
tags for these tasks so that ModelArts can use tags
to manage resources by group.
For details about how to use tags, see Using TMS
Tags to Manage Resources by Group.
NOTE

You can select a predefined TMS tag from the tag drop-
down list or customize a tag. Predefined tags are
available to all service resources that support tags.
Custom tags are available only to the service resources of
the user who has created the tags.

4. After confirming the entered information, deploy the service as prompted.

Deploying a service generally requires a period of time, which may be several
minutes or tens of minutes depending on the amount of your data and
resources.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 719

https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_04_0234.html
https://support.huaweicloud.com/intl/en-us/bestpractice-modelarts/modelarts_04_0234.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/resmgmt-modelarts_0063.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/resmgmt-modelarts_0063.html

NO TE

Once a real-time service is deployed, it will start immediately.

You can go to the real-time service list to check if the deployment is
complete. Once the service status changes from Deploying to Running, the
service is deployed.

Testing Real-Time Service Prediction
After a model is deployed as a real-time service, you can debug code or add files
for testing in the Prediction tab. You can test the service in two ways, depending
on the input request defined by the model – either by using a JSON text or a file.

● JSON text prediction: If the input of the deployed model is JSON text, you
can enter JSON code in the Prediction tab for testing.

● File Prediction: If your model uses files as input, you can add images, audios,
or videos into the Prediction tab to test the service.

NO TE

● The size of an input image must be less than 8 MB.
● The maximum size of a request body for JSON text prediction is 8 MB.
● Due to the limitation of API Gateway, the duration of a single prediction cannot exceed

40s.
● The following image types are supported: png, psd, jpg, jpeg, bmp, gif, webp, psd, svg,

and tiff.
● If you use Ascend flavors for service deployment, you cannot predict transparent .png

images because Ascend only supports RGB-3 images.
● This feature is used for commissioning. Use API calling for actual production. You can

select Accessing a Real-Time Service Through Token-based Authentication,
Accessing a Real-Time Service Through AK/SK-based Authentication, or Accessing a
Real-Time Service Through App Authentication based on the authentication method.

After a service is deployed, obtain the input parameters of the service in the
Usage Guides page of the service details page.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 720

Figure 9-10 Usage Guides

The input parameters displayed in the Usage Guides tab depend on the model
source that you select.

● If your meta model comes from ExeML or a built-in algorithm, the input and
output parameters are defined by ModelArts. For details, see the Usage
Guides tab. In the Prediction tab, enter the corresponding JSON text or file
for service testing.

● If you use a custom meta model and your own inference code and
configuration file (see Specifications for Writing the Model Configuration
File), the Usage Guides tab will only display your configuration file. The
following figure shows the mapping between the input parameters in the
Usage Guides tab and the configuration file.

Figure 9-11 Mapping between the configuration file and Usage Guides

The prediction methods for different input requests are as follows:

● JSON Text Prediction

a. Log in to the ModelArts console and choose Model Deployment > Real-
Time Services.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 721

b. Click the name of the target service to access its details page. Enter the
inference code in the Prediction tab, and click Predict to perform
prediction.

● File Prediction

a. Log in to the ModelArts console and choose Model Deployment > Real-
Time Services.

b. Click the name of the target service to access its details page. In the
Prediction tab, click Upload and select a test file. After the file is
uploaded, click Predict to perform a prediction test. In Figure 9-12, the
label, position coordinates, and confidence score are displayed.

Figure 9-12 Image prediction

Using Cloud Shell to Debug a Real-Time Service Instance Container

You can use Cloud Shell provided by the ModelArts console to log in to the
instance container of a running real-time service.

Constraints:

● Cloud Shell can only access a container when the associated real-time service
is deployed within a dedicated resource pool

● Cloud Shell can only access a container when the associated real-time service
is running.

Step 1 Log in to the ModelArts console. In the navigation pane, choose Model
Deployment > Real-Time Services.

Step 2 On the real-time service list page, click the name or ID of the target service.

Step 3 Click the Cloud Shell tab and select the target model version and compute node.

When the connection status changes to , you have logged in to the instance
container.

If the server disconnects due to an error or remains idle for 10 minutes, you can
select Reconnect to regain access to the pod.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 722

Figure 9-13 Cloud Shell

NO TE

If you encounter a path display issue when logging in to Cloud Shell, press Enter to resolve
the problem.

Figure 9-14 Path display issue

----End

9.4.3 Authentication Methods for Accessing Real-time Services

9.4.3.1 Accessing a Real-Time Service Through Token-based Authentication
If a real-time service is in the Running state, it has been deployed successfully.
This service provides a standard RESTful API for users to call. Before integrating
the API to the production environment, commission the API. You can use the
following methods to send an inference request to the real-time service:

● Method 1: Use GUI-based Software for Inference (Postman). (Postman is
recommended for Windows.)

● Method 2: Run the cURL Command to Send an Inference Request. (curl
commands are recommended for Linux.)

● Method 3: Use Python to Send an Inference Request.
● Method 4: Use Java to Send an Inference Request.

Constraints
When you call an API to access a real-time service, the size of the prediction
request body and the prediction time are subject to the following limitations:
● The size of a request body cannot exceed 12 MB. Otherwise, the request will

fail.
● Due to the limitation of API Gateway, the prediction duration of each request

does not exceed 40 seconds.

Prerequisites
You have obtained a user token, local path to the inference file, URL of the real-
time service, and input parameters of the real-time service.

● For details about how to obtain a user token, see Token-based
Authentication. The real-time service APIs generated by ModelArts do not

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 723

https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0004.html#section0
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0004.html#section0

support tokens whose scope is domain. Therefore, you need to obtain the
token whose scope is project.

● The local path to the inference file can be an absolute path (for example, D:/
test.png for Windows and /opt/data/test.png for Linux) or a relative path
(for example, ./test.png).

● You can obtain the service URL and input parameters of a real-time service on
the Usage Guides tab page of its service details page.

The API URL is the service URL of the real-time service. If a path is defined for
apis in the model configuration file, the URL must be followed by the user-
defined path, for example, {URL of the real-time service}/predictions/poetry.

Figure 9-15 Obtaining the API URL and file prediction input parameters of a
real-time service

Method 1: Use GUI-based Software for Inference (Postman)
1. Download Postman and install it, or install the Postman Chrome extension.

Alternatively, use other software that can send POST requests. Postman 7.24.0
is recommended.

2. Open Postman. Figure 9-16 shows the Postman interface.

Figure 9-16 Postman interface

3. Set parameters on Postman. The following uses image classification as an
example.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 724

– Select a POST task and copy the API URL to the POST text box. On the
Headers tab page, set Key to X-Auth-Token and Value to the user
token.

NO TE

You can also use the AK and SK to encrypt API calling requests. For details, see
Overview of Session Authentication.

Figure 9-17 Parameter settings

– In the Body tab, file input and text input are available.

▪ File input
Select form-data. Set KEY to the input parameter of the model,
which must be the same as the input parameter of the real-time
service. In this example, the KEY is images. Set VALUE to an image
to be inferred (only one image can be inferred). See Figure 9-18.

Figure 9-18 Setting parameters on the Body tab page

▪ Text input
Select raw and then JSON(application/json). Enter the request body
in the text box below. An example request body is as follows:
{
 "meta": {
 "uuid": "10eb0091-887f-4839-9929-cbc884f1e20e"
 },
 "data": {
 "req_data": [
 {
 "sepal_length": 3,
 "sepal_width": 1,
 "petal_length": 2.2,
 "petal_width": 4
 }
]
 }
}

meta can carry a universally unique identifier (UUID). When you call
an API, the system provides a UUID. When the inference result is
returned, the UUID is returned to trace the request. If you do not
need this function, leave meta blank. data contains a req_data array
for one or multiple pieces of input data. The parameters of each

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 725

https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0123.html#section2

piece of data are determined by the model, such as sepal_length
and sepal_width in this example.

4. After setting the parameters, click send to send the request. The result will be
displayed in Response.
– Inference result using file input: Figure 9-19 shows an example. The field

values in the return result vary with the model.
– Inference result using text input: Figure 9-20 shows an example. The

request body contains meta and data. If the request contains uuid, uuid
will be returned in the response. Otherwise, uuid is left blank. data
contains a resp_data array for the inference results of one or multiple
pieces of input data. The parameters of each result are determined by the
model, for example, sepal_length and predictresult in this example.

Figure 9-19 File inference result

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 726

Figure 9-20 Text inference result

Method 2: Run the cURL Command to Send an Inference Request

The command for sending inference requests can be input as a file or text.

● File input
curl -kv -F 'images=@Image path' -H 'X-Auth-Token:Token value' -X POST Real-time service URL

– -k indicates that SSL websites can be accessed without using a security
certificate.

– -F indicates file input. In this example, the parameter name is images,
which can be changed as required. The image storage path follows @.

– -H indicates the header of a POST command. X-Auth-Token is the
header key, which is fixed. Token value indicates the user token.

– POST is followed by the API URL of the real-time service.

The following is an example of the cURL command for inference with file
input:
curl -kv -F 'images=@/home/data/test.png' -H 'X-Auth-Token:MIISkAY***80T9wHQ==' -X POST https://
modelarts-infers-1.xxx/v1/infers/eb3e0c54-3dfa-4750-af0c-95c45e5d3e83

● Text input
curl -kv -d '{"data":{"req_data":
[{"sepal_length":3,"sepal_width":1,"petal_length":2.2,"petal_width":4}]}}' -H 'X-Auth-
Token:MIISkAY***80T9wHQ==' -H 'Content-type: application/json' -X POST https://modelarts-
infers-1.xxx/v1/infers/eb3e0c54-3dfa-4750-af0c-95c45e5d3e83

-d indicates the text input of the request body.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 727

Method 3: Use Python to Send an Inference Request
1. Download the Python SDK and configure it in the development tool. For

details, see Integrating the Python SDK for API request signing.
2. Create a request body for inference.

– File input
coding=utf-8

import requests

if __name__ == '__main__':
 # Config url, token and file path.
 url = "URL of the real-time service"
 token = "User token"
 file_path = "Local path to the inference file"

 # Send request.
 headers = {
 'X-Auth-Token': token
 }
 files = {
 'images': open(file_path, 'rb')
 }
 resp = requests.post(url, headers=headers, files=files)

 # Print result.
 print(resp.status_code)
 print(resp.text)

The files name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the file type. The input parameter images obtained in
Prerequisites is an example.

– Text input (JSON)
The following is an example of the request body for reading the local
inference file and performing Base64 encoding:
coding=utf-8

import base64
import requests

if __name__ == '__main__':
 # Config url, token and file path
 url = "URL of the real-time service"
 token = "User token"
 file_path = "Local path to the inference file"
 with open(file_path, "rb") as file:
 base64_data = base64.b64encode(file.read()).decode("utf-8")

 # Set body,then send request
 headers = {
 'Content-Type': 'application/json',
 'X-Auth-Token': token
 }
 body = {
 'image': base64_data
 }
 resp = requests.post(url, headers=headers, json=body)

 # Print result
 print(resp.status_code)
 print(resp.text)

The body name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 728

https://support.huaweicloud.com/intl/en-us/devg-apisign/api-sign-sdk-python.html

parameter of the string type. The input parameter images obtained in
Prerequisites is an example. The value of base64_data in body is of the
string type.

Method 4: Use Java to Send an Inference Request
1. Download the Java SDK and configure it in the development tool. For details,

see Integrating the Java SDK for API request signing.
2. (Optional) If the input of the inference request is in the file format, the Java

project depends on the httpmime module.

a. Add httpmime-x.x.x.jar to the libs folder. Figure 9-21 shows a complete
Java dependency library.
You are advised to use httpmime-x.x.x.jar 4.5 or later. Download
httpmime-x.x.x.jar from https://mvnrepository.com/artifact/
org.apache.httpcomponents/httpmime.

Figure 9-21 Java dependency library

b. After httpmime-x.x.x.jar is added, add httpmime information to
the .classpath file of the Java project as follows:
<?xml version="1.0" encoding="UTF-8"?>
<classpath>
<classpathentry kind="con" path="org.eclipse.jdt.launching.JRE_CONTAINER"/>
<classpathentry kind="src" path="src"/>
<classpathentry kind="lib" path="libs/commons-codec-1.11.jar"/>
<classpathentry kind="lib" path="libs/commons-logging-1.2.jar"/>
<classpathentry kind="lib" path="libs/httpclient-4.5.13.jar"/>
<classpathentry kind="lib" path="libs/httpcore-4.4.13.jar"/>
<classpathentry kind="lib" path="libs/httpmime-x.x.x.jar"/>
<classpathentry kind="lib" path="libs/java-sdk-core-3.1.2.jar"/>
<classpathentry kind="lib" path="libs/okhttp-3.14.9.jar"/>
<classpathentry kind="lib" path="libs/okio-1.17.2.jar"/>
<classpathentry kind="output" path="bin"/>
</classpath>

3. Create a Java request body for inference.
– File input

A sample Java request body is as follows:
// Package name of the demo.
package com.apig.sdk.demo;

import org.apache.http.Consts;

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 729

https://support.huaweicloud.com/intl/en-us/devg-apisign/api-sign-sdk-java.html
https://mvnrepository.com/artifact/org.apache.httpcomponents/httpmime
https://mvnrepository.com/artifact/org.apache.httpcomponents/httpmime

import org.apache.http.HttpEntity;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.ContentType;
import org.apache.http.entity.mime.MultipartEntityBuilder;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;

import java.io.File;

public class MyTokenFile {

 public static void main(String[] args) {
 // Config url, token and filePath
 String url = "URL of the real-time service";
 String token = "User token";
 String filePath = "Local path to the inference file";

 try {
 // Create post
 HttpPost httpPost = new HttpPost(url);

 // Add header parameters
 httpPost.setHeader("X-Auth-Token", token);

 // Add a body if you have specified the PUT or POST method. Special characters, such
as the double quotation mark ("), contained in the body must be escaped.
 File file = new File(filePath);
 HttpEntity entity = MultipartEntityBuilder.create().addBinaryBody("images",
file).setContentType(ContentType.MULTIPART_FORM_DATA).setCharset(Consts.UTF_8).build();
 httpPost.setEntity(entity);

 // Send post
 CloseableHttpResponse response = HttpClients.createDefault().execute(httpPost);

 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The addBinaryBody name is determined by the input parameter of the
real-time service. The parameter name must be the same as that of the
input parameter of the file type. The file images obtained in
Prerequisites is used as an example.

– Text input (JSON)
The following is an example of the request body for reading the local
inference file and performing Base64 encoding:
// Package name of the demo.
package com.apig.sdk.demo;

import org.apache.http.HttpHeaders;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;

public class MyTokenTest {

 public static void main(String[] args) {
 // Config url, token and body
 String url = "URL of the real-time service";
 String token = "User token";

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 730

 String body = "{}";

 try {
 // Create post
 HttpPost httpPost = new HttpPost(url);

 // Add header parameters
 httpPost.setHeader(HttpHeaders.CONTENT_TYPE, "application/json");
 httpPost.setHeader("X-Auth-Token", token);

 // Special characters, such as the double quotation mark ("), contained in the body
must be escaped.
 httpPost.setEntity(new StringEntity(body));

 // Send post.
 CloseableHttpResponse response = HttpClients.createDefault().execute(httpPost);

 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

body is determined by the text format. JSON is used as an example.

9.4.3.2 Accessing a Real-Time Service Through AK/SK-based Authentication
If a real-time service is in the Running state, it has been deployed. This service
provides a standard, callable RESTful API. You can call the API using AK/SK-based
authentication.

When AK/SK-based authentication is used, you can use the APIG SDK or
ModelArts SDK to access the real-time service. For details, see Overview of
Session Authentication. This section describes how to use the APIG SDK to access
a real-time service. The process is as follows:

1. Obtaining an AK/SK Pair
2. Obtaining Information About a Real-Time Service
3. Send an inference request.

– Method 1: Use Python to Send an Inference Request
– Method 2: Use Java to Send an Inference Request

NO TE

1. AK/SK-based authentication supports API requests with a body not larger than 12 MB.
For API requests with a larger body, use token-based authentication.

2. The local time on the client must be synchronized with the clock server to avoid a large
offset in the value of the X-Sdk-Date request header. API Gateway checks the time
format and compares the time with the time when API Gateway receives the request. If
the time difference exceeds 15 minutes, API Gateway will reject the request.

Constraints
When you call an API to access a real-time service, the size of the prediction
request body and the prediction time are subject to the following limitations:
● The size of a request body cannot exceed 12 MB. Otherwise, the request will

fail.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 731

https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0123.html#section2
https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0123.html#section2

● Due to the limitation of API Gateway, the prediction duration of each request
does not exceed 40 seconds.

Obtaining an AK/SK Pair
If an AK/SK pair is already available, skip this step. Find the downloaded AK/SK
file, which is usually named credentials.csv.

The file contains the username, AK, and SK.

Figure 9-22 credential.csv

To generate an AK/SK pair, follow these steps:

1. Sign up and log in to the console.
2. Click the username and choose My Credentials from the drop-down list.
3. On the My Credentials page, choose Access Keys in the navigation pane.
4. Click Create Access Key.
5. Complete the identity authentication, download the access key, and keep it

secure.

Obtaining Information About a Real-Time Service
To call an API, you will need the URL and input parameters of the real-time
service. Follow these steps to obtain this information:

1. Log in to the ModelArts console. In the navigation pane, choose Model
Deployment > Real-Time Services.

2. Click the name of the target service to access its details page.
3. Obtain the URL and input parameters of the service.

The API URL is the service URL. If apis defines a path in the model
configuration file, append the user-defined path to the URL, for example,
{URL of the real-time service}/predictions/poetry.

Figure 9-23 Obtaining the API URL and file prediction input parameters of a
real-time service

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 732

Method 1: Use Python to Send an Inference Request
1. Download the Python SDK and configure it in the development tool. For

details, see Integrating the Python SDK for API request signing.

2. Create a request body for inference.

– File input
coding=utf-8

import requests
import os
from apig_sdk import signer

if __name__ == '__main__':
 # Config url, ak, sk and file path.
 url = "URL of the real-time service"
 # Hardcoded or plaintext AK/SK is risky. For security, encrypt your AK/SK and store
them in the configuration file or environment variables.
 # In this example, the AK/SK are stored in environment variables for identity
authentication. Before running this example, set environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK.
 ak = os.environ["HUAWEICLOUD_SDK_AK"]
 sk = os.environ["HUAWEICLOUD_SDK_SK"]
 file_path = "Local path to the inference file"

 # Create request, set method, url, headers and body.
 method = 'POST'
 headers = {"x-sdk-content-sha256": "UNSIGNED-PAYLOAD"}
 request = signer.HttpRequest(method, url, headers)

 # Create sign, set the AK/SK to sign and authenticate the request.
 sig = signer.Signer()
 sig.Key = ak
 sig.Secret = sk
 sig.Sign(request)

 # Send request
 files = {'images': open(file_path, 'rb')}
 resp = requests.request(request.method, request.scheme + "://" + request.host + request.uri,
headers=request.headers, files=files)

 # Print result
 print(resp.status_code)
 print(resp.text)

file_path is the local path to the inference file. The path can be an
absolute path (for example, D:/test.png for Windows and /opt/data/
test.png for Linux) or a relative path (for example, ./test.png).

Request body format of files: files = {"Request parameter": ("Load path",
File content, "File type")}. For details about parameters of files, see Table
9-21.

Table 9-21 Parameters of files

Paramete
r

Mand
atory

Description

Request
paramete
r

Yes Parameter name of the real-time service.

File path No Path for storing the file.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 733

https://support.huaweicloud.com/intl/en-us/devg-apisign/api-sign-sdk-python.html

Paramete
r

Mand
atory

Description

File
content

Yes Content of the file to be uploaded.

File type No Type of the file to be uploaded, which can be one
of the following options:
● txt: text/plain
● jpg/jpeg: image/jpeg
● png: image/png

– Text input (JSON)

The following is an example request body for reading the local inference
file and performing Base64 encoding:
coding=utf-8

import base64
import json
import os
import requests
from apig_sdk import signer

if __name__ == '__main__':
 # Config url, ak, sk and file path.
 url = "URL of the real-time service"
 # Hardcoded or plaintext AK/SK is risky. For security, encrypt your AK/SK and store
them in the configuration file or environment variables.
 # In this example, the AK/SK are stored in environment variables for identity
authentication. Before running this example, set environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK.
 ak = os.environ["HUAWEICLOUD_SDK_AK"]
 sk = os.environ["HUAWEICLOUD_SDK_SK"]
 file_path = "Local path to the inference file"
 with open(file_path, "rb") as file:
 base64_data = base64.b64encode(file.read()).decode("utf-8")

 # Create request, set method, url, headers and body.
 method = 'POST'
 headers = {
 'Content-Type': 'application/json'
 }
 body = {
 'image': base64_data
 }
 request = signer.HttpRequest(method, url, headers, json.dumps(body))

 # Create sign, set the AK/SK to sign and authenticate the request.
 sig = signer.Signer()
 sig.Key = ak
 sig.Secret = sk
 sig.Sign(request)

 # Send request
 resp = requests.request(request.method, request.scheme + "://" + request.host + request.uri,
headers=request.headers, data=request.body)

 # Print result
 print(resp.status_code)
 print(resp.text)

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 734

The body name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the string type. image is used as an example. The value of
base64_data in body is of the string type.

Method 2: Use Java to Send an Inference Request
1. Download the Java SDK and configure it in the development tool.
2. Create a Java request body for inference.

In the APIG Java SDK, request.setBody() can only be a string. Therefore, only
text inference requests are supported. If a file is input, convert the file into
text using Base64.
– File input

The following is an example request body (JSON) for reading the local
inference file and performing Base64 encoding.
package com.apig.sdk.demo;
import com.cloud.apigateway.sdk.utils.Client;
import com.cloud.apigateway.sdk.utils.Request;
import org.apache.commons.codec.binary.Base64;
import org.apache.http.HttpHeaders;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.client.methods.HttpRequestBase;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStream;
public class MyAkSkTest2 {
 public static void main(String[] args) {
 String url = "URL of the real-time service";
 // Hard-coded or plaintext AK/SK is risky. For security, encrypt your AK/SK and store
them in the configuration file or environment variables.
 // In this example, the AK/SK are stored in environment variables for identity
authentication. Before running this example, set environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK.
 String ak = System.getenv("HUAWEICLOUD_SDK_AK");
 String sk = System.getenv("HUAWEICLOUD_SDK_SK");
 String filePath = "Local path to the inference file";
 try {
 // Create request
 Request request = new Request();
 // Set the AK/SK to sign and authenticate the request.
 request.setKey(ak);
 request.setSecret(sk);
 // Specify a request method, such as GET, PUT, POST, DELETE, HEAD, and PATCH.
 request.setMethod(HttpPost.METHOD_NAME);
 // Add header parameters
 request.addHeader(HttpHeaders.CONTENT_TYPE, "application/json");
 // Set a request URL in the format of https://{Endpoint}/{URI}.
 request.setUrl(url);
 // build your json body
 String body = "{\"image\":\"" + getBase64FromFile(filePath) + "\"}";
 // Special characters, such as the double quotation mark ("), contained in the body
must be escaped.
 request.setBody(body);
 // Sign the request.
 HttpRequestBase signedRequest = Client.sign(request);
 // Send request.
 CloseableHttpResponse response = HttpClients.createDefault().execute(signedRequest);
 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 735

 e.printStackTrace();
 }
 }
 /**
 * Convert the file into a byte array and Base64 encode it
 * @return
 */
 private static String getBase64FromFile(String filePath) {
 // Convert the file into a byte array
 InputStream in = null;
 byte[] data = null;
 try {
 in = new FileInputStream(filePath);
 data = new byte[in.available()];
 in.read(data);
 in.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 // Base64 encode
 return new String(Base64.encodeBase64(data));
 }
}

CA UTION

If using Base64 encoding, you need to add a decoding step to your model
inference code to handle the request body.

– Text input (JSON)
// Package name of the demo.
package com.apig.sdk.demo;

import com.cloud.apigateway.sdk.utils.Client;
import com.cloud.apigateway.sdk.utils.Request;
import org.apache.http.HttpHeaders;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.client.methods.HttpRequestBase;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;

public class MyAkSkTest {

 public static void main(String[] args) {
 String url = "URL of the real-time service";
 // Hard-coded or plaintext AK/SK is risky. For security, encrypt your AK/SK and store
them in the configuration file or environment variables.
 // In this example, the AK/SK are stored in environment variables for identity
authentication. Before running this example, set environment variables
HUAWEICLOUD_SDK_AK and HUAWEICLOUD_SDK_SK.
 String ak = System.getenv("HUAWEICLOUD_SDK_AK");
 String sk = System.getenv("HUAWEICLOUD_SDK_SK");

 try {
 // Create request
 Request request = new Request();

 // Set the AK/SK to sign and authenticate the request.
 request.setKey(ak);
 request.setSecret(sk);

 // Specify a request method, such as GET, PUT, POST, DELETE, HEAD, and PATCH.
 request.setMethod(HttpPost.METHOD_NAME);

 // Add header parameters

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 736

 request.addHeader(HttpHeaders.CONTENT_TYPE, "application/json");

 // Set a request URL in the format of https://{Endpoint}/{URI}.
 request.setUrl(url);

 // Special characters, such as the double quotation mark ("), contained in the body
must be escaped.
 String body = "{}";
 request.setBody(body);

 // Sign the request.
 HttpRequestBase signedRequest = Client.sign(request);

 // Send request.
 CloseableHttpResponse response = HttpClients.createDefault().execute(signedRequest);

 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

body is determined by the text format. JSON is used as an example.

9.4.3.3 Accessing a Real-Time Service Through App Authentication
You can enable application authentication when deploying a real-time service.
ModelArts registers an API that supports application authentication for the service.
After this API is authorized to an application, you can call this API using the
AppKey/AppSecret or AppCode of the application.

The process of application authentication for a real-time service is as follows:

1. Enabling Application Authentication: Enable application authentication. You
can select or create an application.

2. Managing Authorization for Real-Time Services: Manage your applications,
including viewing, resetting, or deleting them, as well as binding or unbinding
real-time services and obtaining your AppKey and AppSecret, or AppCode.

3. Application Authentication: To call an API that supports app authentication,
you will need to authenticate first. There are two authentication methods:
AppKey and AppSecret, or AppCode. You can choose the one that suits you
best.

4. Send an inference request.
– Method 1: Use Python to Send an Inference request Through AppKey/

AppSecret-based Authentication
– Method 2: Use Java to Send an Inference request Through AppKey/

AppSecret-based Authentication
– Method 3: Use Python to Send an Inference request Through

AppCode-based Authentication
– Method 4: Use Java to Send an Inference request Through AppCode-

based Authentication

Constraints
When you call an API to access a real-time service, the size of the prediction
request body and the prediction time are subject to the following limitations:

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 737

● The size of a request body cannot exceed 12 MB. Otherwise, the request will
fail.

● Due to the limitation of API Gateway, the prediction duration of each request
does not exceed 40 seconds.

Prerequisites
● A ModelArts model in the Normal state is available.
● The account is not in arrears to ensure available resources for service running.
● The local path to the inference file has been obtained. The path can be an

absolute path (for example, D:/test.png for Windows and /opt/data/test.png
for Linux) or a relative path (for example, ./test.png).

Enabling Application Authentication
When deploying a real-time service, you can enable application authentication.
You can also modify a deployed real-time service to support application
authentication.

1. Log in to the ModelArts console and choose Model Deployment > Real-Time
Services.

2. Enable application authentication.
– When deploying a real-time service, enable application authentication on

the Deploy page.
– For a deployed real-time service, go to the Real-Time Services page, and

click Modify in the Operation column of the service. On the service
modification page, enable application authentication.

Figure 9-24 Enabling application authentication

3. Select an application for authorization from the drop-down list. If no
application is available, follow these steps to create one:
– Click Create Application, enter the application name and description,

and click OK. By default, the application name is prefixed with app_. You
can change this name if needed.

– On the Model Deployment > Real-Time Services page, click Authorize.
On the Manage Authorization of Real-Time Services page, click Create
Application. For details, see Managing Authorization for Real-Time
Services.

4. After enabling application authentication, authorize a service that supports
application authentication to the application. Then, you can use the created
AppKey/AppSecret or AppCode to call the service's API that supports
application authentication.

Managing Authorization for Real-Time Services
If you want to use application authentication, it is good practice to create an
application on the authorization management page before deploying a real-time

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 738

service. In the navigation pane, choose Model Deployment > Real-Time Services.
On the Real-Time Services page, click Authorize. From there, you can create,
reset, or delete applications, query plaintext, unbind real-time services from
applications, and obtain the AppKey/AppSecret or AppCode.

Figure 9-25 Managing authorization for real-time services

● Creating an application

Click Create Application, enter the application name and description, and
click OK. By default, the application name is prefixed with app_. You can
change this name if needed.

● Viewing, resetting, or deleting an application

Query plaintext, reset, or delete an application by clicking the corresponding
icon in the Operation column of the application. After an application is
created, the AppKey and AppSecret are automatically generated for
application authentication.

Figure 9-26 Query Plaintext, Reset, or Delete

● Unbinding a service

Click next to the target application name to view the real-time services
bound to the application. Click Unbind in the Operation column to cancel
the binding. Then, this API cannot be called.

● Obtaining the AppKey/AppSecret or AppCode

Application authentication is required for API calling. The AppKey and
AppSecret are automatically generated during application creation. Click
in the Operation column of the application in the Manage Authorization of
Real-Time Services dialog box to view the complete AppSecret. Click next
to the application name to show the drop-down list. Click Add AppCode to

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 739

automatically generate an AppCode. Then, click in the Operation
column to view the complete AppCode.

Figure 9-27 Adding the AppCode

Application Authentication
When a real-time service that supports application authentication is in the
Running state, the service' API can be called. Before calling the API, perform
application authentication.

When you use application authentication and enable simplified authentication,
you can use your AppKey/AppSecret for signing and verification, or AppCode for
simplified authentication. ModelArts uses simplified authentication by default.
AppKey/AppSecret-based authentication is recommended because it is more
secure than AppCode-based authentication.

● AppKey/AppSecret-based authentication: The AppKey and AppSecret are
used to encrypt a request, identify the sender, and prevent the request from
being modified. When using AppKey/AppSecret-based authentication, use a
dedicated signing SDK to sign requests.
– AppKey: access key ID of the application, which is a unique identifier used

together with a secret access key to sign requests cryptographically.
– AppSecret: application secret access key, used together with the access

key ID to encrypt the request, identify the sender, and prevent the request
from being tempered.

AppKeys can be used for simplified authentication. When an API is called, the
apikey parameter (value: AppKey) is added to the HTTP request header to
accelerate authentication.

● AppCode-based authentication: Requests are authenticated using AppCodes.
In AppCode-based authentication, the X-Apig-AppCode parameter (value:
AppCode) is added to the HTTP request header when an API is called. The
request content does not need to be signed. The API gateway only verifies the
AppCode, achieving quick response.

You can obtain the API URL (url of the real-time service), AppKey/AppSecret
(app_key and app_secret), and AppCode (app_code) from the Usage Guides tab
on the service details page (see Figure 9-28). Use the API URL for application
authentication in the second line of the figure.

Modify the API URL in the following scenarios:

● If apis defines a path in the model configuration file, append the user-defined
path to the URL, for example, {URL of the real-time service}/predictions/
poetry.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 740

If an SD WebUI inference service is deployed, add a slash (/) to the end of the
calling address, for example, https://
8e******5fe.apig.******.huaweicloudapis.com/v1/infers/f2682******f42/.

Figure 9-28 Obtaining application authentication information

Method 1: Use Python to Send an Inference request Through AppKey/
AppSecret-based Authentication

1. Download the Python SDK and configure it in the development tool.
2. Create a request body for inference.

– File input
coding=utf-8

import requests
import os
from apig_sdk import signer

if __name__ == '__main__':
 # Config url, ak, sk and file path.
 # API URL, for example, "https://8e******5fe.apig.******.huaweicloudapis.com/v1/infers/
f2682******f42"
 url = "URL of the real-time service"
 # Hardcoded or plaintext app_key and app_secret are risky. For security, encrypt and
store them in the configuration file or environment variables.
 # In this example, the app_key and app_secret are stored in environment variables for
identity authentication. Before running this example, set environment variables
HUAWEICLOUD_APP_KEY and HUAWEICLOUD_APP_SECRET.
 app_key = os.environ["HUAWEICLOUD_APP_KEY"]
 app_secret= os.environ["HUAWEICLOUD_APP_SECRET"]
 file_path = "Local path to the inference file"

 # Create request, set method, url, headers and body.
 method = 'POST'
 headers = {"x-sdk-content-sha256": "UNSIGNED-PAYLOAD"}
 request = signer.HttpRequest(method, url, headers)

 # Create sign, set the AK/SK to sign and authenticate the request.
 sig = signer.Signer()
 sig.Key = app_key
 sig.Secret = app_secret
 sig.Sign(request)

 # Send request
 files = {'images': open(file_path, 'rb')}
 resp = requests.request(request.method, request.scheme + "://" + request.host + request.uri,
headers=request.headers, files=files)

 # Print result
 print(resp.status_code)
 print(resp.text)

Request body format of files: files = {"Request parameter": ("Load path",
File content, "File type")}. For details about parameters of files, see Table
9-22.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 741

Table 9-22 Parameters of files

Paramete
r

Mand
atory

Description

Request
paramete
r

Yes Parameter name of the real-time service.

File path No Path for storing the file.

File
content

Yes Content of the file to be uploaded.

File type No Type of the file to be uploaded, which can be one
of the following options:
● txt: text/plain
● jpg/jpeg: image/jpeg
● png: image/png

– Text input (JSON)

The following is an example request body for reading the local inference
file and performing Base64 encoding:
coding=utf-8

import base64
import json
import os
import requests
from apig_sdk import signer

if __name__ == '__main__':
 # Config url, ak, sk and file path.
 # API URL, for example, "https://8e******5fe.apig.******.huaweicloudapis.com/v1/infers/
f2682******f42"
 url = "URL of the real-time service"
 # Hardcoded or plaintext app_key and app_secret are risky. For security, encrypt and
store them in the configuration file or environment variables.
 # In this example, the app_key and app_secret are stored in environment variables for
identity authentication. Before running this example, set environment variables
HUAWEICLOUD_APP_KEY and HUAWEICLOUD_APP_SECRET.
 app_key = os.environ["HUAWEICLOUD_APP_KEY"]
 app_secret= os.environ["HUAWEICLOUD_APP_SECRET"]
 file_path = "Local path to the inference file"
 with open(file_path, "rb") as file:
 base64_data = base64.b64encode(file.read()).decode("utf-8")

 # Create request, set method, url, headers and body.
 method = 'POST'
 headers = {
 'Content-Type': 'application/json'
 }
 body = {
 'image': base64_data
 }
 request = signer.HttpRequest(method, url, headers, json.dumps(body))

 # Create sign, set the AppKey&AppSecret to sign and authenticate the request.
 sig = signer.Signer()
 sig.Key = app_key
 sig.Secret = app_secret

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 742

 sig.Sign(request)

 # Send request
 resp = requests.request(request.method, request.scheme + "://" + request.host + request.uri,
headers=request.headers, data=request.body)

 # Print result
 print(resp.status_code)
 print(resp.text)

The body name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the string type. image is used as an example. The value of
base64_data in body is of the string type.

Method 2: Use Java to Send an Inference request Through AppKey/
AppSecret-based Authentication

1. Download the Java SDK and configure it in the development tool.
2. Create a Java request body for inference.

In the APIG Java SDK, request.setBody() can only be a string. Therefore, only
text inference requests are supported.
The following is an example of the request body (JSON) for reading the local
inference file and performing Base64 encoding:
// Package name of the demo.
package com.apig.sdk.demo;

import com.cloud.apigateway.sdk.utils.Client;
import com.cloud.apigateway.sdk.utils.Request;
import org.apache.http.HttpHeaders;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.client.methods.HttpRequestBase;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;

public class MyAkSkTest {

 public static void main(String[] args) {
 # API URL, for example, "https://8e******5fe.apig.******.huaweicloudapis.com/v1/infers/
f2682******f42"
 String url = "URL of the real-time service";
 // Hard-coded or plaintext app_key and app_secret are risky. For security, encrypt and store
them in the configuration file or environment variables.
 // In this example, the app_key and app_secret are stored in environment variables for
identity authentication. Before running this example, set environment variables
HUAWEICLOUD_APP_KEY and HUAWEICLOUD_APP_SECRET.
 String appKey = System.getenv("HUAWEICLOUD_APP_KEY");
 String appSecret = System.getenv("HUAWEICLOUD_APP_SECRET");
 String body = "{}";

 try {
 // Create request
 Request request = new Request();

 // Set the AK/AppSecret to sign and authenticate the request.
 request.setKey(appKey);
 request.setSecret(appSecret);

 // Specify a request method, such as GET, PUT, POST, DELETE, HEAD, and PATCH.
 request.setMethod(HttpPost.METHOD_NAME);

 // Add header parameters
 request.addHeader(HttpHeaders.CONTENT_TYPE, "application/json");

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 743

 // Set a request URL in the format of https://{Endpoint}/{URI}.
 request.setUrl(url);

 // Special characters, such as the double quotation mark ("), contained in the body must be
escaped.
 request.setBody(body);

 // Sign the request.
 HttpRequestBase signedRequest = Client.sign(request);

 // Send request.
 CloseableHttpResponse response = HttpClients.createDefault().execute(signedRequest);

 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

body is determined by the text format. JSON is used as an example.

Method 3: Use Python to Send an Inference request Through AppCode-based
Authentication

1. Download the Python SDK and configure it in the development tool.

2. Create a request body for inference.

– File input
coding=utf-8

import requests
import os

if __name__ == '__main__':
 # Config url, app code and file path.
 # API URL, for example, "https://8e******5fe.apig.******.huaweicloudapis.com/v1/infers/
f2682******f42"
 url = "URL of the real-time service"
 # Hardcoded or plaintext app_code is risky. For security, encrypt and store it in the
configuration file or environment variables.
 # In this example, the app_code is stored in environment variables for identity
authentication. Before running this example, set environment variable
HUAWEICLOUD_APP_CODE.
 app_code = os.environ["HUAWEICLOUD_APP_CODE"]
 file_path = "Local path to the inference file"

 # Send request.
 headers = {
 'X-Apig-AppCode': app_code
 }
 files = {
 'images': open(file_path, 'rb')
 }
 resp = requests.post(url, headers=headers, files=files)

 # Print result
 print(resp.status_code)
 print(resp.text)

The files name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the file type. In this example, images is used.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 744

– Text input (JSON)
The following is an example request body for reading the local inference
file and performing Base64 encoding:
coding=utf-8

import base64
import requests
import os

if __name__ == '__main__':
 # Config url, app code and request body.
 # API URL, for example, "https://8e******5fe.apig.******.huaweicloudapis.com/v1/infers/
f2682******f42"
 url = "URL of the real-time service"
 # Hardcoded or plaintext app_code is risky. For security, encrypt and store it in the
configuration file or environment variables.
 # In this example, the app_code is stored in environment variables for identity
authentication. Before running this example, set environment variable
HUAWEICLOUD_APP_CODE.
 app_code = os.environ["HUAWEICLOUD_APP_CODE"]
 file_path = "Local path to the inference file"
 with open(file_path, "rb") as file:
 base64_data = base64.b64encode(file.read()).decode("utf-8")

 # Send request
 headers = {
 'Content-Type': 'application/json',
 'X-Apig-AppCode': app_code
 }
 body = {
 'image': base64_data
 }
 resp = requests.post(url, headers=headers, json=body)

 # Print result
 print(resp.status_code)
 print(resp.text)

The body name is determined by the input parameter of the real-time
service. The parameter name must be the same as that of the input
parameter of the string type. image is used as an example. The value of
base64_data in body is of the string type.

Method 4: Use Java to Send an Inference request Through AppCode-based
Authentication

1. Download the Java SDK and configure it in the development tool.
2. (Optional) If the inference request input is in a file format, follow these steps

to ensure the Java project includes the httpmime module as a dependency.

a. Add httpmime-x.x.x.jar to the libs folder. Figure 9-29 shows a complete
Java dependency library.
You are advised to use httpmime-x.x.x.jar 4.5 or later. Download
httpmime-x.x.x.jar from https://mvnrepository.com/artifact/
org.apache.httpcomponents/httpmime.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 745

https://mvnrepository.com/artifact/org.apache.httpcomponents/httpmime
https://mvnrepository.com/artifact/org.apache.httpcomponents/httpmime

Figure 9-29 Java dependency library

b. After httpmime-x.x.x.jar is added, add httpmime information to
the .classpath file of the Java project as follows:
<?xml version="1.0" encoding="UTF-8"?>
<classpath>
<classpathentry kind="con" path="org.eclipse.jdt.launching.JRE_CONTAINER"/>
<classpathentry kind="src" path="src"/>
<classpathentry kind="lib" path="libs/commons-codec-1.11.jar"/>
<classpathentry kind="lib" path="libs/commons-logging-1.2.jar"/>
<classpathentry kind="lib" path="libs/httpclient-4.5.13.jar"/>
<classpathentry kind="lib" path="libs/httpcore-4.4.13.jar"/>
<classpathentry kind="lib" path="libs/httpmime-x.x.x.jar"/>
<classpathentry kind="lib" path="libs/java-sdk-core-3.1.2.jar"/>
<classpathentry kind="lib" path="libs/okhttp-3.14.9.jar"/>
<classpathentry kind="lib" path="libs/okio-1.17.2.jar"/>
<classpathentry kind="output" path="bin"/>
</classpath>

3. Create a Java request body for inference.
– File input

A sample Java request body is as follows:
// Package name of the demo.
package com.apig.sdk.demo;

import org.apache.http.Consts;
import org.apache.http.HttpEntity;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.ContentType;
import org.apache.http.entity.mime.MultipartEntityBuilder;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;

import java.io.File;

public class MyAppCodeFile {

 public static void main(String[] args) {
 # API URL, for example, "https://8e******5fe.apig.******.huaweicloudapis.com/v1/infers/
f2682******f42"
 String url = "URL of the real-time service";
 // Hard-coded or plaintext appCode is risky. For security, encrypt and store it in the
configuration file or environment variables.
 // In this example, the appCode is stored in environment variables for identity
authentication. Before running this example, set environment variable
HUAWEICLOUD_APP_CODE.
 String appCode = System.getenv("HUAWEICLOUD_APP_CODE");
 String filePath = "Local path to the inference file";

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 746

 try {
 // Create post
 HttpPost httpPost = new HttpPost(url);

 // Add header parameters
 httpPost.setHeader("X-Apig-AppCode", appCode);

 // Special characters, such as the double quotation mark ("), contained in the body
must be escaped.
 File file = new File(filePath);
 HttpEntity entity = MultipartEntityBuilder.create().addBinaryBody("images",
file).setContentType(ContentType.MULTIPART_FORM_DATA).setCharset(Consts.UTF_8).build();
 httpPost.setEntity(entity);

 // Send post
 CloseableHttpResponse response = HttpClients.createDefault().execute(httpPost);

 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

The addBinaryBody name is determined by the input parameter of the
real-time service. The parameter name must be the same as that of the
input parameter of the file type. In this example, images is used.

– Text input (JSON)

The following is an example request body for reading the local inference
file and performing Base64 encoding:
// Package name of the demo.
package com.apig.sdk.demo;

import org.apache.http.HttpHeaders;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.HttpClients;
import org.apache.http.util.EntityUtils;

public class MyAppCodeTest {

 public static void main(String[] args) {
 # API URL, for example, "https://8e******5fe.apig.******.huaweicloudapis.com/v1/infers/
f2682******f42"
 String url = "URL of the real-time service";
 // Hard-coded or plaintext appCode is risky. For security, encrypt and store it in the
configuration file or environment variables.
 // In this example, the appCode is stored in environment variables for identity
authentication. Before running this example, set environment variable
HUAWEICLOUD_APP_CODE.
 String appCode = System.getenv("HUAWEICLOUD_APP_CODE");
 String body = "{}";

 try {
 // Create post
 HttpPost httpPost = new HttpPost(url);

 // Add header parameters
 httpPost.setHeader(HttpHeaders.CONTENT_TYPE, "application/json");
 httpPost.setHeader("X-Apig-AppCode", appCode);

 // Special characters, such as the double quotation mark ("), contained in the body
must be escaped.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 747

 httpPost.setEntity(new StringEntity(body));

 // Send post
 CloseableHttpResponse response = HttpClients.createDefault().execute(httpPost);

 // Print result
 System.out.println(response.getStatusLine().getStatusCode());
 System.out.println(EntityUtils.toString(response.getEntity()));
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

body is determined by the text format. JSON is used as an example.

9.4.4 Accessing a Real-Time Service Through Different
Channels

9.4.4.1 Accessing a Real-Time Service Through a Public Network

Context
By default, ModelArts inference uses the public network to access real-time
services. After a real-time service is deployed, a standard RESTful API is provided
for you to call. You can view the API URL on the Usage Guides tab page of the
service details page.

Figure 9-30 API URL

Constraints
When you call an API to access a real-time service, the size of the prediction
request body and the prediction time are subject to the following limitations:
● The size of a request body cannot exceed 12 MB. Otherwise, the request will

fail.
● Due to the limitation of API Gateway, the prediction duration of each request

does not exceed 40 seconds.

Accessing a Real-Time Service
The following authentication modes are available for accessing real-time services
from a public network:

● Accessing a Real-Time Service Through Token-based Authentication
● Accessing a Real-Time Service Through AK/SK-based Authentication
● Accessing a Real-Time Service Through App Authentication

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 748

9.4.4.2 Accessing a Real-Time Service Through a VPC Channel

Context
To access a ModelArts real-time service from an internal VPC node of your
account, you can use a VPC channel. By creating an endpoint in your VPC and
connecting to the ModelArts VPC endpoint service, you can access the real-time
service from your VPC endpoint.

Constraints
When you call an API to access a real-time service, the size of the prediction
request body and the prediction time are subject to the following limitations:
● The size of a request body cannot exceed 12 MB. Otherwise, the request will

fail.
● Due to the limitation of API Gateway, the prediction duration of each request

does not exceed 40 seconds.

Procedure
To access a real-time service through a VPC channel, follow these steps:

1. Obtain the ModelArts VPC endpoint service address.
2. Buy and connect to a ModelArts endpoint.
3. Create a private DNS zone.
4. Access a real-time service through VPC.

Step 1 Submit a service ticket and provide the account ID to Huawei Cloud technical
support to obtain the ModelArts VPC endpoint service address.

Step 2 Buy and connect to a ModelArts endpoint.

1. Log in to the VPC management console. In the navigation pane, choose VPC
Endpoint > VPC Endpoints.

2. Click Buy VPC Endpoint in the upper right corner.
– Region: region where the VPC endpoint is located.

Resources in different regions cannot communicate with each other. The
region must be the same as that of ModelArts.

– Service Category: Select Find a service by name.
– VPC Endpoint Service Name: Enter the endpoint service address

obtained in step 1. Click Verify on the right. The system automatically
sets VPC, Subnet, and Private IP Address.

– Create a Private Domain Name: Retain the default setting.
3. Confirm the specifications, and click Next and then Submit. The VPC

endpoint list page is displayed.

Step 3 Create a private DNS zone.

The newly created real-time service is interconnected with a dedicated gateway.
The independent public domain name of ModelArts inference, that is, infer-
modelarts-<Region ID>.modelarts-infer.com, is required. The intranet VPC cannot

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 749

resolve the modelarts-infer.com domain name. You need to add private domain
name resolution by referring to this step and Step 4.

1. Log in to the DNS console. In the navigation pane on the left, choose Private
Zones.

2. Click Create Private Zone. Set the following parameters:
– Domain Name: Enter a value in the format infer-modelarts-<Region

ID>.modelarts-infer.com. Example: infer-modelarts-cn-
south-1.modelarts-infer.com.

– VPC: Select a VPC you want to associate with the private zone.
3. Click OK.

Step 4 Access the real-time service through the VPC.

1. Use the following API to access a real-time service through VPC:
https://{Private DNS domain name}/{URL}

– Private DNS domain name: private domain name you set. You can also
click Access VPC on the real-time service list page to view the domain
name in the displayed dialog box.

– URL: The URL for a real-time service is the part after the domain name of
API URL in the Usage Guides tab of the service details page.

Figure 9-31 Obtaining the URL

2. Use GUI-based software, cURL command, or Python to access a real-time
service. For details, see Accessing a Real-Time Service Through Token-
based Authentication.

----End

9.4.4.3 Accessing a Real-Time Service Through a VPC High-Speed Channel

Context
When accessing a real-time service, you may require:

● High throughput and low latency
● TCP or RPC requests

To meet these requirements, ModelArts enables high-speed access through VPC
peering.

In high-speed access through VPC peering, your service requests are directly sent
to instances through VPC peering but not through the inference platform. This
accelerates service access.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 750

NO TE

The following features that are available through the inference platform will be unavailable
if you use high-speed access:
● Authentication
● Traffic distribution by configuration
● Load balancing
● Alarm, monitoring, and statistics

Figure 9-32 High-speed access through VPC peering

Constraints
When you call an API to access a real-time service, the size of the prediction
request body and the prediction time are subject to the following limitations:
● The size of a request body cannot exceed 12 MB. Otherwise, the request will

fail.
● Due to the limitation of API Gateway, the prediction duration of each request

does not exceed 40 seconds.

Preparations
Deploy a real-time service in a dedicated resource pool and ensure the service is
running.

NO TICE

● Only the services deployed in a dedicated resource pool support high-speed
access through VPC peering.

● High-speed access through VPC peering is available only for real-time services.
● Due to traffic control, there is a limit on how often you can get the IP address

and port number of a real-time service. The number of calls of each tenant
account cannot exceed 2000 per minute, and that of each IAM user account
cannot exceed 20 per minute.

● High-speed access through VPC peering is available only for the services
deployed using the AI applications imported from custom images.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 751

Procedure
To enable high-speed access to a real-time service through VPC peering, perform
the following operations:

1. Interconnect the dedicated resource pool to the VPC.
2. Create an ECS in the VPC.
3. Obtain the IP address and port number of the real-time service.
4. Access the service through the IP address and port number.

Step 1 Interconnect the dedicated resource pool to the VPC.

Log in to the ModelArts console, choose AI Dedicated Resource Pools > Elastic
Clusters, locate the dedicated resource pool where the service is deployed, and
click its name/ID to go to the resource pool details page. Obtain the network
configuration. Switch back to the dedicated resource pool list, click the Network
tab, locate the network associated with the dedicated resource pool, and
interconnect it with the VPC. After the VPC is accessed, the VPC will be displayed
on the network list and resource pool details pages. Click the VPC to go to the
details page.

Figure 9-33 Obtaining the network configuration

Figure 9-34 Interconnecting the VPC

Step 2 Create an ECS in the VPC.

Log in to the ECS management console and click Buy ECS in the upper right
corner. On the Buy ECS page, configure basic settings and click Next: Configure
Network. On the Configure Network page, select the VPC connected in Step 1,
configure other parameters, confirm the settings, and click Submit. When the ECS
status changes to Running, the ECS has been created. Click its name/ID to go to
the server details page and view the VPC configuration.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 752

Figure 9-35 Selecting a VPC when purchasing an ECS

Figure 9-36 Viewing VPC information

Step 3 Obtain the IP address and port number of the real-time service.

GUI software, for example, Postman can be used to obtain the IP address and port
number. Alternatively, log in to the ECS, create a Python environment, and execute
code to obtain the service IP address and port number.

API:

GET /v1/{project_id}/services/{service_id}/predict/endpoints?type=host_endpoints

● Method 1: Obtain the IP address and port number using GUI software.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 753

Figure 9-37 Example response

● Method 2: Obtain the IP address and port number using Python.
The following parameters in the Python code below need to be modified:
– project_id: your project ID. To obtain it, see Obtaining a Project ID and

Name.
– service_id: service ID, which can be viewed on the service details page.
– REGION_ENDPOINT: service endpoint. To obtain it, see Endpoint.
def get_app_info(project_id, service_id):
 list_host_endpoints_url = "{}/v1/{}/services/{}/predict/endpoints?type=host_endpoints"
 url = list_host_endpoints_url.format(REGION_ENDPOINT, project_id, service_id)
 headers = {'X-Auth-Token': X_Auth_Token}
 response = requests.get(url, headers=headers)
 print(response.content)

Step 4 Access the service through the IP address and port number.

Log in to the ECS and access the real-time service either by running Linux
commands or by creating a Python environment and executing Python code.
Obtain the values of schema, ip, and port from Step 3.
● Run the following command to access the real-time service:

curl --location --request POST 'http://192.168.205.58:31997' \
--header 'Content-Type: application/json' \
--data-raw '{"a":"a"}'

Figure 9-38 Accessing a real-time service

● Create a Python environment and execute Python code to access the real-
time service.
def vpc_infer(schema, ip, port, body):
 infer_url = "{}://{}:{}"
 url = infer_url.format(schema, ip, port)
 response = requests.post(url, data=body)
 print(response.content)

NO TE

High-speed access does not support load balancing. You need to customize load balancing
policies when you deploy multiple instances.

----End

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 754

https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0147.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0147.html
https://support.huaweicloud.com/intl/en-us/api-modelarts/modelarts_03_0141.html

9.4.5 Accessing a Real-Time Service Using Different Protocols

9.4.5.1 Accessing a Real-Time Service Using WebSocket

Context

WebSocket is a network transmission protocol that supports full-duplex
communication over a single TCP connection. It is located at the application layer
in the OSI model. The WebSocket communication protocol was established by IETF
as standard RFC 6455 in 2011 and supplemented by RFC 7936. The WebSocket API
in the Web IDL is standardized by W3C.

WebSocket simplifies data exchange between the client and server and allows the
server to proactively push data to the client. In the WebSocket API, if the initial
handshake between the client and server is successful, a persistent connection can
be established between them and bidirectional data transmission can be
performed.

Prerequisites
● A real-time service has been deployed with WebSocket enabled.
● The image for importing the model is WebSocket-compliant.

Constraints
● WebSocket supports only the deployment of real-time services.
● It supports only real-time services deployed using models imported from

custom images.
● When you call an API to access a real-time service, the size of the prediction

request body and the prediction time are subject to the following limitations:
– The size of a request body cannot exceed 12 MB. Otherwise, the request

will fail.
– Due to the limitation of API Gateway, the prediction duration of each

request does not exceed 40 seconds.

Calling a WebSocket Real-Time Service

WebSocket itself does not require additional authentication. ModelArts WebSocket
is WebSocket Secure-compliant, regardless of whether WebSocket or WebSocket
Secure is enabled in the custom image. WebSocket Secure supports only one-way
authentication, from the client to the server.

You can use one of the following authentication methods provided by ModelArts:

● Token-based Authentication
● AK/SK-based Authentication
● App Authentication

The following section uses GUI software Postman for prediction and token
authentication as an example to describe how to call WebSocket.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 755

https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/inference-modelarts-0023.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/inference-modelarts-0024.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/inference-modelarts-0025.html

1. Establish a WebSocket connection.
2. Exchange data between the WebSocket client and the server.

Step 1 Establish a WebSocket connection.

1. Open Postman of a version later than 8.5, for example, 10.12.0. Click in
the upper left corner and choose File > New. In the displayed dialog box,
select WebSocket Request (beta version currently).

Figure 9-39 WebSocket Request

2. Configure parameters for the WebSocket connection.
Select Raw in the upper left corner. Do not select Socket.IO (a type of
WebSocket implementation, which requires that both the client and the server
run on Socket.IO). In the address box, enter the API Address obtained on the
Usage Guides tab on the service details page. If there is a finer-grained URL
in the custom image, add the URL to the end of the address. If queryString is
available, add this parameter in the params column. Add authentication
information into the header. The header varies depending on the
authentication mode, which is the same as that in the HTTPS-compliant
inference service. Click Connect in the upper right corner to establish a
WebSocket connection.

Figure 9-40 Obtaining the API address

NO TE

– If the information is correct, CONNECTED will be displayed in the lower right
corner.

– If establishing the connection failed and the status code is 401, check the
authentication.

– If a keyword such as WRONG_VERSION_NUMBER is displayed, check whether the
port configured in the custom image is the same as that configured in WebSocket
or WebSocket Secure.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 756

The following shows an established WebSocket connection.

Figure 9-41 Connection established

NO TICE

Preferentially check the WebSocket service provided by the custom image. The
type of implementing WebSocket varies depending on the tool you used.
Possible issues are as follows: A WebSocket connection can be established but
cannot be maintained, or the connection is interrupted after one request and
needs to be reconnected. ModelArts only ensures that it will not affect the
WebSocket status in a custom image (the API address and authentication
mode may be changed on ModelArts).

Step 2 Exchange data between the WebSocket client and the server.

After the connection is established, WebSocket uses TCP for full-duplex
communication. The WebSocket client sends data to the server. The
implementation types vary depending on the client, and the lib package may also
be different for the same language. Different implementation types are not
considered here.

The format of the data sent by the client is not limited by the protocol. Postman
supports text, JSON, XML, HTML, and Binary data. Take text as an example. Enter
the text data in the text box and click Send on the right to send the request to the
server. If the text is oversized, Postman may be suspended.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 757

Figure 9-42 Sending data

----End

9.4.5.2 Accessing a Real-Time Service Using Server-Sent Events

Context
Server-Sent Events (SSE) is a server push technology enabling a server to push
events to a client via an HTTP connection. This technology is usually used to
enable a server to push real-time data to a client, for example, a chat application
or a real-time news update.

SSE primarily facilitates unidirectional real-time communication from the server to
the client, such as streaming ChatGPT responses. In contrast to WebSockets, which
provide bidirectional real-time communication, SSE is designed to be more
lightweight and simpler to implement.

Prerequisites
The image for importing the model is SSE-compliant.

Constraints
● SSE supports only the deployment of real-time services.
● It supports only real-time services deployed using models imported from

custom images.
● When you call an API to access a real-time service, the size of the prediction

request body and the prediction time are subject to the following limitations:
– The size of a request body cannot exceed 12 MB. Otherwise, the request

will fail.
– Due to the limitation of API Gateway, the prediction duration of each

request does not exceed 40 seconds.

Calling an SSE Real-Time Service
The SSE protocol itself does not introduce new authentication mechanisms; it
relies on the same methods as HTTP requests.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 758

You can use one of the following authentication methods provided by ModelArts:

● Accessing a Real-Time Service Through Token-based Authentication

● Accessing a Real-Time Service Through AK/SK-based Authentication

● Accessing a Real-Time Service Through App Authentication

The following section uses GUI software Postman for prediction and token
authentication as an example to describe how to call an SSE service.

Figure 9-43 Calling an SSE service

Figure 9-44 Response header Content-Type

NO TE

In normal cases, the value of Content-Type in the response header is text/event-
stream;charset=UTF-8.

9.5 Deploying a Model as a Batch Inference Service
After a model is prepared, you can deploy it as a batch service. The Model
Deployment > Batch Services page lists all batch services.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 759

Prerequisites
● A ModelArts model in the Normal state is available.
● Data to be processed in batches has been uploaded to OBS.
● At least one empty folder has been created in OBS for storing the output.

Context
● You can create up to 1,000 batch services.
● Based on the input request (JSON or file) defined by the model, different

parameters are entered. If the model input is a JSON file, a configuration file
is required to generate a mapping file. If the model input is a file, no mapping
file is required.

Procedure
1. Log in to the ModelArts console. In the navigation pane, choose Model

Deployment > Batch Services.
2. Click Deploy in the upper left corner.
3. Configure parameters.

a. Enter basic information, including Name and Description. A name is
generated by default, for example, service-bc0d, which you can modify.

b. Configure other parameters, including the resource pool and model
configurations.

Table 9-23 Parameters

Parameter Description

Resource Pool Public Resource Pool
CPU and GPU public resource pools are available for
you to select. To use a public resource pool, contact
the administrator to create one.

Dedicated Resource Pool
Select a specification from the resource pool
specifications.

Model Source Choose My Model or My Subscriptions as needed.

Model and
Version

Select the model and version that are in the
Normal state.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 760

Parameter Description

Input Path Select the OBS directory where the uploaded data is
stored. Select a folder or a .manifest file. For details
about the specifications of the .manifest file, see
Manifest File Specifications.
NOTE

● If the input data is an image, ensure that the size of a
single image is less than 12 MB.

● If the input data is in CSV format, ensure that no
Chinese character is included.

● If the input data is in CSV format, ensure that the file
size does not exceed 12 MB.

● If an image or CSV file is larger than 12 MB, an error is
reported. In this case, resize the file or contact
technical support to adjust the file size limit.

Request Path URL used for calling the model API in a batch
service, and also the request path of the model
service. Its value is obtained from the url field of
apis in the model configuration file.

Mapping
Relationship

If the model input is in JSON format, the system
automatically generates the mapping based on the
configuration file corresponding to the model. If the
model input is other file, mapping is not required.
The mapping file is generated automatically. Enter
the field index corresponding to each parameter in
the CSV file. The index starts from 0.
Mapping rule: The mapping rule comes from the
input parameter (request) in the model
configuration file config.json. When type is set to
string, number, integer, or boolean, you are
required to set the index parameter. For details
about the mapping rule, see Mapping Example.
The index must be a positive integer starting from
0. If the value of index does not comply with the
rule, this parameter is ignored in the request. After
the mapping rule is configured, the CSV data must
be separated by commas (,).

Output Path The path for storing the batch prediction results.
You can select an empty folder you created.

Instance Flavor The system provides available compute resources
matching your model. Select an available resource
from the drop-down list.
For example, if the model comes from an ExeML
project, the compute resources are automatically
associated with the ExeML specifications for use.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 761

Parameter Description

Instances Number of instances for the current model version.
If you set the number of nodes to 1, the standalone
computing mode is used. If you set the number of
nodes to a value greater than 1, the distributed
computing mode is used. Select a computing mode
based on your actual needs.

Environment
Variable

Set environment variables and inject them to the
pod. To ensure data security, do not enter sensitive
information, such as plaintext passwords, in
environment variables.

Timeout Timeout of a single model, including both the
deployment and startup time. The default value is
20 minutes. The value must range from 3 to 120.

Runtime Log
Output

This feature is disabled by default. The runtime logs
of batch services are stored only in the ModelArts
log system. You can query the runtime logs in the
Logs tab of the service details page.
If this feature is enabled, the runtime logs of batch
services will be exported and stored in Log Tank
Service (LTS). LTS automatically creates log groups
and log streams and caches run logs generated
within seven days by default. For details about LTS
log management, see Log Tank Service.
NOTE

● This cannot be disabled once it is enabled.
● You will be billed for log query and storage features

provided by LTS. For details, see LTS Pricing Details.
● Do not print unnecessary audio log files. Otherwise,

system logs may fail to be displayed, and the error
message "Failed to load audio" may be displayed.

4. Confirm the configurations and complete service deployment as prompted.

Deploying a service generally requires a period of time, which may be several
minutes or tens of minutes depending on the amount of your data and
resources.

NO TE

Once a batch service is deployed, it will start immediately. You will be billed for the
chosen resources while it is running.

You can go to the batch service list to view the basic information about the
batch service. In the batch service list, after the status of the newly deployed
service changes from Deploying to Running, the service is deployed.

Manifest File Specifications
ModelArts batch services support manifest files, which describe data input and
output.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 762

https://support.huaweicloud.com/intl/en-us/productdesc-lts/lts-03201.html
https://www.huaweicloud.com/intl/en-us/pricing/index.html#/lts

Example input manifest file
● File name: test.manifest
● File content:

{"source": "obs://test/data/1.jpg"}
{"source": "s3://test/data/2.jpg"}
{"source": "https://infers-data.obs.cn-north-1.myhuaweicloud.com:443/xgboosterdata/data.csv?
AccessKeyId=2Q0V0TQ461N26DDL18RB&Expires=1550611914&Signature=wZBttZj5QZrReDhz1uDzwve
8GpY%3D&x-obs-security-token=gQpzb3V0aGNoaW5hixvY8V9a1SnsxmGoHYmB1SArYMyqnQT-
ZaMSxHvl68kKLAy5feYvLDM..."}

● Requirements on the file:

a. The file name extension must be .manifest.
b. The file content must be in JSON format. Each line describes a piece of

input data, which must be a specific file instead of a folder.
c. JSON content requires a source field, which must be an OBS file address

in either of the following formats:

i. Bucket path <obs path>{{Bucket name}}/{{Object name}}/File name,
which is used to access your OBS data. You can obtain the path by
accessing the OBS object. <obs path> can be obs:// or s3://.

ii. Share link generated by OBS, including signature information. It
applies to accessing OBS data of other users. The link has a validity
period. Perform operations within the period.

Example output manifest file

A manifest file will be generated in the output directory of the batch service.
● Assume that the output path is //test-bucket/test/. The result is stored in the

following path:
OBS bucket or directory name
├── test-bucket
│ ├── test
│ │ ├── infer-result-{{task_id}}.manifest
│ │ ├── infer-result
│ │ │ ├── 1.jpg_result.txt
│ │ │ ├── 2.jpg_result.txt

● Content of the infer-result-0.manifest file:
{"source": "obs://obs-data-bucket/test/data/1.jpg","result":"SUCCESSFUL","inference-loc": "obs://test-
bucket/test/infer-result/1.jpg_result.txt"}
{"source": "s3://obs-data-bucket/test/data/2.jpg","result":"FAILED","error_message": "Download file
failed."}
{"source ": "https://infers-data.obs.example.com:443/xgboosterdata/2.jpg?
AccessKeyId=2Q0V0TQ461N26DDL18RB&Expires=1550611914&Signature=wZBttZj5QZrReDhz1uDzwve
8GpY%3D&x-obs-security-token=gQpzb3V0aGNoaW5hixvY8V9a1SnsxmGoHYmB1SArYMyqnQT-
ZaMSxHvl68kKLAy5feYvLDMNZWxzhBZ6Q-3HcoZMh9gISwQOVBwm4ZytB_m8sg1fL6isU7T3CnoL9jmv
DGgT9VBC7dC1EyfSJrUcqfB_N0ykCsfrA1Tt_IQYZFDu_HyqVk-
GunUcTVdDfWlCV3TrYcpmznZjliAnYUO89kAwCYGeRZsCsC0ePu4PHMsBvYV9gWmN9AUZIDn1sfRL4vo
BpwQnp6tnAgHW49y5a6hP2hCAoQ-95SpUriJ434QlymoeKfTHVMKOeZxZea-
JxOvevOCGI5CcGehEJaz48sgH81UiHzl21zocNB_hpPfus2jY6KPglEJxMv6Kwmro-
ZBXWuSJUDOnSYXI-3ciYjg9-
h10b8W3sW1mOTFCWNGoWsd74it7l_5-7UUhoIeyPByO_REwkur2FOJsuMpGlRaPyglZxXm_jfdLFXobYtz
Zhbul4yWXga6oxTOkfcwykTOYH0NPoPRt5MYGYweOXXxFs3d5w2rd0y7p0QYhyTzIkk5CIz7FlWNapFISL
7zdhsl8RfchTqESq94KgkeqatSF_iIvnYMW2r8P8x2k_eb6NJ7U_q5ztMbO9oWEcfr0D2f7n7Bl_nb2HIB_H9tj
zKvqwngaimYhBbMRPfibvttW86GiwVP8vrC27FOn39Be9z2hSfJ_8pHej0yMlyNqZ481FQ5vWT_vFV3JHM-
7I1ZB0_hIdaHfItm-J69cTfHSEOzt7DGaMIES1o7U3w%3D%3D","result":"SUCCESSFUL","inference-loc":
"obs://test-bucket/test/infer-result/2.jpg_result.txt"}

● File format:

a. The file name is infer-result-{{task_id}}.manifest, where task_id is the
batch task ID, which is unique for a batch service.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 763

b. If a large number of files need to be processed, multiple manifest files
may be generated with the same suffix .manifest and are distinguished
by suffix, for example, infer-result-{{task_id}}_1.manifest.

c. The infer-result-{{task_id}} directory is created in the manifest directory
to store the file processing result.

d. The file content is in JSON format. Each line describes the output result
of a piece of input data.

e. The JSON file contains multiple fields:

i. source: input data description, which is the same as that of the input
manifest file

ii. result: file processing result, which can be SUCCESSFUL or FAILED
iii. inference-loc: output result path. This field is available when result is

SUCCESSFUL. The format is obs://{{Bucket name}}/{Object name}.
iv. error_message: error information. This field is available when the

result is FAILED.

Mapping Example
The following example shows the relationship between the configuration file,
mapping rule, CSV data, and inference request.

The following uses a file for prediction as an example:

[
 {
 "method": "post",
 "url": "/",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "input_1": {
 "type": "number"
 },
 "input_2": {
 "type": "number"
 },
 "input_3": {
 "type": "number"
 },
 "input_4": {
 "type": "number"
 }
 }
 }
]
 }
 }
 }
 }
 }

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 764

 }
 }
]

The ModelArts console automatically resolves the mapping relationship from the
configuration file as shown below. When calling a ModelArts API, configure the
mapping by following the rule.

{
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "properties": {
 "req_data": {
 "type": "array",
 "items": [
 {
 "type": "object",
 "properties": {
 "input_1": {
 "type": "number",
 "index": 0
 },
 "input_2": {
 "type": "number",
 "index": 1
 },
 "input_3": {
 "type": "number",
 "index": 2
 },
 "input_4": {
 "type": "number",
 "index": 3
 }
 }
 }
]
 }
 }
 }
 }
}

The following shows the format of the CSV data for inference. The data must be
separated by commas (,).

5.1,3.5,1.4,0.2
4.9,3.0,1.4,0.2
4.7,3.2,1.3,0.2

Depending on the defined mapping relationship, the inference request is shown
below, whose format is similar to that for real-time services.

{
 "data": {
 "req_data": [{
 "input_1": 5.1,
 "input_2": 3.5,
 "input_3": 1.4,
 "input_4": 0.2
 }]
 }
}

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 765

Viewing the Batch Service Prediction Result
When deploying a batch service, you can select the location of the output data
directory. You can view the running result of the batch service that is in the
Completed state.

Step 1 Log in to the ModelArts console and choose Model Deployment > Batch
Services.

Step 2 Click the name of the target service in the Completed status. The service details
page is displayed.
● You can view the service name, status, ID, input path, output path, and

description.

● You can click next to Description to edit the description.

Step 3 Obtain the detailed OBS path next to Output Path, switch to the path and obtain
the batch service prediction results, including the prediction result file and the
model prediction result.

If the prediction is successful, the directory contains the prediction result file and
model prediction result. Otherwise, the directory contains only the prediction
result file.

● Prediction result file: The file is in the xxx.manifest format and contains the
file path and prediction result.

● Model prediction output:
– If images are input, a result file is generated for each image in the Image

name_result.txt format, for example,
IMG_20180919_115016.jpg_result.txt.

– If audio files are input, a result file is generated for each audio file in the
Audio file name__result.txt format, for example, 1-36929-
A-47.wav_result.txt.

– If table data is input, the result file is generated in the Table
name__result.txt format, for example, train.csv_result.txt.

----End

9.6 Managing ModelArts Models

9.6.1 Viewing ModelArts Model Details

Viewing the Model List
You can view all created models on the model list page. The model list page
displays the following information.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 766

Table 9-24 Model list

Parameter Description

Model Name Model name.

Latest Version Latest version of a model.

Status Model status.

Deployment Type Types of the services that a model can be deployed as.

Versions Number of model versions.

Request Mode Request mode of real-time services.
● Synchronous request: one-off inference with results

returned synchronously (within 60s). This mode is
suitable for images and small video files.

● Asynchronous request: one-off inference with results
returned asynchronously (longer than 60s). This mode is
suitable for real-time video inference and large videos.

Created Model creation time.

Description Model description.

Operation ● Deploy: Deploy a model as real-time services, edge
services, or batch services.

● Create Version: Create a model version. The settings of
the last version are used by default, except for the
version. You can change the parameter settings.

● Delete: Delete a model.
NOTE

If a model version has been deployed as a service, you must
delete the associated service before deleting the model version.
A deleted model cannot be recovered.

Click the number in Versions to view the version list.

Figure 9-45 Version list

The version list displays the following information.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 767

Table 9-25 Version list

Parameter Description

Version Current version of a model.

Status Model status.

Deployment Type Types of the services that a model can be deployed as.

Model Size Model size.

Model Source Model source.

Created Model creation time.

Description Model description.

Operation ● Deploy: Deploy a model as real-time services, edge
services, or batch services.

● Delete: Delete a version of a model.

Viewing Model Details

After a model is created, you can view the model information on the model details
page.

1. Log in to the ModelArts console, and choose Model Management from the
navigation pane.

2. Click the name of the target model to access its details page.
On the model details page, you can view the basic information and precision
of the model, and switch tab pages to view more information.

Table 9-26 Basic model information

Parameter Description

Name Model name.

Status Model status.

Version Current version of a model.

ID Model ID.

Description Click the edit button to add the description of a model.

Deployment Type Types of the services that a model can be deployed as.

Meta Model
Source

Source of the meta model, which can be training jobs,
OBS, or container images.

Training Name Associated training job if the meta model comes from a
training job. Click the training job name to go to its
details page.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 768

Parameter Description

Training Version Training job version if the meta model comes from an
old-version training job.

Storage path of
the meta model

Path to the meta model if the meta model comes from
OBS.

Container Image
Storage Path

Path to the container image if the meta model comes
from a container image.

AI Engine AI engine if the meta model comes from a training job
or OBS.

Engine Package
Address

Engine package address if the meta model comes from
OBS and AI Engine is Custom.

Runtime
Environment

Runtime environment on which the meta model
depends if the meta model comes from a training job
or OBS and a preset AI engine is used.

Container API Protocol and port number for starting the model if the
meta model comes from OBS (AI Engine is Custom) or
a container image.

Inference Code Path to the inference code if the meta model comes
from an olde-version training job.

Image
Replication

Image replication status for meta models from a
container image.

Dynamic loading Dynamic loading status if the meta model comes from
a training job or OBS.

Size Model size.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 769

Parameter Description

Health Check Displays health check status if the meta model comes
from OBS or a container image. When health check is
enabled, the probe parameter settings are displayed.
● Startup Probe: This probe checks if the application

instance has started. If a startup probe is provided,
all other probes are disabled until it succeeds. If the
startup probe fails, the instance is restarted. If no
startup probe is provided, the default status is
Success.

● Readiness Probe: This probe verifies whether the
application instance is ready to handle traffic. If the
readiness probe fails (meaning the instance is not
ready), the instance is taken out of the service load
balancing pool. Traffic will not be routed to the
instance until the probe succeeds.

● Liveness Probe: This probe monitors the application
health status. If the liveness probe fails (indicating
the application is unhealthy), the instance is
automatically restarted.

The probe parameters include Check Mode, Health
Check URL (displayed when Check Mode is set to
HTTP request), Health Check Command (displayed
when Check Mode is set to Command), Health Check
Period, Delay, Timeout, and Maximum Failures.

Model
Description

Description document added during the creation of a
model.

Instruction Set
Architecture

System architecture.

Inference
Accelerator

Type of inference accelerator cards.

Table 9-27 Model details tabs

Parameter Description

Model Precision Model recall, precision, accuracy, and F1 score of a
model.

Parameter
Configuration

API configuration, input parameters, and output
parameters of a model.

Runtime
Dependency

Model dependency on the environment. If creating a
job failed, edit the runtime dependency. After the
modification is saved, the system will automatically use
the original image to create the job again.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 770

Parameter Description

Events The progress of key operations during model creation.
Events are stored for three months and will be
automatically cleared then.
For details about how to view events of a model, see
Viewing ModelArts Model Events.

Constraint Displays the constraints of service deployment, such as
the request mode, boot command, and model
encryption, based on the settings during model
creation. For models in asynchronous request mode,
parameters including the input mode, output mode,
service startup parameters, and job configuration
parameters can be displayed.

Associated
Services

The list of services that a model was deployed. Click a
service name to go to the service details page.

9.6.2 Viewing ModelArts Model Events
During the creation of a model, every key event is automatically recorded. You can
view the events on the details page of the model at any time.

The following table lists the events, based on which you can locate faults occurred
during model creation. The following table lists the available events.

Type Event (xxx should be replaced with
the actual value.)

Solution

Normal The model starts to import. N/A

Abnormal Failed to create the image. Locate and rectify
the fault based on
the error
information. FAQs

Abnormal The custom image does not support
specified dependencies.

The runtime
dependencies cannot
be configured when
a custom image is
imported. Install the
pip dependency
package in the
Dockerfile that is
used to create the
image. FAQs

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 771

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0206.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0243.html

Type Event (xxx should be replaced with
the actual value.)

Solution

Abnormal Only custom images support
swr_location.

Delete the
swr_location field
from the model
configuration file
config.json and try
again.

Abnormal The health check API of a custom
image must be xxx.

Modify the health
check API of the
custom image and
try again.

Normal The image creation task is in the xxx
state.

N/A

Abnormal Label xxx does not exist in image xxx. Contact technical
support.

Abnormal Invalid parameter value xxx exists in
the model configuration file.

Delete invalid
parameters from the
model configuration
file and try again.

Abnormal Failed to obtain the labels of image
xxx.

Contact technical
support.

Abnormal Failed to import data because xxx is
larger than xxx GB.

The size of the
model or image
exceeds the upper
limit. Downsize the
model or image and
import it again.
FAQs

Abnormal User xxx does not have OBS
permission obs:object:PutObjectAcl.

The IAM user does
not have the
obs:object:PutObject
Acl permission on
OBS. Add the agency
permission for the
IAM user. FAQs

Abnormal Creating the image timed out. The
timeout duration is xxx minutes.

There is a timeout
limit for image
building using
ImagePacker.
Simplify the code to
improve efficiency.
FAQs

Normal Model description updated. N/A

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 772

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0257.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0206.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0262.html

Type Event (xxx should be replaced with
the actual value.)

Solution

Normal Model runtime dependencies not
updated.

N/A

Normal Model runtime dependencies
updated. Recreating the image.

N/A

Abnormal SWR traffic control triggered. Try
again later.

SWR traffic control
triggered. Try again
later.

Normal The system is being upgraded. Try
again later.

N/A

Abnormal Failed to obtain the source image. An
error occurred in authentication. The
token has expired.

Contact technical
support.

Abnormal Failed to obtain the source image.
Check whether the image exists.

Contact technical
support.

Normal Source image size calculated. N/A

Normal Source image shared. N/A

Abnormal Failed to create the image due to
traffic control. Try again later.

Traffic control
triggered. Try again
later.

Abnormal Failed to send the image creation
request.

Contact technical
support.

Abnormal Failed to share the source image.
Check whether the image exists or
whether you have the permission to
share the image.

Check whether the
image exists or
whether you have
the permission to
share the image.

Normal The model imported. N/A

Normal Model file imported. N/A

Normal Model size calculated. N/A

Abnormal Failed to import the model. For details about
how to locate and
rectify the fault, see
FAQs.

Abnormal Failed to copy the model file. Check
whether you have the OBS
permission.

Check whether you
have the OBS
permission. FAQs

Abnormal Failed to schedule the image creation
task.

Contact technical
support.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 773

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0204.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0206.html

Type Event (xxx should be replaced with
the actual value.)

Solution

Abnormal Failed to start the image creation
task.

Contact technical
support.

Abnormal The Roman image has been created
but cannot be shared with resource
tenants.

Contact technical
support.

Normal Image created. N/A

Normal The image creation task started. N/A

Normal The environment image creation task
started.

N/A

Normal The request for creating an
environment image received.

N/A

Normal The request for creating an image
received.

N/A

Normal An existing environment image is
used.

N/A

Abnormal Failed to create the image. For
details, see image creation logs.

View the build logs
to locate and rectify
the fault. FAQs

Abnormal Failed to create the image due to an
internal system error. Contact
technical support.

Contact technical
support.

Abnormal Failed to import model file xxx
because it is larger than 5 GB.

The size of the
model file xxx is
greater than 5 GB.
Downsize the model
file and try again, or
use dynamic loading
to import the model
file. FAQs

Abnormal Failed to create the OBS bucket due
to an internal system error. Contact
technical support.

Contact technical
support.

Abnormal Failed to calculate the model size.
Subpath xxx does not exist in path
xxx.

Correct the subpath
and try again, or
contact technical
support.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 774

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0204.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0258.html

Type Event (xxx should be replaced with
the actual value.)

Solution

Abnormal Failed to calculate the model size.
The model of the xxx type does not
exist in path xxx.

Check the storage
location of the
model of the xxx
type, correct the
path, and try again,
or contact technical
support.

Warning Failed to calculate the model size.
More than one xxx model file is
stored in path xxx.

N/A

During model creation, key events can both be manually and automatically
refreshed.

Viewing Events
1. Log in to the ModelArts console. In the navigation pane on the left, choose

Model Management. In the model list, click the name of the target model to
go to its details page.

2. View the events in the Events tab.

9.6.3 Managing ModelArts Model Versions
For model lineage and tuning, ModelArts provides model versioning.

Prerequisites

You have created a model in ModelArts.

Creating a Version

On the Model Management page, click Create Version in the Operation column
of the target model. On the Create Version page, configure parameters. For
details, see Creating a Model. Click Create now.

Deleting a Version

On the Model Management page, click the number in Versions. Click Delete in
the Operation column of the target version.

NO TE

If a model version has been deployed as a service, you must delete the associated service
before deleting the model version. A deleted version cannot be recovered.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 775

Deleting a Model
On the Model Management page, click Delete in the Operation column of the
target model to delete it.

NO TE

If a model version has been deployed as a service, you must delete the associated service
before deleting the model version. A deleted model cannot be recovered.

9.7 Managing a Synchronous Real-Time Service

9.7.1 Viewing Details About a Real-Time Service
After a model is deployed as a real-time service, you can access the service page
to view its details.

1. Log in to the ModelArts console and choose Model Deployment > Real-Time
Services.

2. Click the name of the target service to access its details page.
View service information. For details, see Table 9-28.

Table 9-28 real-time service parameters

Parameter Description

Name Name of the real-time service.

Status Status of the real-time service.

Source AI application source of the real-time service.

Service ID Real-time service ID.

Description Service description, which you can click the edit button to
modify.

Resource
Pool

Resource pool specifications used by the service. If the
public resource pool is used for deployment, this parameter
is not displayed.

Custom
Settings

Customized configurations based on real-time service
versions. This allows version-based traffic distribution
policies and configurations. Enable this option and click
View Settings to customize the settings. For details, see
Modifying Customized Settings.

Traffic Limit Maximum number of times a service can be accessed within
a second.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 776

Parameter Description

Runtime Log
Output

This feature is disabled by default. The runtime logs of real-
time services are stored only in the ModelArts log system.
If this feature is enabled, the runtime logs of real-time
services will be exported and stored in Log Tank Service
(LTS). LTS automatically creates log groups and log streams
and caches run logs generated within seven days by default.
For details about LTS log management, see Log Tank
Service.
NOTE

● This cannot be disabled once it is enabled.
● You will be billed for log query and storage features provided by

LTS. For details, see LTS Pricing Details.
● Do not print unnecessary audio log files. Otherwise, system logs

may fail to be displayed, and the error message "Failed to load
audio" may be displayed.

WebSocket Whether to upgrade to the WebSocket service.

3. Switch between tabs on the details page of a real-time service to view more

details. For details, see Table 9-29.

Table 9-29 Details of a real-time service

Parameter Description

Usage Guides This page displays the API URL, model information,
input parameters, and output parameters. You can click

 to copy the API URL to call the service. If application
authentication is supported, you can view the API URL
and authorization management details, including the
application name, AppKey, and AppSecret, in the Usage
Guides. You can also add or cancel authorization for an
application.

Prediction You can perform real-time prediction on this page. For
details, see Testing Real-Time Service Prediction.

Instance Instance information of the asynchronous real-time
service. The number of instances is the same as the
number of instances set during service deployment. If
the service is modified or the service is abnormal, the
number of instances changes. To rebuild an abnormal
instance, click Delete. After the instance is deleted, a
new instance with the same compute specifications is
automatically created.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 777

https://support.huaweicloud.com/intl/en-us/productdesc-lts/lts-03201.html
https://support.huaweicloud.com/intl/en-us/productdesc-lts/lts-03201.html
https://www.huaweicloud.com/intl/en-us/pricing/index.html#/lts

Parameter Description

Configuration
Updates

This page displays Current Configurations and Update
History.
● Current Configurations: model name, version,

status, instance flavor, traffic ratio, number of
instances, deployment timeout interval, environment
variables, and storage mounting. If the service is
deployed in a dedicated resource pool, the resource
pool information is also displayed.

● Update History: historical model information.

Monitoring This page displays resource usage and model calls.
● Resource Usage: includes the used and available

CPU, memory, GPU, and NPU resources.
● AI Application Calls: indicates the number of model

calls. The statistics collection starts after the model
status changes to Ready. (This parameter is not
displayed for WebSocket services.)

Events This page displays key operations during service use,
such as the service deployment progress, detailed
causes of deployment exceptions, and time points when
a service is started, stopped, or modified.
Events are saved for one month and will be
automatically cleared then.
For details about how to view events of a service, see
Viewing Events of a Real-Time Service.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 778

Parameter Description

Logs This page displays the log information about each
model in the service. You can view logs generated in
the latest 5 minutes, latest 30 minutes, latest 1 hour,
and user-defined time segment.
You can select the start time and end time when
defining a time segment.
If this feature is enabled, the logs stored in LTS will be
displayed. You can click View Complete Logs on LTS to
view all logs.
Log search rules:
● Do not enter a string that contains any of the

following delimiters: ,'";=()[]{}@&<>/:\n\t\r.
● You can use exact search by keyword. A keyword

refers to the word between two adjacent delimiters.
● You can use fuzzy search by keyword. For example,

you can enter error, er?or, rro*, or er*r.
● You can enter a phrase for exact search. For

example, Start to refresh.
● Before enabling this feature, you can combine

keywords with && or ||. For example, query
logs&&erro* or query logs||erro*. After enabling
this feature, you can combine keywords with AND or
OR. For example, query logs AND erro* or query
logs OR erro*.

Tags Tags that have been added to the service. Tags can be
added, modified, and deleted.
For details about how to use tags, see Using TMS Tags
to Manage Resources by Group

Cloud Shell You can use Cloud Shell provided by the ModelArts
console to log in to the instance container of a running
real-time service. For details, see Using Cloud Shell to
Debug a Real-Time Service Instance Container.

Modifying Customized Settings
A customized configuration rule consists of the configuration condition (Setting),
access version (Version), and customized running parameters (including Setting
Name and Setting Value).

You can configure different settings with customized running parameters for
different versions of a real-time service.

The priorities of customized configuration rules are in descending order. You can
change the priorities by dragging the sequence of customized configuration rules.

After a rule is matched, the system will no longer match subsequent rules. A
maximum of 10 configuration rules can be configured.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 779

https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/resmgmt-modelarts_0063.html
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/resmgmt-modelarts_0063.html

Table 9-30 Parameters for Custom Settings

Parameter Man
dator
y

Description

Setting Yes Expression of the Spring Expression Language (SPEL) rule.
Only the equal, matches, and hashCode expressions of
the character type are supported.

Version Yes Access version for a customized service configuration rule.
When a rule is matched, the real-time service of the
version is requested.

Setting
Name

No Key of a customized running parameter, consisting of a
maximum of 128 characters.
Configure this parameter if the HTTP message header is
used to carry customized running parameters to a real-
time service.

Setting
Value

No Value of a customized running parameter, consisting of a
maximum of 256 characters.
Configure this parameter if the HTTP message header is
used to carry customized running parameters to a real-
time service.

Customized settings can be used in the following scenarios:

● If multiple versions of a real-time service are deployed for gray release,
customized settings can be used to distribute traffic by user.

Table 9-31 Built-in variables

Built-in Variable Description

DOMAIN_NAME Account name used to call an inference request

DOMAIN_ID Account ID used to call an inference request

PROJECT_NAME Project name used to call an inference request

PROJECT_ID Project ID used to call an inference request

USER_NAME Username used to call an inference request

USER_ID User ID used to call an inference request

Pound key (#) indicates that a variable is referenced. The matched character
string must be enclosed in single quotation marks.
#{Built-in variable} == 'Character string'
#{Built-in variable} matches 'Regular expression'

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 780

– Example 1:
If the account name in the inference request is User A, the specified
version is matched.
#DOMAIN_NAME == 'zhangsan'

– Example 2:
If the account name in the inference request starts with op, the specified
version is matched.
#DOMAIN_NAME matches 'op.*'

Table 9-32 Common regular expressions

Characte
r

Description

. Match any single character except \n. To match any
character including \n, use (.|\n).

* Match the subexpression that it follows for zero or multiple
times. For example, zo* can match z and zoo.

+ Match the subexpression that it follows for once or multiple
times. For example, zo+ can match zo and zoo, but cannot
match z.

? Match the subexpression that it follows for zero or one
time. For example, do(es)? can match does or do in does.

^ Match the start of the input string.

$ Match the end of the input string.

{n} n is a non-negative integer, which matches exactly n
number of occurrences of an expression. For example, o{2}
cannot match o in Bob, but can match two os in food.

x|y Match x or y. For example, z|food can match z or food, and
(z|f)ood can match zood or food.

[xyz] Character set, where any single character in it can be
matched. For example, [abc] can match a in plain.

Figure 9-46 Traffic distribution by user

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 781

● If multiple versions of a real-time service are deployed for gated launch,
customized settings can be used to access different versions through the
header.
Start with #HEADER_, indicating that the header is referenced as a condition.
#HEADER_{key} == '{value}'
#HEADER_{key} matches '{value}'

– Example 1:
If the header of an inference HTTP request contains a version and the
value is 0.0.1, the condition is met. Otherwise, the condition is not met.
#HEADER_version == '0.0.1'

– Example 2:
If the header of an inference HTTP request contains testheader and the
value starts with mock, the rule is matched.
#HEADER_testheader matches 'mock.*'

– Example 3:
If the header of an inference HTTP request contains uid and the hash
code value meets the conditions described in the following algorithm, the
rule is matched.
#HEADER_uid.hashCode() % 100 < 10

Figure 9-47 Using the header to access different versions

● If a real-time service version supports different runtime configurations, you
can use Setting Name and Setting Value to specify customized runtime
parameters so that different users can use different running configurations.
Example:
When user A accesses the model, the user uses configuration A. When user B
accesses the model, the user uses configuration B. When matching a running
configuration, ModelArts adds a header to the request and also the
customized running parameters specified by Setting Name and Setting
Value.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 782

Figure 9-48 Customized running parameters added for a customized
configuration rule

9.7.2 Viewing Events of a Real-Time Service
During the whole lifecycle of a service, every key event is automatically recorded.
You can view the events on the details page of the service at any time.

This helps you better understand the service deployment and running process and
accurately locate faults when a task exception occurs. You can check the following
events:

Table 9-33 Events

Event Type Event (xxx should be replaced with the
actual value.)

Solution

Normal The service starts to deploy. N/A

Abnormal Insufficient resources. Wait until idle
resources are sufficient.

Wait until the
resources are
released and try
again.

Abnormal Insufficient xxx. The scheduling failed.
Supplementary information: xxx

Learn about
resource
insufficiency
details based on
the
supplementary
information. For
details, see
FAQs.

Normal The image starts to create. N/A

Abnormal Failed to create model image xxx. For
details, see logs :\nxxx.

Locate and
rectify the fault
based on the
build logs.

Abnormal Failed to create the image. Contact
technical
support.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 783

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_05_3155.html

Event Type Event (xxx should be replaced with the
actual value.)

Solution

Normal The image is created. N/A

Abnormal Service xxx failed. Error: xxx Locate and
rectify the fault
based on the
error
information.

Abnormal Failed to update the service. Perform a
rollback.

Contact
technical
support.

Normal The service is being updated. N/A

Normal The service is being started. N/A

Normal The service is being stopped. N/A

Normal The service has been stopped. N/A

Normal Auto stop has been disabled. N/A

Normal Auto stop has been enabled. The service
will stop after xs.

N/A

Normal The service stops when the auto stop time
expires.

N/A

Abnormal The service is stopped because the quota
exceeds the upper limit.

Contact
technical
support.

Abnormal Failed to automatically stop the service.
Error: xxx

Locate and
rectify the fault
based on the
error
information.

Normal Service instances deleted from resource
pool xxx.

N/A

Normal Service instances stopped in resource pool
xxx.

N/A

Abnormal The batch service failed. Try again later.
Error: xxx

Locate and
rectify the fault
based on the
error
information.

Normal The service has been executed. N/A

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 784

Event Type Event (xxx should be replaced with the
actual value.)

Solution

Abnormal Failed to stop the service. Error: xxx Locate and
rectify the fault
based on the
error
information.

Normal The subscription license xxx is to expire. N/A

Normal Service xxx started. N/A

Abnormal Failed to start service xxx. For details
about how to
locate and
rectify the fault,
see FAQs.

Abnormal Service deployment timed out. Error: xxx Locate and
rectify the fault
based on the
error
information.

Normal Failed to update the service. The update
has been rolled back.

N/A

Abnormal Failed to update the service. The rollback
failed.

Contact
technical
support.

Normal [model 0.0.1] OBS bucket, OBS parallel
file system, or SFS Turbo mounted
successfully.
[%s] %s volume successfully.

N/A

During service deployment and running, key events can both be manually and
automatically refreshed.

Viewing Events
1. In the navigation pane of the ModelArts console, choose Model Deployment

> Real-Time Services. In the service list, click the name or ID of the target
service to go to its details page.

2. View the events in the Events tab.

9.7.3 Managing the Lifecycle of a Real-Time Service

Starting a Service
A service not in the Deploying state can be started. A service is billed from the
time when it is running. To start a service, use either of the following methods:

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 785

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0195.html

● Log in to the ModelArts console and choose Model Deployment from the
navigation pane. Go to the service management page of the target service.
Click Start in the Operation column to start the target service.

● Log in to the ModelArts console and choose Model Deployment from the
navigation pane. Go to the service management page of the target service.
Click the name of the target service to access its details page. Click Start in
the upper right corner of the page to start the service.

NO TE

Services deployed on ModelArts edge nodes or ModelArts edge resource pools cannot be
started.

Stopping a Service
A stopped service will no longer be billed. Stop a service in either of the following
ways:

● Log in to the ModelArts console and choose Model Deployment > Real-Time
Services. Choose More > Stop in the Operation column to stop the target
service.

● Log in to the ModelArts console and choose Model Deployment > Real-Time
Services. Click the name of the target service to access its details page. Click
Stop in the upper right corner of the page to stop the service.

NO TE

Services deployed on ModelArts edge nodes or ModelArts edge resource pools cannot
be stopped.

Deleting a Service
If a service is no longer in use, delete it to release resources.

Log in to the ModelArts console and choose Model Deployment > Real-Time
Services.
● In the real-time service list, choose More > Delete in the Operation column

of the target service to delete it.
● Select services in the real-time service list and click Delete above the list to

delete services in batches.
● Click the name of the target service. On the displayed service details page,

click Delete in the upper right corner to delete the service.

NO TE

● A deleted service cannot be recovered.
● A service cannot be deleted without agency authorization.
● If Advanced Log Management is enabled for a real-time service, you are advised to

delete the LTS logs and streams when you delete the service. This prevents additional
fees incurred by the logs and streams.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 786

Restarting a Service
You can restart a real-time service only when the service is in the Running or
Alarm state. Batch services and edge services cannot be restarted. You can restart
a real-time service in either of the following ways:

● Log in to the ModelArts console and choose Model Deployment > Real-Time
Services. Choose More > Restart in the Operation column to restart the
target service.

● Log in to the ModelArts console and choose Model Deployment > Real-Time
Services. Click the name of the target service to access its details page. Click
Restart in the upper right corner of the page to restart the service.

NO TE

Services deployed on ModelArts edge nodes or ModelArts edge resource pools cannot be
restarted.

9.7.4 Modifying a Real-Time Service
For a deployed service, you can modify its basic information to match service
changes and change the model version to upgrade it.

You can modify the basic information about a service in either of the following
ways:

Method 1: Modify the Service Information on the Service Management Page

Method 2: Modify the Service Information on the Service Details Page

Prerequisites
The service has been deployed. The service in the Deploying state cannot be
upgraded by modifying the service information.

Constraints
● Improper upgrade operations will interrupt services during the upgrade.
● ModelArts supports hitless rolling upgrade of real-time services in some

scenarios. Prepare for and fully verify the upgrade.

Table 9-34 Scenarios for hitless rolling upgrade

Meta Model Source Using a Public Resource
Pool

Using a Dedicated
Resource Pool

Training job Not supported Not supported

Container image Not supported Supported. The custom
image for creating a
model must meet
Specifications for
Custom Images.

OBS Not supported Not supported

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 787

Method 1: Modify the Service Information on the Service Management Page
1. Log in to the ModelArts console and choose Model Deployment from the

navigation pane. Go to the service management page of the target service.
2. In the service list, click Modify in the Operation column of the target service,

modify basic service information, and submit the modification task as
prompted.
When some parameters are modified, the system automatically restarts the
service for the modification to take effect. When you submit a service
modification task, if a restart is required, a dialog box will be displayed.
For details about the real-time service parameters, see Deploying a Model as
a Real-Time Service. To modify a real-time service, you also need to set Max.
Invalid Instances to set the maximum number of nodes that can be
concurrently upgraded, during which time these nodes are invalid.

Method 2: Modify the Service Information on the Service Details Page
1. Log in to the ModelArts console and choose Model Deployment from the

navigation pane. Go to the service management page of the target service.
2. Click the name of the target service to access its details page.
3. Click Modify in the upper right corner of the page, modify the service details,

and submit the modification task as prompted.
When some parameters are modified, the system automatically restarts the
service for the modification to take effect. When you submit a service
modification task, if a restart is required, a dialog box will be displayed.
For details about the real-time service parameters, see Deploying a Model as
a Real-Time Service. To modify a real-time service, you also need to set Max.
Invalid Instances to set the maximum number of nodes that can be
concurrently upgraded, during which time these nodes are invalid.

9.7.5 Viewing Performance Metrics of a Real-Time Service on
Cloud Eye

ModelArts Metrics

The cloud service platform provides Cloud Eye to help you better understand the
statuses of ModelArts real-time services and model loads. You can use Cloud Eye
to automatically monitor your ModelArts real-time services and model loads in
real time and manage alarms and notifications so that you can obtain the
performance metrics of ModelArts and models.

Table 9-35 ModelArts metrics

ID Name Description Value
Range

Monitored
Object

Monitorin
g Interval

cpu_usag
e

CPU
Usage

CPU usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 788

ID Name Description Value
Range

Monitored
Object

Monitorin
g Interval

mem_usa
ge

Memory
Usage

Memory usage
of ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

gpu_util GPU
Usage

GPU usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

gpu_mem
_usage

GPU
Memory
Usage

GPU memory
usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

npu_util NPU
Usage

NPU usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

npu_mem
_usage

NPU
Memory
Usage

NPU memory
usage of
ModelArts
Unit: %

≥ 0% ModelArts
model
loads

1 minute

successful
ly_called_t
imes

Number
of
Successfu
l Calls

Times that
ModelArts
services have
been
successfully
called
Unit: counts/
minute

≥ counts/
minute

ModelArts
model
loads
ModelArts
real-time
services

1 minute

failed_call
ed_times

Number
of Failed
Calls

Times that
ModelArts
services failed to
be called
Unit: counts/
minute

≥ counts/
minute

ModelArts
model
loads
ModelArts
real-time
services

1 minute

total_calle
d_times

Total
Calls

Times that
ModelArts
services are
called
Unit: counts/
minute

≥ counts/
minute

ModelArts
model
loads
ModelArts
real-time
services

1 minute

disk_read
_rate

Disk Read
Rate

Disk read rate of
ModelArts
Unit: bit/minute

≥ bit/
minute

ModelArts
model
loads

1 minute

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 789

ID Name Description Value
Range

Monitored
Object

Monitorin
g Interval

disk_write
_rate

Disk
Write
Rate

Disk write rate
of ModelArts
Unit: bit/minute

≥ bit/
minute

ModelArts
model
loads

1 minute

send_byte
s_rate

Uplink
rate

Outbound
network traffic
rate of
ModelArts.
Unit: bit/minute

≥ bit/
minute

ModelArts
model
loads

1 minute

recv_bytes
_rate

Downlink
rate

Inbound
network traffic
rate of
ModelArts.

≥ bit/
minute

ModelArts
model
loads

1 minute

req_count
_2xx

2xx
Response
s

Number of
times that the
API returns a 2xx
response

≥ counts/
minute

ModelArts
real-time
services

1 minute

req_count
_4xx

4xx Errors Number of
times that the
API returns a 4xx
error

≥ counts/
minute

ModelArts
real-time
services

1 minute

req_count
_5xx

5xx Errors Number of
times that the
API returns a 5xx
error

≥ counts/
minute

ModelArts
real-time
services

1 minute

avg_laten
cy

Average
Latency

Average latency
of the API

≥ ms ModelArts
real-time
services

1 minute

tp_99 TP99 Collects the
response
durations of
each call over
the last minute,
arranges them
in ascending
order, and then
excludes the top
1% of values.
The highest
remaining value
represents the
TP99.

≥ ms ModelArts
real-time
services

1 minute

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 790

ID Name Description Value
Range

Monitored
Object

Monitorin
g Interval

tp_999 TP99.9 Collects the
response
durations of
each call over
the last minute,
arranges them
in ascending
order, and then
excludes the top
0.1% of values.
The highest
remaining value
represents the
TP99.9.

≥ ms ModelArts
real-time
services

1 minute

If a monitored object has multiple dimensions, all dimensions are mandatory
when you use APIs to query the metrics.
● The following provides an example of using the multi-dimensional dim to

query a single monitoring metric:
dim.0=service_id,530cd6b0-86d7-4818-837f-935f6a27414d&dim.1="model_id,
3773b058-5b4f-4366-9035-9bbd9964714a

● The following provides an example of using the multi-dimensional dim to
query monitoring metrics in batches:
"dimensions": [
{
"name": "service_id",
"value": "530cd6b0-86d7-4818-837f-935f6a27414d"
}
{
"name": "model_id",
"value": "3773b058-5b4f-4366-9035-9bbd9964714a"
}
]

Table 9-36 Dimension description

Key Value

service_id Real-time service ID

model_id Model ID

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 791

Setting Alarm Rules
Setting alarm rules allows you to customize the monitored objects and notification
policies so that you can know the status of ModelArts real-time services and
models in a timely manner.

An alarm rule includes the alarm rule name, monitored object, metric, threshold,
monitoring interval, and whether to send a notification. This section describes how
to set alarm rules for ModelArts services and models.

NO TE

Only real-time services in the Running status can be interconnected with CES.

Prerequisites:

● A ModelArts real-time service has been created.
● ModelArts monitoring has been enabled on Cloud Eye. To do so, log in to the

Cloud Eye console. On the Cloud Eye page, click Custom Monitoring. Then,
enable ModelArts monitoring as prompted.

Set an alarm rule in any of the following ways:

● Set an alarm rule for all ModelArts services.
● Set an alarm rule for a ModelArts service.
● Set an alarm rule for a model version.
● Set an alarm rule for a metric of a service or model version.

Method 1: Setting an Alarm Rule for All ModelArts Services

Step 1 Log in to the management console.

Step 2 In the Service List, click Cloud Eye under Management & Governance.

Step 3 In the navigation pane on the left, choose Alarm Management > Alarm Rules
and click Create Alarm Rule.

Step 4 On the Create Alarm Rule page, set Resource Type to ModelArts, Dimension to
Service, and Method to Configure manually, and set alarm policies. Then,
confirm settings and click Create.

----End

Method 2: Setting an Alarm Rule for a Single Service

Step 1 Log in to the management console.

Step 2 In the Service List, click Cloud Eye under Management & Governance.

Step 3 In the navigation pane, choose Cloud Service Monitoring > ModelArts.

Step 4 Locate a real-time service for which you want to create an alarm rule and click
Create Alarm Rule in the Operation column.

Step 5 On the Create Alarm Rule page, create an alarm rule for ModelArts real-time
services and models as prompted.

----End

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 792

Method 3: Setting an Alarm Rule for a Model Version

Step 1 Log in to the management console.

Step 2 In the Service List, click Cloud Eye under Management & Governance.

Step 3 In the navigation pane, choose Cloud Service Monitoring > ModelArts.

Step 4 Click the down arrow next to the target real-time service name. Then, click Create
Alarm Rule in the Operation column of the target version.

Step 5 On the Create Alarm Rule page, create an alarm rule for model loads as
prompted.

----End

Method 4: Setting an Alarm Rule for a Metric of a Service or Model Version

Step 1 Log in to the management console.

Step 2 In the Service List, click Cloud Eye under Management & Governance.

Step 3 In the navigation pane, choose Cloud Service Monitoring > ModelArts.

Step 4 Click the down arrow next to the target real-time service name. Then, click the
target version and view alarm rule details.

Step 5 On the alarm rule details page, click the plus sign (+) in the upper right corner of
a metric and set an alarm rule for the metric.

----End

Viewing Monitoring Metrics
Cloud Eye on the cloud service platform monitors the statuses of ModelArts real-
time services and model loads. You can obtain the monitoring metrics of each
ModelArts real-time service and model on the management console. It takes a
period of time to transmit and display monitored data. The statuses displayed on
the Cloud Eye console are obtained 5 to 10 minutes before. You can view the
monitoring data of a newly created real-time service 5 to 10 minutes later.

Prerequisites:

● The ModelArts real-time service is running properly.
● Alarm rules have been configured on the Cloud Eye page. For details, see

Setting Alarm Rules.
● The real-time service has been properly running for at least 10 minutes.
● The monitored data and graphics are available for a new real-time service

after the service runs for at least 10 minutes.
● Cloud Eye does not display the metrics of a faulty or deleted real-time service.

The monitoring metrics can be viewed after the real-time service starts or
recovers.

The monitoring data is unavailable without alarm rules configured in Cloud Eye.
For details, see Setting Alarm Rules.

Step 1 Log in to the management console.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 793

Step 2 In the Service List, click Cloud Eye under Management & Governance.

Step 3 In the navigation pane, choose Cloud Service Monitoring > ModelArts.

Step 4 View monitoring graphs.
● Viewing monitoring graphs of a real-time service: Click View Metric in the

Operation column.

● Viewing monitoring graphs of the model loads: Click next to the target
real-time service, and click View Metric in the Operation column of the
target model.

Step 5 In the monitoring area, you can select a period to view the monitoring data.

You can view the monitoring data in the last 1 hour, 3 hours, or 12 hours. To view

the monitoring curve of a longer time range, click to enlarge the graph.

----End

9.7.6 Integrating a Real-Time Service API into the Production
Environment

For a real-time service API that has been commissioned, you can integrate it into
the production environment.

Prerequisites

The real-time service is running. Otherwise, applications in the production
environment will be unavailable.

Integration Mode

ModelArts real-time services provide standard RESTful APIs, which can be accessed
using HTTPS. ModelArts provides SDKs for calling real-time service APIs. For
details about how to call the SDKs, see "Scenario 1: Perform an inference test
using the predictor" in SDK Reference.

In addition, you can use common development tools and languages to call the
APIs. You can search for and obtain the guides for calling standard RESTful APIs on
the Internet.

9.7.7 Configuring Auto Restart upon a Real-Time Service Fault

Description

When an Snt9b hardware fault is detected, the system automatically resets the
Snt9B chip and restarts the real-time inference service. This helps to improve the
recovery speed.

Constraints

Only synchronous real-time services using Snt9b resources are supported.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 794

https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0204.html

This function will reset the entire node. Before enabling it, ensure that the
deployed real-time service is using specifications with 8 x N cards and properly
evaluate the impacts on services running on the node.

Enabling Auto Restart

When deploying a real-time service, select Configure Now next to Advanced
Configuration and enable auto restart.

9.8 Managing Batch Inference Jobs

9.8.1 Viewing Details About a Batch Service
After a model is deployed as a batch service, you can access the Batch Services
page to view its details.

1. Log in to the ModelArts console and choose Model Deployment > Batch
Services.

2. Click the name of the target service to access its details page.
View service information. For details, see Table 9-37.

Table 9-37 Batch service parameters

Parameter Description

Name Name of the batch service.

Service ID ID of the batch service.

Status Status of the batch service.

Job ID Job ID of the batch service.

Instance
Flavor

Node flavor of the batch service.

Instances Number of nodes of the batch service.

Start Time Start time of the batch service job.

Environment
Variable

Environment variables added during batch service creation.

End Time End time of the batch service job.

Description Service description, which you can click the edit button to
modify.

Input Path OBS path to the input data in the batch service.

Output Path OBS path to the output data in the batch service.

Model Name
& Version

Name and version of the model used by the batch service.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 795

Parameter Description

Advanced
Log
Management

This feature is disabled by default. The runtime logs of
batch services are stored only in the ModelArts log system.
If this feature is enabled, the runtime logs of batch services
will be exported and stored in Log Tank Service (LTS). LTS
automatically creates log groups and log streams and
caches run logs generated within seven days by default. For
details about LTS log management, see Log Tank Service.
NOTE

● This cannot be disabled once it is enabled.
● You will be billed for log query and storage features provided by

LTS. For details, see LTS Pricing Details.
● Do not print unnecessary audio log files. Otherwise, system logs

may fail to be displayed, and the error message "Failed to load
audio" may be displayed.

3. Switch between tabs on the details page of a batch service to view more

details. For details, see Table 9-38.

Table 9-38 Batch service tabs

Parameter Description

Events This page displays key operations during service use,
such as the service deployment progress, detailed
causes of deployment exceptions, and time points when
a service is started, stopped, or modified.
Events are saved for one month and will be
automatically cleared then.
For details about how to view events of a service, see
Viewing Events of a Real-Time Service.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 796

https://support.huaweicloud.com/intl/en-us/productdesc-lts/lts-03201.html
https://www.huaweicloud.com/intl/en-us/pricing/index.html#/lts

Parameter Description

Logs This page displays the log information about each
model in the service. You can view logs generated in
the latest 5 minutes, latest 30 minutes, latest 1 hour,
and user-defined time segment.
You can select the start time and end time when
defining a time segment.
If this feature is enabled, the logs stored in LTS will be
displayed. You can click View Complete Logs on LTS to
view all logs.
Log search rules:
● Do not enter a string that contains any of the

following delimiters: ,'";=()[]{}@&<>/:\n\t\r.
● You can use exact search by keyword. A keyword

refers to the word between two adjacent delimiters.
● You can use fuzzy search by keyword. For example,

you can enter error, er?or, rro*, or er*r.
● You can enter a phrase for exact search. For

example, Start to refresh.
● Before enabling this feature, you can combine

keywords with && or ||. For example, query
logs&&erro* or query logs||erro*. After enabling
this feature, you can combine keywords with AND or
OR. For example, query logs AND erro* or query
logs OR erro*.

9.8.2 Viewing Events of a Batch Service
During the whole lifecycle of a service, every key event is automatically recorded.
You can view the events on the details page of the service at any time.

This helps you better understand the service deployment and running process and
accurately locate faults when a task exception occurs. You can check the following
events:

Table 9-39 Events

Event Type Event (xxx should be replaced with the
actual value.)

Solution

Normal The service starts to deploy. N/A

Abnormal Insufficient resources. Wait until idle
resources are sufficient.

Wait until the
resources are
released and try
again.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 797

Event Type Event (xxx should be replaced with the
actual value.)

Solution

Abnormal Insufficient xxx. The scheduling failed.
Supplementary information: xxx

Learn about
resource
insufficiency
details based on
the
supplementary
information. For
details, see
FAQs.

Normal The image starts to create. N/A

Abnormal Failed to create model image xxx. For
details, see logs :\nxxx.

Locate and
rectify the fault
based on the
build logs.

Abnormal Failed to create the image. Contact
technical
support.

Normal The image is created. N/A

Abnormal Service xxx failed. Error: xxx Locate and
rectify the fault
based on the
error
information.

Abnormal Failed to update the service. Perform a
rollback.

Contact
technical
support.

Normal The service is being updated. N/A

Normal The service is being started. N/A

Normal The service is being stopped. N/A

Normal The service has been stopped. N/A

Normal Auto stop has been disabled. N/A

Normal Auto stop has been enabled. The service
will stop after xs.

N/A

Normal The service stops when the auto stop time
expires.

N/A

Abnormal The service is stopped because the quota
exceeds the upper limit.

Contact
technical
support.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 798

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_05_3155.html

Event Type Event (xxx should be replaced with the
actual value.)

Solution

Abnormal Failed to automatically stop the service.
Error: xxx

Locate and
rectify the fault
based on the
error
information.

Normal Service instances deleted from resource
pool xxx.

N/A

Normal Service instances stopped in resource pool
xxx.

N/A

Abnormal The batch service failed. Try again later.
Error: xxx

Locate and
rectify the fault
based on the
error
information.

Normal The service has been executed. N/A

Abnormal Failed to stop the service. Error: xxx Locate and
rectify the fault
based on the
error
information.

Normal The subscription license xxx is to expire. N/A

Normal Service xxx started. N/A

Abnormal Failed to start service xxx. For details
about how to
locate and
rectify the fault,
see FAQs.

Abnormal Service deployment timed out. Error: xxx Locate and
rectify the fault
based on the
error
information.

Normal Failed to update the service. The update
has been rolled back.

N/A

Abnormal Failed to update the service. The rollback
failed.

Contact
technical
support.

Normal [model 0.0.1] OBS bucket, OBS parallel
file system, or SFS Turbo mounted
successfully.
[%s] %s volume successfully.

N/A

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 799

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0195.html

During service deployment and running, key events can both be manually and
automatically refreshed.

Viewing Events
1. In the navigation pane of the ModelArts console, choose Model Deployment

> Batch Services. In the service list, click the name or ID of the target service
to go to its details page.

2. View the events in the Events tab.

9.8.3 Managing the Lifecycle of a Batch Service

Starting a Service
A service not in the Deploying state can be started. A service is billed from the
time when it is running. To start a service, use either of the following methods:

● Log in to the ModelArts console and choose Model Deployment from the
navigation pane. Go to the service management page of the target service.
Click Start in the Operation column to start the target service.

● Log in to the ModelArts console and choose Model Deployment from the
navigation pane. Go to the service management page of the target service.
Click the name of the target service to access its details page. Click Start in
the upper right corner of the page to start the service.

NO TE

Services deployed on ModelArts edge nodes or ModelArts edge resource pools cannot be
started.

Stopping a Service
A stopped service will no longer be billed. Stop a service in either of the following
ways:

● Log in to the ModelArts console and choose Model Deployment > Batch
Services. Click Stop in the Operation column to stop the target service.

● Log in to the ModelArts console and choose Model Deployment > Batch
Services. Click the name of the target service to access its details page. Click
Stop in the upper right corner of the page to stop the service.

NO TE

Services deployed on ModelArts edge nodes or ModelArts edge resource pools cannot
be stopped.

Deleting a Service
If a service is no longer in use, delete it to release resources.

Log in to the ModelArts console and choose Model Deployment > Batch
Services.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 800

● In the batch service list, click Delete in the Operation column of the target
service to delete it.

● Select services in the batch service list and click Delete above the list to
delete services in batches.

● Click the name of the target service. On the displayed service details page,
click Delete in the upper right corner to delete the service.

NO TE

● A deleted service cannot be recovered.
● A service cannot be deleted without agency authorization.

Restarting a Service
Batch services cannot be restarted.

9.8.4 Modifying a Batch Service
For a deployed service, you can modify its basic information to match service
changes and change the model version to upgrade it.

You can modify the basic information about a service in either of the following
ways:

Method 1: Modify the Service Information on the Service Management Page

Method 2: Modify the Service Information on the Service Details Page

Prerequisites
The service has been deployed. The service in the Deploying state cannot be
upgraded by modifying the service information.

Constraints
● Improper upgrade operations will interrupt services during the upgrade.
● ModelArts supports hitless rolling upgrade of real-time services in some

scenarios. Prepare for and fully verify the upgrade.

Table 9-40 Scenarios for hitless rolling upgrade

Meta Model Source Using a Public Resource
Pool

Using a Dedicated
Resource Pool

Training job Not supported Not supported

Container image Not supported Supported. The custom
image for creating a
model must meet
Specifications for
Custom Images.

OBS Not supported Not supported

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 801

Method 1: Modify the Service Information on the Service Management Page
1. Log in to the ModelArts console and choose Model Deployment from the

navigation pane. Go to the service management page of the target service.
2. In the service list, click Modify in the Operation column of the target service,

modify basic service information, and submit the modification task as
prompted.
When some parameters are modified, the system automatically restarts the
service for the modification to take effect. When you submit a service
modification task, if a restart is required, a dialog box will be displayed. For
details about the batch service parameters, see Deploying a Model as a
Batch Inference Service.

Method 2: Modify the Service Information on the Service Details Page
1. Log in to the ModelArts console and choose Model Deployment from the

navigation pane. Go to the service management page of the target service.
2. Click the name of the target service to access its details page.
3. Click Modify in the upper right corner of the page, modify the service details,

and submit the modification task as prompted.
When some parameters are modified, the system automatically restarts the
service for the modification to take effect. When you submit a service
modification task, if a restart is required, a dialog box will be displayed. For
details about the batch service parameters, see Deploying a Model as a
Batch Inference Service.

ModelArts
User Guide (ModelArts Standard) 9 Inference Deployment

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 802

10 Image Management

10.1 Application Scenarios of Custom Images
During the development and runtime of AI services, complex environment
dependencies need to be debugged for containerization. In the best practices of AI
development in ModelArts, container images are used to provide fixed runtime
environments. In this way, dependencies can be managed and the runtime
environments can be easily switched. The container resources provided by
ModelArts enable quick and efficient AI development and model experiment
iteration.

This section describes the concepts of images, application scenarios of preset
images and custom images, and how to create a custom image.

Concepts

Preset image: provided by ModelArts. You can select a ModelArts image when
creating a notebook instance, training job, or model.

There are two types of preset images:

● Unified image: Use a unified image when you create a notebook instance,
training job, or model. All images released later are unified images. For
details, see ModelArts Unified Images.

● Unique image: Use a unique image for a single module. For example, the
preset image for training can only be used to create a training job. These
images will be brought offline. For details, see Preset Dedicated Images in
Notebook Instances, Preset Dedicated Images for Training, and Preset
Dedicated Images for Inference.

Custom image: created by user by following the ModelArts image creation
specifications.

Base image: used for image creation. A base image can be a ModelArts preset
image or a third-party image.

Custom Image Services
● SWR

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 803

Software Repository for Container (SWR) provides easy, secure, and reliable
management over container images throughout their lifecycle, facilitating the
deployment of containerized applications. You can upload, download, and
manage container images through the SWR console, SWR APIs, or community
CLI.
Your custom images must be uploaded to SWR. The custom images used by
ModelArts for training or creating models are obtained from the SWR service
management list.

Figure 10-1 Obtaining images

● OBS
Object Storage Service (OBS) is a cloud storage service optimized for storing
massive amounts of data. It provides unlimited, secure, and highly reliable
storage capabilities at a relatively low cost.
ModelArts exchanges data with OBS. You can store data in OBS.

● ECS
An Elastic Cloud Server (ECS) is a basic computing unit that consists of vCPUs,
memory, OS, and Elastic Volume Service (EVS) disks. After an ECS is created,
you can use it as your local PC or physical server.
You can create a custom image on premises or on an ECS.

NO TE

When you use a custom image, ModelArts may need to access dependent services, such as
SWR and OBS. The custom image can be used only after the access is authorized. It is a
good practice to use an agency for authorization. After an agency is configured, the
permissions to access dependent services are delegated to ModelArts so that ModelArts can
use the dependent services and perform operations on resources on your behalf. For details,
see Configuring Agency Authorization.

Application Scenarios of Preset Images

ModelArts provides a group of preset images. You can use a preset image to
create a notebook instance. After installing and configuring dependencies on the
instance, create a custom image. Then, you can directly use the image in
ModelArts for training jobs without any adaptation. You can also use preset
images to submit training jobs and create models.

We recommend the preset image version based on your development
requirements and stability of the version. If your development can be carried out
using versions preset in ModelArts, for example, MindSpore 1.X, use the preset
images. They have been fully verified and have many commonly-used installation
packages, relieving you from configuring the environment.

The preset images provided by ModelArts by default have the following features:

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 804

● Out-of-the-box and scenario-specific: Typical dependent environments for AI
development are preset in these images to provide optimal software, OS, and
network configurations. They have been fully tested on hardware to ensure
optimal compatibility and performance.

● Configuration customizable: Preset images are stored in the SWR repository
for you to customize and register them as your own images.

● Secure and reliable: Access policies, user permissions control, vulnerability
scanning for development software, and OS are configured based on best
practices for security hardening to ensure the security of images.

Application Scenarios of Custom Images

Preset images cannot meet the requirements for deep learning engines and
development library. To resolve this issue, ModelArts allows image customization
so that you can customize runtime engines.

ModelArts runs in containers. You can customize container images to run on
ModelArts. Custom images support CLI parameters and environment variables in
free-text format, featuring high flexibility for a wide range of compute engines.

When you create a custom image, use the ModelArts preset image as the base
image, that is, obtain the preset image using the SWR address in Dockerfile for
image creation. You can obtain the SWR address of the image in the ModelArts
preset image list. For details, see Preset Images Supported by ModelArts and .

● Creating a Custom Image for a Notebook Instance
If the preset images of notebook instances cannot meet requirements, you
can create a custom image by installing and configuring the software and
other data required by the environment in a preset image. Then, use the
custom image to create new notebook instances. You can also create a
custom image based on existing images in notebook instances.

● Creating a Custom Image for Model Training
If you have developed a model or training script locally but the AI engine you
used is not supported by ModelArts, create a custom image and upload it to
SWR. Then, use this image to create a training job on ModelArts and use the
resources provided by ModelArts to train models.

● Creating a Custom Image for Inference
If you have developed a model using an AI engine that is not supported by
ModelArts, to use this model to create AI applications, create a custom image,
import the image to ModelArts, and use it to create models. The models
created in this way can be centrally managed and deployed as services.

10.2 Preset Images Supported by ModelArts

10.2.1 ModelArts Preset Image Updates
This section describes the updates of ModelArts preset images, including changes
of dependencies, so that you can learn about the changes and use images more
easily.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 805

Unified Image Updates

Table 10-1 Unified image updates

Image Updated Description

mindspore_2.3.0-cann_8.0.rc1-py_3.9-
euler_2.10.7-aarch64-snt9b

2024-05-
21

Based on the commercial
version of Ascend 415,
MindSpore is updated to
2.3.0-rc4, and CANN is
updated to 8.0.rc1.
Bring ma-cau 1.1.6 and
ma-cau-adapter 1.1.3
offline.

pytorch_2.1.0-cann_8.0.rc1-py_3.9-
euler_2.10.7-aarch64-snt9b

2024-05-
21

Based on the commercial
version of Ascend 415,
CANN is updated to 8.0.rc1.

pytorch_1.11.0-cann_8.0.rc1-py_3.9-
euler_2.10.7-aarch64-snt9b

2024-05-
21

Based on the commercial
version of Ascend 415,
CANN is updated to 8.0.rc1.

mindspore_2.3.0-cann_8.0.rc2-py_3.9-
euler_2.10.7-aarch64-snt9b

2024-07-
27

Based on the commercial
version of Ascend 715,
MindSpore is updated to
2.3.0, CANN is updated to
8.0.rc2, and the driver is
Ascend HDK 24.1.RC2.

pytorch_2.1.0-cann_8.0.rc2-py_3.9-
euler_2.10.7-aarch64-snt9b

2024-07-
27

Based on the commercial
version of Ascend 715,
CANN is updated to 8.0.rc2,
and the driver is Ascend
HDK 24.1.RC2.

pytorch_1.11.0-cann_8.0.rc2-py_3.9-
euler_2.10.7-aarch64-snt9b

2024-07-
27

Based on the commercial
version of Ascend 715,
CANN is updated to 8.0.rc2,
and the driver is Ascend
HDK 24.1.RC2.

10.2.2 ModelArts Unified Images

Unified Image List
ModelArts provides unified images of Arm+Ascend specifications, including
MindSpore and PyTorch. You can use the images to develop environment, train
models, and deploy services. For details, see Unified Image List.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 806

Table 10-2 MindSpore

Preset Image Supported
Processor

Applicable Scope

mindspore_2.2.0-cann_7.0.1-py_3.9-
euler_2.10.7-aarch64-snt9b

Ascend snt9b Notebook, training, and
inference deployment

mindspore_2.3.0-cann_8.0.rc2-
py_3.9-euler_2.10.7-aarch64-snt9b

Ascend snt9b Notebook, training, and
inference deployment

Table 10-3 PyTorch

Preset Image Supported
Processor

Applicable Scope

pytorch_2.1.0-cann_7.0.1-py_3.9-
euler_2.10.7-aarch64-snt9b

Ascend snt9b Notebook, training, and
inference deployment

pytorch_1.11.0-cann_7.0.1-py_3.9-
euler_2.10.7-aarch64-snt9b

Ascend snt9b Notebook, training, and
inference deployment

pytorch_2.1.0-cann_8.0.rc2-py_3.9-
euler_2.10.7-aarch64-snt9b

Ascend snt9b Notebook, training, and
inference deployment

pytorch_1.11.0-cann_8.0.rc2-py_3.9-
euler_2.10.7-aarch64-snt9b

Ascend snt9b Notebook, training, and
inference deployment

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 807

mindspore_2.3.0-cann_8.0.rc2-py_3.9-euler_2.10.7-aarch64-snt9b

Table 10-4 mindspore_2.3.0-cann_8.0.rc2-py_3.9-euler_2.10.7-aarch64-snt9b

AI
Engine

URL Dependency

mindspor
e 2.3.0 +
mindspor
e-lite
2.3.0 +
Ascend
CANN
Toolkit
8.0.rc2

swr.<region>.myhuaweicloud.c
om/atelier/
mindspore_2_3_ascend:mindsp
ore_2.3.0-cann_8.0.rc2-py_3.9-
euler_2.10.7-aarch64-
snt9b-20240727152329-0f2c2
9a
Example:
CN-Hong Kong
swr.cn-ap-
southeast-1.myhuaweicloud.co
m/atelier/
mindspore_2_3_ascend:mindsp
ore_2.3.0-cann_8.0.rc2-py_3.9-
euler_2.10.7-aarch64-
snt9b-20240727152329-0f2c2
9a

PyPI package YUM package

mindspore 2.3.0
mindspore-lite
2.3.0
mindinsight 2.3.0
mindarmour 2.0.0
mindformers 1.2.0
seccomponent
1.1.8
moxing-framework
2.2.8.0aa484aa
ipykernel 6.7.0
ipython 8.18.1
jupyter-client 7.4.9
matplotlib 3.5.1
numpy 1.22.0
pandas 1.3.5
Pillow 10.0.1
pip 21.0.1
psutil 5.9.5
PyYAML 6.0.1
scipy 1.10.1
scikit-learn 1.0.2
tornado 6.4

cmake
cpp
curl
ffmpeg
g++
gcc
git
grep
python3
rpm
tar
unzip
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 808

pytorch_2.1.0-cann_8.0.rc2-py_3.9-euler_2.10.7-aarch64-snt9b

Table 10-5 pytorch_2.1.0-cann_8.0.rc2-py_3.9-euler_2.10.7-aarch64-snt9b

AI
Engin
e

URL Dependency

pytorc
h 2.1.0
+
minds
pore-
lite
2.3.0 +
Ascend
CANN
Toolkit
8.0.rc2

swr.<region>.myhuaweicloud.co
m/atelier/
pytorch_2_1_ascend:pytorch_2.1.0
-cann_8.0.rc2-py_3.9-
hce_2.0.2312-aarch64-
snt9b-20240727152329-0f2c29a

PyPI package YUM package

torch 2.1.0
torch-npu
2.1.0.post6.dev202
40716
mindspore-lite
2.3.0
seccomponent
1.1.8
moxing-framework
2.2.8.0aa484aa
ipykernel 6.7.0
ipython 8.18.1
jupyter-client 7.4.9
ma-cau 1.1.7
ma-cau-adapter
1.1.3
ma-cli 1.2.3
matplotlib 3.5.1
numpy 1.22.0
pandas 1.3.5
Pillow 10.0.1
pip 21.0.1
psutil 5.9.5
PyYAML 6.0.1
scipy 1.10.1
scikit-learn 1.0.2
tornado 6.4

cmake
cpp
curl
ffmpeg
g++
gcc
git
grep
python3
rpm
tar
unzip
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 809

pytorch_1.11.0-cann_8.0.rc2-py_3.9-euler_2.10.7-aarch64-snt9b

Table 10-6 pytorch_1.11.0-cann_8.0.rc2-py_3.9-euler_2.10.7-aarch64-snt9b

AI
Engine

URL Dependency

pytorc
h 1.11
+
mindsp
ore-lite
2.3.0 +
Ascend
CANN
Toolkit
8.0.rc2

swr.<region>.myhuaweicloud.co
m/atelier/
pytorch_1_11_ascend:pytorch_1.1
1.0-cann_8.0.rc2-py_3.9-
euler_2.10.7-aarch64-
snt9b-20240727152329-0f2c29a

PyPI package YUM package

torch 1.11.0
torch-npu
1.11.0.post14.dev2
0240716
apex
0.1.dev20240716+a
scend
mindspore-lite
2.3.0
seccomponent
1.1.8
moxing-framework
2.2.8.0aa484aa
ipykernel 6.7.0
ipython 8.18.1
jupyter-client 7.4.9
ma-cau 1.1.7
ma-cau-adapter
1.1.3
ma-cli 1.2.3
matplotlib 3.5.1
numpy 1.22.0
pandas 1.3.5
Pillow 10.3.0
pip 21.0.1
psutil 5.9.5
PyYAML 6.0.1
scipy 1.10.1
scikit-learn 1.0.2
tornado 6.4

cmake
cpp
curl
ffmpeg
g++
gcc
git
grep
python3
rpm
tar
unzip
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 810

mindspore_2.2.0-cann_7.0.1-py_3.9-euler_2.10.7-aarch64-snt9b

Table 10-7 Information about the image

AI
Engin
e

URL Dependency

minds
pore
2.2.0 +
minds
pore-
lite
2.2.0 +
Ascend
CANN
Toolkit
7.0.RC
1

swr.<region>.myhuaweicloud.co
m/atelier/
mindspore_2_2_ascend:mindspor
e_2.2.0-cann_7.0.1-py_3.9-
euler_2.10.7-aarch64-
snt9b-20231107190844-50a1a83
Example:
CN-Hong Kong
swr.cn-ap-
southeast-1.myhuaweicloud.com/
atelier/
mindspore_2_2_ascend:mindspor
e_2.2.0-cann_7.0.1-py_3.9-
euler_2.10.7-aarch64-
snt9b-20231107190844-50a1a83

PyPI package YUM package

mindspore 2.2.0
ipykernel 6.7.0
ipython 8.18.1
jupyter-client 7.4.9
ma-cli 1.2.3
matplotlib 3.5.1
modelarts 1.4.20
moxing-framework
2.2.3.2c7f2141
numpy 1.22.0
pandas 1.3.5
Pillow 10.0.1
pip 21.0.1
psutil 5.9.5
PyYAML 6.0.1
scipy 1.10.1
scikit-learn 1.0.2
tornado 6.4
mindinsight 2.2.0

cmake
cpp
curl
ffmpeg
g++
gcc
git
grep
python3
rpm
tar
unzip
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 811

pytorch_2.1.0-cann_7.0.1-py_3.9-euler_2.10.7-aarch64-snt9b

Table 10-8 Information about the image

AI
Engin
e

URL Dependency

pytorc
h 2.1.0
+
minds
pore-
lite
2.2.0 +
Ascend
CANN
Toolkit
7.0.RC
1

swr.<region>.myhuaweicloud.co
m/atelier/
pytorch_2_1_ascend:pytorch_2.1
.0-cann_7.0.1-py_3.9-
euler_2.10.7-aarch64-
snt9b-20231107190844-50a1a8
3
Example:
CN-Hong Kong
swr.cn-ap-
southeast-1.myhuaweicloud.com/
atelier/
pytorch_2_1_ascend:pytorch_2.1.0
-cann_7.0.1-py_3.9-euler_2.10.7-
aarch64-
snt9b-20231107190844-50a1a83

PyPI package YUM package

torch 2.1.0
apex 0.1-
ascend-20231013
torch-npu
2.1.0rc1.post20231
013
ipykernel 5.3.4
ipython 7.34.0
jupyter-client 7.3.4
ma-cli 1.2.3
matplotlib 3.5.1
modelarts 1.4.26
moxing-framework
2.2.3.2c7f2141
numpy 1.26.1
pandas 1.3.5
Pillow 10.0.1
pip 21.0.1
psutil 5.9.5
PyYAML 6.0.1
scipy 1.10.1
scikit-learn 1.0.2
tornado 6.3.3

cmake
cpp
curl
ffmpeg
g++
gcc
git
grep
python3
rpm
tar
unzip
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 812

pytorch_1.11.0-cann_7.0.1-py_3.9-euler_2.10.7-aarch64-snt9b

Table 10-9 Information about the image

AI
Engin
e

URL Dependency

pytorc
h 1.11
+
minds
pore-
lite
2.2.0 +
Ascend
CANN
Toolkit
7.0.RC
1

swr.<region>.myhuaweicloud.c
om/atelier/
pytorch_1_11_ascend:pytorch_1.
11.0-cann_7.0.1-py_3.9-
euler_2.10.7-aarch64-
snt9b-20231107190844-50a1a8
3
Example:
CN-Hong Kong
swr.cn-ap-
southeast-1.myhuaweicloud.com/
atelier/
pytorch_1_11_ascend:pytorch_1.1
1.0-cann_7.0.1-py_3.9-
euler_2.10.7-aarch64-
snt9b-20231107190844-50a1a83

PyPI package YUM package

torch 1.11.0
torch-npu
1.11.0.post4-20231
013
apex 0.1-
ascend-20231013
ipykernel 6.7.0
ipython 8.17.2
jupyter-client 7.4.9
ma-cli 1.2.3
matplotlib 3.5.1
modelarts 1.4.20
moxing-framework
2.2.3.2c7f2141
numpy 1.26.1
pandas 1.3.5
Pillow 10.0.1
pip 21.0.1
psutil 5.9.5
PyYAML 6.0.1
scipy 1.10.1
scikit-learn 1.0.2
tornado 6.3.3

cmake
cpp
curl
ffmpeg
g++
gcc
git
grep
python3
rpm
tar
unzip
wget
zip

10.2.3 Preset Dedicated Images in Notebook Instances
ModelArts DevEnviron provides Docker container images, which can run as preset
containers. Certain preset images are built on common AI engine frameworks such
as PyTorch, TensorFlow, and MindSpore. These images are named using the AI
engines. Additionally, many common packages are preset in these images,
relieving you from the package installation.

The images preset in ModelArts DevEnviron include:

● Typical preset packages: AI engines based on standard Conda, data analysis
software packages such as Pandas and Numpy, and tool software such as
CUDA and cuDNN are included to meet your needs.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 813

● Preset Conda environments: A Conda environment and basic Conda Python
(excluding any AI engine) are created for each preset image. The following
figure shows the Conda environment for a preset MindSpore image.

Select a Conda environment based on whether MindSpore is used for
debugging.

● Notebook: a web application that enables you to code on the GUI and
combine the code, mathematical equations, and visualized content into a
document.

● JupyterLab plug-ins: enable flavor changing, case sharing to AI Gallery for
communication, and instance stopping to improve user experience.

● Remote SSH: allows you to remotely start and debug a notebook instance
from a local PC.

● Images preset in ModelArts DevEnviron: After these preset images support
function development, the custom images created based on these preset
images can be directly used for ModelArts training jobs.

Table 10-10 Preset x86 images

Engine Image

PyTorch pytorch1.8-cuda10.2-cudnn7-ubuntu18.04

pytorch1.10-cuda10.2-cudnn7-ubuntu18.04

pytorch1.4-cuda10.1-cudnn7-ubuntu18.04

Tensorflow tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04

tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04

MindSpore mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04

mindspore1.7.0-py3.7-ubuntu18.04

mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04

mindspore1.2.0-openmpi2.1.1-ubuntu18.04

No AI engine (base
images dedicated
for image
customization)

conda3-cuda10.2-cudnn7-ubuntu18.04

conda3-ubuntu18.04

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 814

x86-powered PyTorch Base Images
PyTorch contains three types of images:

● Image 1: pytorch1.8-cuda10.2-cudnn7-ubuntu18.04
● Image 2: pytorch1.10-cuda10.2-cudnn7-ubuntu18.04
● Image 3: pytorch1.4-cuda10.1-cudnn7-ubuntu18.04

Image 1: pytorch1.8-cuda10.2-cudnn7-ubuntu18.04

Table 10-11 Information about the image

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

PyTor
ch
1.8

Yes
(CUDA
10.2)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
pytorch_1_8:pytorch_1.8.0-
cuda_10.2-py_3.7-
ubuntu_18.04-
x86_64-20220926104358-04
1ba2e

PyPI package Ubuntu
package

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 815

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

torch 1.8.0
torchvision 0.9.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.4.4
ma-cli 1.2.3
matplotlib 3.5.1
modelarts
1.4.25
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
opencv-python
4.1.2.30
pandas 1.1.5
Pillow 9.3.0
pip 21.0.1
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2
tensorboard
2.1.1

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
pandoc
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 816

Image 2: pytorch1.10-cuda10.2-cudnn7-ubuntu18.04

Table 10-12 Information about the image

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Pytor
ch
1.10

Yes
(CUDA
10.2)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
pytorch_1_10:pytorch_1.10.2
-cuda_10.2-py_3.7-
ubuntu_18.04-
x86_64-20221008154718-2b
3e39c

PyPI package Ubuntu
package

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 817

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

torch 1.10.2
torchvision
0.11.3
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.4.4
ma-cli 1.2.3
matplotlib 3.5.1
modelarts
1.4.25
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
opencv-python
4.1.2.30
pandas 1.1.5
Pillow 9.3.0
pip 21.0.1
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
pandoc
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 818

Image 3: pytorch1.4-cuda10.1-cudnn7-ubuntu18.04

Table 10-13 Information about the image

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Pytor
ch
1.4

Yes
(CUDA
10.1)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
pytorch_1_4:pytorch_1.4-
cuda_10.1-py37-
ubuntu_18.04-
x86_64-20220926104017-04
1ba2e

PyPI package Ubuntu
package

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 819

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

torch 1.4.0
torchvision 0.5.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.4.7
ma-cli 1.2.3
matplotlib 3.5.1
modelarts
1.4.25
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
opencv-python
4.1.2.30
pandas 1.1.5
Pillow 6.2.0
pip 21.0.1
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2
tensorboard
2.1.1

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
pandoc
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 820

x86-powered TensorFlow Base Images
TensorFlow contains two types of images:

● Image 1: tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04
● Image 2: tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04

Image 1: tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04

Table 10-14 Information about the image

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Tenso
rflow
2.1

Yes
(CUDA
10.1)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
tensorflow_2_1:tensorflow_2
.1.0-cuda_10.1-py_3.7-
ubuntu_18.04-
x86_64-20220926144607-04
1ba2e

PyPI package Ubuntu
package

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 821

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

tensorflow 2.1.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.4.4
ma-cli 1.2.3
matplotlib 3.5.1
modelarts
1.4.25
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
opencv-python
4.1.2.30
pandas 1.1.5
Pillow 9.3.0
pip 21.0.1
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2
tensorboard
2.1.1

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 822

Image 2: tensorflow1.13-cuda10.0-cudnn7-ubuntu18.04

Table 10-15 Information about the image

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Tenso
rflow
1.13-
gpu

Yes
(CUDA
10.0)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
tensorflow_1_13:tensorflow_
1.13-cuda_10.0-py_3.7-
ubuntu_18.04-
x86_64-20220926104358-04
1ba2e

PyPI package Ubuntu
package

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 823

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

tensorflow-gpu
1.13.1
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.4.6
ma-cli 1.2.3
matplotlib 3.5.2
modelarts
1.4.25
moxing-
framework
2.0.1.rc0.ffd1c0c
8
numpy 1.17.0
opencv-python
4.1.2.30
pandas 1.1.5
Pillow 6.2.0
pip 21.0.1
psutil 5.8.0
PyYAML 5.1
scipy 1.2.2
scikit-learn
0.22.1
tornado 6.2

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 824

x86-powered MindSpore Base Images
MindSpore contains four types of images:

● Image 1: mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04
● Image 2: mindspore1.7.0-py3.7-ubuntu18.04
● Image 3: mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04
● Image 4: mindspore1.2.0-openmpi2.1.1-ubuntu18.04

Image 1: mindspore1.7.0-cuda10.1-py3.7-ubuntu18.04

Table 10-16 Information about the image

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Mind
Spore
-gpu
1.7.0

Yes
(CUDA
10.1)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
mindspore_1_7_0:mindspore
_1.7.0-cuda_10.1-py_3.7-
ubuntu_18.04-
x86_64-20220926104017-04
1ba2e

PyPI package Ubuntu
package

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 825

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

mindspore-gpu
1.7.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.4.4
ma-cli 1.2.3
matplotlib 3.5.1
modelarts
1.4.25
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
pandas 1.1.5
Pillow 9.3.0
pip 21.0.1
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2
mindinsight
1.7.0
mindvision 0.1.0

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 826

Image 2: mindspore1.7.0-py3.7-ubuntu18.04

Table 10-17 Information about the image

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Mind
Spore
1.7.0

No swr.
{region_id}.myhuaweicloud.c
om/atelier/
mindspore_1_7_0:mindspore
_1.7.0-cpu-py_3.7-
ubuntu_18.04-
x86_64-20220926104017-04
1ba2e

PyPI package Ubuntu
package

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 827

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

mindspore 1.7.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.4.6
ma-cli 1.2.3
matplotlib 3.5.1
modelarts
1.4.25
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
pandas 1.1.5
Pillow 9.3.0
pip 21.0.1
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2
mindinsight
1.7.0
mindvision 0.1.0

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 828

Image 3: mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04

Table 10-18 Information about the image

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Mind
spore
-gpu
1.2.0

Yes
(CUDA
10.1)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
mindspore_1_2_0:mindspore
_1.2.0-py_3.7-cuda_10.1-
ubuntu_18.04-
x86_64-20220926104106-04
1ba2e

PyPI package Ubuntu
package

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 829

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

mindspore-gpu
1.2.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.4.6
ma-cli 1.2.3
matplotlib 3.5.1
modelarts
1.4.25
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
pandas 1.1.5
Pillow 6.2.0
pip 21.0.1
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2
mindinsight
1.2.0

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libcudnn7
libcudnn7-
dev
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 830

Image 4: mindspore1.2.0-openmpi2.1.1-ubuntu18.04

Table 10-19 Information about the image

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

Mind
spore
1.2.0

No swr.
{region_id}.myhuaweicloud.c
om/atelier/
mindspore_1_2_0:mindspore
_1.2.0-py_3.7-ubuntu_18.04-
x86_64-20220926104106-04
1ba2e

PyPI package Ubuntu
package

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 831

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

mindspore 1.2.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.4.6
ma-cli 1.2.3
matplotlib 3.5.1
modelarts
1.4.25
moxing-
framework
2.1.0.5d9c87c8
numpy 1.19.5
pandas 1.1.5
Pillow 6.2.0
pip 21.0.1
psutil 5.8.0
PyYAML 5.1
scipy 1.5.2
scikit-learn
0.22.1
tornado 6.2
mindinsight
1.2.0

automake
build-
essential
ca-
certificates
cmake
cpp
curl
ffmpeg
g++
gcc
gfortran
git
git-lfs
grep
libjpeg-
dev:amd64
libjpeg8-
dev:amd64
openssh-
client
openssh-
server
nginx
python3
rpm
screen
tar
tmux
unzip
vim
wget
zip

x86-powered Custom Dedicated Base Images

ModelArts provides the following notebook base images powered by custom
images (x86): conda3-cuda10.2-cudnn7-ubuntu18.04 and conda3-ubuntu18.04.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 832

These images do not have AI engines or related software packages. The image
size is only 2 GB to 5 GB. You can use these images as base images and install
your desired engine and dependency packages, improving scalability. In addition,
these images are preset with some configurations required for starting the
development environment. You can use these images after installing required
software packages, without the need for any adaptations.

Such images are the most basic ones and have no component installed. They are
small enough to facilitate image customization. If you need to use the OBS SDK,
use ModelArts SDK instead to copy files. For details, see Transferring Files.

Image 1: conda3-cuda10.2-cudnn7-ubuntu18.04

Table 10-20 Information about the image

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

None Yes
(CUDA
10.2)

swr.
{region_id}.myhuaweicloud.c
om/atelier/
user_defined_base:cuda_10.2
-ubuntu_18.04-
x86_64-20221008154718-2b
3e39c

PyPI package Ubuntu
package

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 833

https://support.huaweicloud.com/intl/en-us/sdkreference-modelarts/modelarts_04_0437.html

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.4.9
ma-cli 1.2.3
matplotlib 3.5.2
modelarts
1.4.25
moxing-
framework
2.1.6.879ab2f4
numpy 1.21.6
pandas 1.3.5
Pillow 9.5.0
pip 20.3.3
psutil 5.9.4
PyYAML 6.0
scipy 1.7.3
tornado 6.2

automake
build-
essential
ca-
certificates
cmake
cpp
curl
g++
gcc
gfortran
grep
libcudnn7
libcudnn7-
dev
nginx
python3
rpm
tar
unzip
vim
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 834

Image 2: conda3-ubuntu18.04

Table 10-21 Information about the image

AI
Engi
ne

Whethe
r to Use
GPUs
(CUDA
Version)

URL Dependency

None No swr.
{region_id}.myhuaweicloud.c
om/atelier/
user_defined_base:ubuntu_1
8.04-
x86_64-20221008154718-2b
3e39c
Example:
CN North-Beijing4
swr.cn-
north-4.myhuaweicloud.com
/atelier/
user_defined_base:ubuntu_1
8.04-
x86_64-20221008154718-2b
3e39c
CN East-Shanghai1
swr.cn-
east-3.myhuaweicloud.com/
atelier/
user_defined_base:ubuntu_1
8.04-
x86_64-20221008154718-2b
3e39c
CN South-Guangzhou
swr.cn-
south-1.myhuaweicloud.com
/atelier/
user_defined_base:ubuntu_1
8.04-
x86_64-20221008154718-2b
3e39c

PyPI package Ubuntu
package

ipykernel 6.7.0
ipython 7.34.0
jupyter-client
7.4.9
ma-cli 1.2.3
matplotlib 3.5.2
modelarts
1.4.25
moxing-
framework
2.1.6.879ab2f4
numpy 1.21.6
pandas 1.3.5
Pillow 9.5.0
pip 20.3.3
psutil 5.9.4
PyYAML 6.0
scipy 1.7.3
tornado 6.2

automake
build-
essential
ca-
certificates
cmake
cpp
curl
g++
gcc
gfortran
grep
nginx
python3
rpm
tar
unzip
vim
wget
zip

Arm-powered MindSpore Base Images

Arm-powered MindSpore contains three types of images:

● Image 1: mindspore_1.10.0-cann_6.0.1-py_3.7-euler_2.8.3

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 835

● Image 2: mindspore_1.9.0-cann_6.0.0-py_3.7-euler_2.8.3
● Image 3: mindspore1.7.0-cann5.1.0-py3.7-euler2.8.3

Image 1: mindspore_1.10.0-cann_6.0.1-py_3.7-euler_2.8.3

Table 10-22 Information about the image

AI
Engin
e

URL Dependency

Minds
pore-
Ascend
1.10.0

{region_id}.myhuaweicloud.com/
atelier/
mindspore_1_10_ascend:mindspo
re_1.10.0-cann_6.0.1-py_3.7-
euler_2.8.3-aarch64-
d910-20230303173945-815d627
Example:
CN North-Beijing4
swr.cn-
north-4.myhuaweicloud.com/
atelier/
mindspore_1_10_ascend:mindspo
re_1.10.0-cann_6.0.1-py_3.7-
euler_2.8.3-aarch64-
d910-20230303173945-815d627

PyPI package YUM package

mindspore-ascend
1.10.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client 7.4.5
ma-cli 1.2.3
matplotlib 3.5.1
modelarts 1.4.25
moxing-framework
2.0.1.rc0.ffd1c0c8
numpy 1.21.2
pandas 1.1.3
Pillow 9.4.0
pip 21.0.1
psutil 5.7.0
PyYAML 5.3.1
scipy 1.5.4
scikit-learn 0.24.0
tornado 6.2
mindinsight 1.9.0

cmake
cpp
curl
ffmpeg
g++
gcc
git
grep
python3
rpm
tar
unzip
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 836

Image 2: mindspore_1.9.0-cann_6.0.0-py_3.7-euler_2.8.3

Table 10-23 Information about the image

AI
Engin
e

URL Dependency

MindS
pore
1.9.0

swr.
{region_id}.myhuaweicloud.com/
atelier/
mindspore_1_9_ascend:mindspor
e_1.9.0-cann_6.0.0-py_3.7-
euler_2.8.3-aarch64-
d910-20221116111529

PyPI package YUM package

mindspore-ascend
1.9.0
ipykernel 6.7.0
ipython 7.34.0
jupyter-client 7.4.5
ma-cli 1.2.3
matplotlib 3.5.1
modelarts 1.4.25
moxing-framework
2.0.1.rc0.ffd1c0c8
numpy 1.21.2
pandas 1.1.3
Pillow 9.3.0
pip 22.3.1
psutil 5.7.0
PyYAML 5.3.1
scipy 1.5.4
scikit-learn 0.24.0
tornado 6.2
mindinsight 1.9.0

cmake
cpp
curl
ffmpeg
g++
gcc
git
grep
python3
rpm
tar
unzip
wget
zip

Image 3: mindspore1.7.0-cann5.1.0-py3.7-euler2.8.3

Table 10-24 Information about the image

AI
Engin
e

URL Dependency

Minds
pore-
Ascend
1.7.0

swr.
{region_id}.myhuaweicloud.com/
atelier/
mindspore_1_7_0:mindspore_1.7.
0-cann_5.1.0-py_3.7-euler_2.8.3-
aarch64-d910-20220906

PyPI package YUM package

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 837

AI
Engin
e

URL Dependency

mindspore-ascend
1.7.0
ipykernel 5.3.4
ipython 7.34.0
jupyter-client 7.3.4
ma-cli 1.2.3
matplotlib 3.5.1
modelarts 1.4.25
moxing-framework
2.0.1.rc0.ffd1c0c8
numpy 1.21.2
pandas 1.1.3
Pillow 9.2.0
pip 22.1.2
psutil 5.7.0
PyYAML 5.3.1
scipy 1.5.4
scikit-learn 0.24.0
tornado 6.2
mindinsight 1.7.0

cmake
cpp
curl
ffmpeg
g++
gcc
git
grep
python3
rpm
tar
unzip
wget
zip

Arm-powered TensorFlow Base Images
Arm-powered TensorFlow contains two types of images:

● Image 1: tensorflow1.15-mindspore1.7.0-cann5.1.0-euler2.8-aarch64
● Image 2: tensorflow1.15-cann5.1.0-py3.7-euler2.8.3

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 838

Image 1: tensorflow1.15-mindspore1.7.0-cann5.1.0-euler2.8-aarch64

Table 10-25 Information about the image

AI
Engin
e

URL Dependency

Minds
pore-
Ascend
1.7.0

swr.
{region_id}.myhuaweicloud.com/
atelier/notebook2.0-mul-kernel-
arm-ascend-cp37:5.0.1-
c81-20220726

PyPI package YUM package

mindspore-ascend
1.7.0
ipykernel 6.7.0
ipython 7.29.0
jupyter-client 7.0.6
ma-cli 1.2.3
matplotlib 3.1.2
modelarts 1.4.25
moxing-framework
2.0.0.rc2.4b57a67b
numpy 1.17.5
pandas 1.1.3
Pillow 7.0.0
pip 21.2.4
psutil 5.7.0
PyYAML 5.3.1
scipy 1.5.4
scikit-learn 0.24.0
tornado 6.1
mindinsight 1.7.0

cmake
cpp
curl
ffmpeg
g++
gcc
git
grep
python3
rpm
tar
unzip
wget
zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 839

Image 2: tensorflow1.15-cann5.1.0-py3.7-euler2.8.3

Table 10-26 Information about the image

AI
Engi
ne

Whethe
r to Use
Ascend
(CANN
Version)

URL Dependency

Tenso
rflow
1.15

Yes
(CANN
5.1)

swr.{Region ID}.{Region
domain name}./atelier/
tensorflow_1_15_ascend:ten
sorflow_1.15-cann_5.1.0-
py_3.7-euler_2.8.3-aarch64-
d910-20220906

PyPI package YUM
package

tensorflow
1.15.0
tensorboard
1.15.0
ipykernel 5.3.4
ipython 7.34.0
jupyter-client
7.3.4
ma-cli 1.2.3
matplotlib 3.5.1
modelarts
1.4.25
moxing-
framework
2.0.1.rc0.ffd1c0c
8
numpy 1.17.5
pandas 0.24.2
Pillow 9.2.0
pip 22.1.2
psutil 5.7.0
PyYAML 5.3.1
scipy 1.3.3
scikit-learn
0.20.0
tornado 6.2

ca-
certificates.
noarch
cmake
cpp
curl
gcc-c++
gcc
gdb
grep
nginx
python3
rpm
tar
unzip
vim
wget
zip

10.2.4 Preset Dedicated Images for Training
ModelArts provides deep learning-powered base images such as TensorFlow,
PyTorch, and MindSpore images. In these images, the software mandatory for
running training jobs has been installed. If the software in the base images cannot

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 840

meet your service requirements, create new images based on the base images and
use the new images to create training jobs.

Available Training Base Images

The following table lists the preset training base images of ModelArts.

Table 10-27 ModelArts training base images

Engine Version

PyTorch pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64

TensorFlow tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64

Horovod horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-
ubuntu_18.04-x86_64

horovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7-
ubuntu_18.04-x86_64

MPI mindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_1804-x86_64

NO TE

Supported AI engines vary depending on regions.

PyTorch Base Images

This section describes preset PyTorch images.

Engine Version: pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64

Engine Version: pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64
● Image address: swr.{Region}.myhuaweicloud.com/aip/pytorch_1_8:train-

pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64-
roma-20220309171256-40adcc1

● Image creation time: 20220309171256 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 10.2.89
● cuDNN: 7.6.5.32
● Path and version of the Python interpreter: /home/ma-user/anaconda3/

envs/PyTorch-1.8/bin/python, Python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

PyTorch-1.8/lib/python3.7/site-packages

TensorFlow Base Images

This section describes preset TensorFlow images.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 841

● Engine Version: tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64

Engine Version: tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64
● Image address: swr.{Region}.myhuaweicloud.com/aip/tensorflow_2_1:train-

tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-
x86_64-20210912152543-1e0838d

● Image creation time: 20210912152543(yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 10.1.243
● cuDNN: 7.6.5.32
● Path and version of the Python interpreter: /home/ma-user/anaconda3/

envs/TensorFlow-2.1/bin/python, Python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

TensorFlow-2.1/lib/python3.7/site-packages

Horovod Base Images

This section describes preset Horovod images.

● Engine Version 1: horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-
ubuntu_18.04-x86_64

● Engine Version 2: horovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7-
ubuntu_18.04-x86_64

Engine Version 1: horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-
ubuntu_18.04-x86_64

● Image address: swr.{Region}.myhuaweicloud.com/aip/
horovod_tensorflow:train-horovod_0.20.0-tensorflow_2.1.0-cuda_10.1-py_3.7-
ubuntu_18.04-x86_64-20210912152543-1e0838d

● Image creation time: 20210912152543 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 10.1.243
● cuDNN: 7.6.5.32
● Path and version of the Python interpreter: /home/ma-user/anaconda3/

envs/horovod_0.20.0-tensorflow_2.1.0/bin/python, Python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

horovod_0.20.0-tensorflow_2.1.0/lib/python3.7/site-packages

Engine Version 2: horovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7-
ubuntu_18.04-x86_64

● Image address: swr.{Region}.myhuaweicloud.com/aip/horovod_pytorch:train-
horovod_0.22.1-pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-
x86_64-20210912152543-1e0838d

● Image creation time: 20210912152543 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 842

● CUDA: 11.1.1
● cuDNN: 8.0.5.39
● Path and version of the Python interpreter: /home/ma-user/anaconda3/

envs/horovod-0.22.1-pytorch-1.8.0/bin/python, Python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

horovod-0.22.1-pytorch-1.8.0/lib/python3.7/site-packages

MPI Base Images
This section describes preset mindspore_1.3.0 images.

Engine Version: mindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_1804-x86_64

Engine Version: mindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_1804-x86_64
● Image address: swr.{Region}.myhuaweicloud.com/aip/mindspore_1_3_0:train-

mindspore_1.3.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64-
roma-20211104202338-f258e59

● Image creation time: 20211104202338 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 10.1.243
● cuDNN: 7.6.5.32
● Path and version of the Python interpreter: /home/ma-user/anaconda3/

envs/MindSpore-1.3.0-gpu/bin/python, Python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

MindSpore-1.3.0-gpu/lib/python3.7/site-packages

10.2.5 Preset Dedicated Images for Inference
ModelArts inference provides a series of base images. You can create custom
images based on these base images to deploy inference services.

x86 (CPU/GPU)-powered Base Images

Table 10-28 TensorFlow

AI
Engine
Version

Runtime
Environme
nt

Image URI

2.1.0 CPU
GPU(cuda1
0.1)

tensorflow_2.1.0-
cuda_10.1-py_3.7-
ubuntu_18.04-
x86_64

swr.{Region
ID}.myhuaweicloud.com/atelier/
tensorflow_2_1:tensorflow_2.1.0-
cuda_10.1-py_3.7-ubuntu_18.04-
x86_64-20221121111529-d65d817

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 843

AI
Engine
Version

Runtime
Environme
nt

Image URI

1.15.5 CPU
GPU(cuda1
1.4)

tensorflow_1.15.5-
cuda_11.4-py_3.8-
ubuntu_20.04-
x86_64

swr.{Region
ID}.myhuaweicloud.com/aip/
tensorflow_1_15:tensorflow_1.15.5
-cuda_11.4-py_3.8-ubuntu_20.04-
x86_64-20220524162601-50d6a18

2.6.0 CPU
GPU(cuda1
1.2)

tensorflow_2.6.0-
cuda_11.2-py_3.7-
ubuntu_18.04-
x86_64

swr.{Region
ID}.myhuaweicloud.com/aip/
tensorflow_2_6:tensorflow_2.6.0-
cuda_11.2-py_3.7-ubuntu_18.04-
x86_64-20220524162601-50d6a18

Table 10-29 PyTorch

AI
Engine
Version

Runtime
Environm
ent

Image URI

1.8.0 CPU
GPU(cuda
10.2)

pytorch_1.8.0-
cuda_10.2-py_3.7-
ubuntu_18.04-x86_64

swr.{Region
ID}.myhuaweicloud.com/
atelier/
pytorch_1_8:pytorch_1.8.0-
cuda_10.2-py_3.7-
ubuntu_18.04-
x86_64-20221118143845-
d65d817

1.8.2 CPU
GPU(cuda
11.1)

pytorch_1.8.2-
cuda_11.1-py_3.7-
ubuntu_18.04-x86_64

swr.{Region
ID}.myhuaweicloud.com/aip/
pytorch_1_8:pytorch_1.8.2-
cuda_11.1-py_3.7-
ubuntu_18.04-
x86_64-20220524162601-50d
6a18

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 844

Table 10-30 MindSpore

AI
Engine
Version

Runtime
Environm
ent

Image name URI

1.7.0 CPU mindspore_1.7.0-cpu-
py_3.7-ubuntu_18.04-
x86_64

swr.{Region
ID}.myhuaweicloud.com/
atelier/
mindspore_1_7_0:mindspore_
1.7.0-cpu-py_3.7-
ubuntu_18.04-
x86_64-20220702120711-859
0b76

1.7.0 GPU(cuda
10.1)

mindspore_1.7.0-
cuda_10.1-py_3.7-
ubuntu_18.04-x86_64

swr.{Region
ID}.myhuaweicloud.com/
atelier/
mindspore_1_7_0:mindspore_
1.7.0-cuda_10.1-py_3.7-
ubuntu_18.04-
x86_64-20220702120711-859
0b76

1.7.0 GPU(cuda
11.1)

mindspore_1.7.0-
cuda_11.1-py_3.7-
ubuntu_18.04-x86_64

swr.{Region
ID}.myhuaweicloud.com/
atelier/
mindspore_1_7_0:mindspore_
1.7.0-cuda_11.1-py_3.7-
ubuntu_18.04-
x86_64-20220702120711-859
0b76

TensorFlow (CPU/GPU)-powered Base Images

ModelArts provides the following inference base images powered by TensorFlow
(CPU/GPU):

● Engine Version 1: tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64
● Engine Version 2: tensorflow_1.15.5-cuda_11.4-py_3.8-ubuntu_20.04-

x86_64
● Engine Version 3: tensorflow_2.6.0-cuda_11.2-py_3.7-ubuntu_18.04-x86_64

Engine Version 1: tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64
● Image address: swr.{Region ID}.myhuaweicloud.com/atelier/

tensorflow_2_1:tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-
x86_64-20221121111529-d65d817

● Image creation time: 20220713110657 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 10.1.243

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 845

● cuDNN: 7.6.5.32
● Path and version of the Python interpreter: /home/ma-user/anaconda3/

envs/TensorFlow-2.1/bin/python, Python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

TensorFlow-2.1/lib/python3.7/site-packages
● Certain pip installation packages:

Cython 0.29.21
easydict 1.9
Flask 2.0.1
grpcio 1.47.0
gunicorn 20.1.0
h5py 3.7.0
ipykernel 6.7.0
Jinja2 3.0.1
lxml 4.9.1
matplotlib 3.5.1
moxing-framework 2.1.0.5d9c87c8
numpy 1.19.5
opencv-python 4.1.2.30
pandas 1.1.5
Pillow 9.2.0
pip 22.1.2
protobuf 3.20.1
psutil 5.8.0
PyYAML 5.1
requests 2.27.1
scikit-learn 0.22.1
scipy 1.5.2
sklearn 0.0
tensorboard 2.1.1
tensorboardX 2.0
tensorflow 2.1.0
tensorflow-estimator 2.1.0
wheel 0.37.1
zipp 3.8.0
...

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base
liblapack3

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 846

libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

Engine Version 2: tensorflow_1.15.5-cuda_11.4-py_3.8-ubuntu_20.04-x86_64
● Image address: swr.{Region ID}.myhuaweicloud.com/aip/

tensorflow_1_15:tensorflow_1.15.5-cuda_11.4-py_3.8-ubuntu_20.04-
x86_64-20220524162601-50d6a18

● Image creation time: 20220524162601 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 20.04.4 LTS
● CUDA: 11.4.3
● cuDNN: 8.2.4.15
● Path and version of the Python interpreter: /home/ma-user/anaconda3/

envs/TensorFlow-1.15.5/bin/python, Python 3.8.13
● Third-party package installation path: /home/ma-user/anaconda3/envs/

TensorFlow-1.15.5/lib/python3.8/site-packages
● Certain pip installation packages:

Cython 0.29.21
psutil 5.9.0
matplotlib 3.5.1
protobuf 3.20.1
tensorflow 1.15.5+nv
Flask 2.0.1
grpcio 1.46.1
gunicorn 20.1.0
Pillow 9.0.1
tensorboard 1.15.0
PyYAML 6.0
pip 22.0.4
lxml 4.7.1
numpy 1.18.5

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 847

tensorflow-estimator 1.15.1
...

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base
liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 848

Engine Version 3: tensorflow_2.6.0-cuda_11.2-py_3.7-ubuntu_18.04-x86_64
● Image address: swr.{Region ID}.myhuaweicloud.com/aip/

tensorflow_2_6:tensorflow_2.6.0-cuda_11.2-py_3.7-ubuntu_18.04-
x86_64-20220524162601-50d6a18

● Image creation time: 20220524162601 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 11.2.0
● cuDNN: 8.1.1.33
● Path and version of the Python interpreter: /home/ma-user/anaconda3/

envs/TensorFlow-2.6.0/bin/python, Python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

TensorFlow-2.6.0/lib/python3.7/site-packages
● Certain pip installation packages:

Cython 0.29.21
requests 2.27.1
easydict 1.9
tensorboardX 2.0
tensorflow 2.6.0
Flask 2.0.1
grpcio 1.46.1
gunicorn 20.1.0
idna 3.3
tensorflow-estimator 2.9.0
pandas 1.1.5
Pillow 9.0.1
lxml 4.8.0
matplotlib 3.5.1
scikit-learn 0.22.1
psutil 5.8.0
PyYAML 5.1
numpy 1.17.0
opencv-python 4.1.2.30
protobuf 3.20.1
pip 21.2.2
...

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 849

libcurl4-openssl-dev
libopenblas-base
liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

PyTorch (CPU/GPU)-powered Base Images
ModelArts provides the following inference base images powered by PyTorch
(CPU/GPU):

● Engine Version 1: pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64
● Engine Version 2: pytorch_1.8.2-cuda_11.1-py_3.7-ubuntu_18.04-x86_64

Engine Version 1: pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64
● Image address: swr.{Region ID}.myhuaweicloud.com/atelier/

pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-
x86_64-20221118143845-d65d817

● Image creation time: 20220713110657 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 10.2.89
● cuDNN: 7.6.5.32
● Path and version of the Python interpreter: /home/ma-user/anaconda3/

envs/PyTorch-1.8/bin/python, Python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

PyTorch-1.8/lib/python3.7/site-packages
● Certain pip installation packages:

Cython 0.27.3
easydict 1.9

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 850

Flask 2.0.1
fonttools 4.34.4
gunicorn 20.1.0
ipykernel 6.7.0
Jinja2 3.0.1
lxml 4.9.1
matplotlib 3.5.1
mmcv 1.2.7
moxing-framework 2.1.0.5d9c87c8
numpy 1.19.5
opencv-python 4.1.2.30
pandas 1.1.5
Pillow 9.2.0
pip 22.1.2
protobuf 3.20.1
psutil 5.8.0
PyYAML 5.1
requests 2.27.1
scikit-learn 0.22.1
scipy 1.5.2
sklearn 0.0
tensorboard 2.1.1
tensorboardX 2.0
torch 1.8.0
torchtext 0.5.0
torchvision 0.9.0
tornado 6.2
tqdm 4.64.0
traitlets 5.3.0
typing_extensions 4.3.0
urllib3 1.26.10
watchdog 2.0.0
wcwidth 0.2.5
Werkzeug 2.1.2
wheel 0.37.1
yapf 0.32.0
zipp 3.8.0
...

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base
liblapack3
libopenblas-dev

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 851

libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

Engine Version 2: pytorch_1.8.2-cuda_11.1-py_3.7-ubuntu_18.04-x86_64
● Image address: swr.{Region ID}.myhuaweicloud.com/aip/

pytorch_1_8:pytorch_1.8.2-cuda_11.1-py_3.7-ubuntu_18.04-
x86_64-20220524162601-50d6a18

● Image creation time: 20220524162601 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 11.1.1
● cuDNN: 8.0.5.39
● Path and version of the Python interpreter: /home/ma-user/anaconda3/

envs/PyTorch-1.8.2/bin/python, Python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

PyTorch-1.8.2/lib/python3.7/site-packages
● Certain pip installation packages:

Cython 0.27.3
mmcv 1.2.7
easydict 1.9
tensorboardX 2.0
torch 1.8.2+cu111
Flask 2.0.1
pandas 1.1.5
gunicorn 20.1.0
PyYAML 5.1
torchaudio 0.8.2
Pillow 9.0.1
psutil 5.8.0
lxml 4.8.0
matplotlib 3.5.1
torchvision 0.9.2+cu111
pip 21.2.2

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 852

protobuf 3.20.1
numpy 1.17.0
opencv-python 4.1.2.30
scikit-learn 0.22.1
...

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base
liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 853

MindSpore (CPU/GPU)-powered Base Images

ModelArts provides the following inference base images powered by MindSpore
(CPU/GPU):

● Engine Version 1: mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64
● Engine Version 2: mindspore_1.7.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64
● Engine Version 3: mindspore_1.7.0-cuda_11.1-py_3.7-ubuntu_18.04-x86_64

Engine Version 1: mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-x86_64
● Image address: swr.{Region ID}.myhuaweicloud.com/atelier/

mindspore_1_7_0:mindspore_1.7.0-cpu-py_3.7-ubuntu_18.04-
x86_64-20220702120711-8590b76

● Image creation time: 20220702120711 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● Path and version of the Python interpreter: /home/ma-user/anaconda3/

envs/MindSpore/bin/python, Python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

MindSpore/lib/python3.7/site-packages
● Certain pip installation packages:

cycler 0.11.0
easydict 1.9
Flask 2.0.1
grpcio 1.47.0
gunicorn 20.1.0
ipykernel 6.7.0
Jinja2 3.0.1
lxml 4.9.0
matplotlib 3.5.1
mindinsight 1.7.0
mindspore 1.7.0
mindvision 0.1.0
moxing-framework 2.1.0.5d9c87c8
numpy 1.17.0
opencv-contrib-python-headless 4.6.0.66
opencv-python-headless 4.6.0.66
pandas 1.1.5
Pillow 9.1.1
pip 22.1.2
protobuf 3.20.1
psutil 5.8.0
PyYAML 5.1
requests 2.27.1
scikit-learn 0.22.1
scipy 1.5.2
setuptools 62.6.0
sklearn 0.0
tensorboardX 2.0
threadpoolctl 3.1.0
tomli 2.0.1
tornado 6.1
tqdm 4.64.0
traitlets 5.3.0
treelib 1.6.1
urllib3 1.26.9
wheel 0.37.1
zipp 3.8.0
...

● Certain apt installation packages:

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 854

apt
ca-certificates
cmake
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base
liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

Engine Version 2: mindspore_1.7.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64
● Image address: swr.{Region ID}.myhuaweicloud.com/atelier/

mindspore_1_7_0:mindspore_1.7.0-cuda_10.1-py_3.7-ubuntu_18.04-
x86_64-20220702120711-8590b76

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 855

● Image creation time: 20220702120711 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 10.1.243
● cuDNN: 7.6.5.32
● Path and version of the Python interpreter: /home/ma-user/anaconda3/

envs/MindSpore/bin/python, Python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

MindSpore/lib/python3.7/site-packages
● Certain pip installation packages:

cycler 0.11.0
easydict 1.9
Flask 2.0.1
grpcio 1.47.0
gunicorn 20.1.0
ipykernel 6.7.0
Jinja2 3.0.1
lxml 4.9.0
matplotlib 3.5.1
mindinsight 1.7.0
mindspore 1.7.0
mindvision 0.1.0
moxing-framework 2.1.0.5d9c87c8
numpy 1.17.0
opencv-contrib-python-headless 4.6.0.66
opencv-python-headless 4.6.0.66
pandas 1.1.5
Pillow 9.1.1
pip 22.1.2
protobuf 3.20.1
psutil 5.8.0
PyYAML 5.1
requests 2.27.1
scikit-learn 0.22.1
scipy 1.5.2
setuptools 62.6.0
sklearn 0.0
tensorboardX 2.0
threadpoolctl 3.1.0
tomli 2.0.1
tornado 6.1
tqdm 4.64.0
traitlets 5.3.0
treelib 1.6.1
urllib3 1.26.9
wheel 0.37.1
zipp 3.8.0
...

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 856

libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base
liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev
libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

Engine Version 3: mindspore_1.7.0-cuda_11.1-py_3.7-ubuntu_18.04-x86_64
● Image address: swr.{Region ID}.myhuaweicloud.com/atelier/

mindspore_1_7_0:mindspore_1.7.0-cuda_11.1-py_3.7-ubuntu_18.04-
x86_64-20220702120711-8590b76

● Image creation time: 20220702120711 (yyyy-mm-dd-hh-mm-ss)
● Image system version: Ubuntu 18.04.4 LTS
● CUDA: 11.1.1
● cuDNN: 8.0.5.39
● Path and version of the Python interpreter: /home/ma-user/anaconda3/

envs/MindSpore/bin/python, Python 3.7.10
● Third-party package installation path: /home/ma-user/anaconda3/envs/

MindSpore/lib/python3.7/site-packages
● Certain pip installation packages:

cycler 0.11.0
easydict 1.9

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 857

Flask 2.0.1
grpcio 1.47.0
gunicorn 20.1.0
ipykernel 6.7.0
Jinja2 3.0.1
lxml 4.9.0
matplotlib 3.5.1
mindinsight 1.7.0
mindspore 1.7.0
mindvision 0.1.0
moxing-framework 2.1.0.5d9c87c8
numpy 1.17.0
opencv-contrib-python-headless 4.6.0.66
opencv-python-headless 4.6.0.66
pandas 1.1.5
Pillow 9.1.1
pip 22.1.2
protobuf 3.20.1
psutil 5.8.0
PyYAML 5.1
requests 2.27.1
scikit-learn 0.22.1
scipy 1.5.2
setuptools 62.6.0
sklearn 0.0
tensorboardX 2.0
threadpoolctl 3.1.0
tomli 2.0.1
tornado 6.1
tqdm 4.64.0
traitlets 5.3.0
treelib 1.6.1
urllib3 1.26.9
wheel 0.37.1
zipp 3.8.0
...

● Certain apt installation packages:
apt
ca-certificates
cmake
cuda
curl
ethtool
fdisk
ffmpeg
g++
gcc
git
gpg
graphviz
libsm6
libxext6
libopencv-dev
libxrender-dev
libatlas3-base
libnuma-dev
libcap-dev
libssl-dev
liblz-dev
libbz2-dev
liblzma-dev
libboost-graph-dev
libsndfile1
libcurl4-openssl-dev
libopenblas-base
liblapack3
libopenblas-dev
libprotobuf-dev
libleveldb-dev

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 858

libsnappy-dev
libhdf5-serial-dev
liblapacke-dev
libgflags-dev
libgoogle-glog-dev
liblmdb-dev
libatlas-base-dev
librdmacm1
libcap2-bin
libpq-dev
mysql-common
net-tools
nginx
openslide-tools
openssh-client
openssh-server
openssh-sftp-server
openssl
protobuf-compiler
redis-server
redis-tools
rpm
tar
tofrodos
unzip
vim
wget
zip
zlib1g-dev
...

10.3 Creating a Custom Image for a Notebook Instance

10.3.1 Creating a Custom Image
Generally, you will need to reconstruct the ModelArts development environment,
for example, by installing, upgrading, or uninstalling some packages. However, the
root permission is required when certain packages are installed or upgraded. The
running notebook instance does not have the root permission. As a result, you
need to install the software that requires the root permission in the notebook
instance, which is currently unavailable in the preset development environment.
You can write a Dockerfile based on a preset base image or third-party image to
customize your image.

Process for Creating a Custom Image

Figure 10-2 Creating a custom image (for scenarios 1 and 2)

Scenario 1: Build and register an image based on the preset image or third-party
image in a notebook instance, configure the Docker environment on the server,

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 859

and compile the Dockerfile. For details, see Creating a Custom Image on ECS
and Using It.

Scenario 2: Build and register a custom image for AI development based on the
preset image or third-party image in a notebook instance and ma-cli commands.
For details, see ma-cli Image Building Command. In this case, the notebook
instance is the platform for creating the image. For details, see Creating a
Custom Image Using Dockerfile.

Scenario 3: Create a notebook instance using a preset image, install custom
software and dependencies on the preset image, and save the running instance
environment as a container image. For details, see Creating a Custom Image
Using the Image Saving Function.

Specifications for Custom Images
The base image for creating a custom image must meet either of the following
conditions:

● It is an open-source image from the official website of Ascend or Docker Hub
and it meets the following OS constraints:
x86: Ubuntu 18.04 or Ubuntu 20.04
Arm: Euler 2.8.3 or Euler 2.10.7

NO TE

There may be a compatibility issue for Ubuntu 20.04.6. Use an earlier version.

● If an image error occurs due to unmet requirements, check the image
specifications and rectify the fault by referring to Troubleshooting for
Custom Images in Notebook Instances. If the fault persists, contact Huawei
technical support.

Registering a Created Image
After a custom image is created, register it on the ModelArts Image Management
page before using it in notebook.

NO TE

Only the IAM users of the account can register and use the SWR images when the image
type is Private.
Other users can register and use SWR images when the image type is Public.

1. Log in to the ModelArts management console and choose Image
Management. Then, click Register.

2. Configure parameters and click Register.
– SWR Source: Select a built image as the image source. You can copy the

complete SWR address or click to select the target image for
registration.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 860

https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/devtool-modelarts_0309.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0263.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0263.html

Figure 10-3 Selecting an image source

– Architecture and Type: Configure them based on the actual framework
of the custom image.

3. View the registered image on the Image Management page.

10.3.2 Creating a Custom Image on ECS and Using It

Application Scenarios and Process
You can write a Dockerfile based on a preset base image or third-party image to
customize your image on ECS. Then, register the image to create a new
development environment based on your needs.

This section describes how to install PyTorch 1.8, FFmpeg 3, and GCC 8 on an
Ubuntu image to create a new AI development environment.

The following figure shows the whole process.

Figure 10-4 Creating and debugging an image

Specifications for Custom Images
The base image for creating a custom image must meet either of the following
conditions:

● It is an open-source image from the official website of Ascend or Docker Hub
and it meets the following OS constraints:
x86: Ubuntu 18.04 or Ubuntu 20.04
Arm: Euler 2.8.3 or Euler 2.10.7

NO TE

There may be a compatibility issue for Ubuntu 20.04.6. Use an earlier version.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 861

● If an image error occurs due to unmet requirements, check the image
specifications and rectify the fault by referring to Troubleshooting for
Custom Images in Notebook Instances. If the fault persists, contact Huawei
technical support.

Procedure
1. Prepare a Linux environment. The following uses ECS as an example.
2. Create an image on ECS. The Dockerfile sample file is provided.
3. Upload the created image to SWR.
4. Register an SWR image on ModelArts.
5. Create a notebook instance and verify the new image.

Preparing a Docker Server and Configuring the Environment
Prepare a server with Docker enabled. If no such a server is available, create an
ECS, buy an EIP, and install required software on it.

ModelArts provides Ubuntu scripts for you to install Docker easier.

NO TE

The operations on the local Linux server are the same as those on the ECS. For details, see
this case.

1. Log in to the ECS console and click Buy ECS. Select a public image (an
Ubuntu 18.04 image is recommended) and set the system disk to 100 GiB. For
details, see Purchasing and Logging In to a Linux ECS.

Figure 10-5 Selecting an image and a disk

2. Purchase an EIP and bind it to the ECS. For details, see Configure Network.
3. Configure the VM environment.

a. Run the following command on the Docker ECS to download the
installation script:
wget https://cnnorth4-modelarts-sdk.obs.cn-north-4.myhuaweicloud.com/modelarts/custom-
image-build/install_on_ubuntu1804.sh

NO TE

Only Ubuntu scripts are supported.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 862

https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0263.html
https://support.huaweicloud.com/intl/en-us/trouble-modelarts/modelarts_13_0263.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html#section3

b. Run the following command on the Docker ECS to configure the
environment:
bash install_on_ubuntu1804.sh

Figure 10-6 Configured

source /etc/profile

The installation script is executed to:

i. Install Docker.
ii. If the Docker ECS runs on GPUs, install nvidia-docker2 to mount the

GPUs to the Docker container.

Creating a Custom Image
This section describes how to edit a Dockerfile, use it to create an image, and use
the created image to create a notebook instance. For details about the Dockerfile,
see Dockerfile reference.

1. Querying Base Images (Skip This Step for Third-Party Images)
For details about ModelArts base images, see Preset Dedicated Images in
Notebook Instances. Check the image URL in the corresponding section
based on the engine type of the preset image.

2. Access SWR.

a. Log in to the SWR console. In the navigation pane on the left, choose
Dashboard, and click Generate Login Command in the upper right
corner. On the displayed page, copy the login command.

Figure 10-7 Obtaining the login command

NO TE

● The validity period of the generated login command is 24 hours. To obtain a
long-term valid login command, see Obtaining a Login Command with
Long-Term Validity. After you obtain a long-term valid login command, your
temporary login commands will still be valid as long as they are in their
validity periods.

● The domain name at the end of the login command is the image repository
address. Record the address for later use.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 863

https://docs.docker.com/engine/reference/builder/
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_1000.html
https://support.huaweicloud.com/intl/en-us/usermanual-swr/swr_01_1000.html

b. Run the login command on the machine where the container engine is
installed. The message "Login Succeeded" will be displayed upon a
successful login.

3. Pull a base image or third-party image. The following uses a third-party
image as an example.
docker pull swr.ap-southeast-1.myhuaweicloud.com/notebook-xxx/ubuntu:18.04 #Your organization
name and image

4. Compile a Dockerfile.
Run the vim command to create a Dockerfile. If a ModelArts base image is
used, see Dockerfile on a ModelArts Base Image for details about the
Dockerfile.
If a third-party image is used, add user ma-user whose UID is 1000 and user
group ma-group whose GID is 100. For details, see Dockerfile on a Non-
ModelArts Base Image.
In this case, PyTorch 1.8, FFmpeg 3, and GCC 8 will be installed on an Ubuntu
image to build an AI image.

5. Build an image.
Run the docker build command to build a new image from the Dockerfile.
The descriptions of the command parameters are as follows:
– -t specifies the new image path, including region information,

organization name, image name, and version. Set this parameter based
on the real-life scenario. Use a complete SWR address for debugging and
registration.

– -f specifies the Dockerfile name. Set this parameter based on the real-life
scenario.

– The period (.) at the end specifies that the context is the current
directory. Set this parameter based on the real-life scenario.

docker build -t swr.ap-southeast-1.myhuaweicloud.com/notebook-xxx/pytorch_1_8:v1 -f Dockerfile .

Figure 10-8 Image created

Registering a New Image
After an image is debugged, register it with ModelArts image management so
that the image can be used in ModelArts.

1. Upload the image to SWR.
Log in to SWR first. For details, see Logging in to SWR. Run the following
command to push the image:
docker push swr.ap-southeast-1.myhuaweicloud.com/notebook-xxx/pytorch_1_8:v1

The image is then available on SWR.

Figure 10-9 Uploading the image to SWR

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 864

2. Register an image.

Registering an image on the ModelArts console

Log in to the ModelArts console. In the navigation pane on the left, choose
Image Management to access the image management page.

a. Click Register. Set SWR Source to the image pushed to SWR in step 1.

Paste the complete SWR address or click to select a private image
from SWR for registration.

b. Set Architecture and Type based on the site requirements. The values
must be those of the image source.

NO TE

When you register an image, ensure that the architecture and type are the same as
those of the image source. Otherwise, the creation fails.

Using a New Image to Create a Development Environment
1. After the image is created, log in to the ModelArts console, go to the

notebook tab, and choose the image registered in 2 to create a development
environment.

2. Go to the notebook list, click Open to start the created development
environment.

Figure 10-10 Accessing a development environment

3. Open a terminal to check the conda environment. For more information
about conda, see the official website.

Each kernel in the development environment is essentially a conda
environment installed in /home/ma-user/anaconda3/. Run the /home/ma-
user/anaconda3/bin/conda env list command to check the conda
environment.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 865

https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-conda

Figure 10-11 Checking the conda environment

Dockerfile on a ModelArts Base Image
Run the vim command to create a Dockerfile. If the base image is provided by
ModelArts, the content of the Dockerfile is as follows:

FROM swr.ap-southeast-1.myhuaweicloud.com/atelier/notebook2.0-pytorch-1.4-kernel-cp37:3.3.3-release-
v1-20220114

USER root
section1: config apt source
RUN mv /etc/apt/sources.list /etc/apt/sources.list.bak && \
 echo -e "deb http://repo.huaweicloud.com/ubuntu/ bionic main restricted\ndeb http://
repo.huaweicloud.com/ubuntu/ bionic-updates main restricted\ndeb http://repo.huaweicloud.com/ubuntu/
bionic universe\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-updates universe\ndeb http://
repo.huaweicloud.com/ubuntu/ bionic multiverse\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-updates
multiverse\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-backports main restricted universe multiverse
\ndeb http://repo.huaweicloud.com/ubuntu bionic-security main restricted\ndeb http://
repo.huaweicloud.com/ubuntu bionic-security universe\ndeb http://repo.huaweicloud.com/ubuntu bionic-
security multiverse" > /etc/apt/sources.list && \
 apt-get update
section2: install ffmpeg and gcc
RUN apt-get -y install ffmpeg && \
 apt -y install gcc-8 g++-8 && \
 update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-8 80 --slave /usr/bin/g++ g++ /usr/bin/g++-8
&& \
 rm $HOME/.pip/pip.conf
USER ma-user
section3: configure conda source and pip source
RUN echo -e "channels:\n - defaults\nshow_channel_urls: true\ndefault_channels:\n - https://
mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main\n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
\n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2\ncustom_channels:\n conda-forge: https://
mirrors.tuna.tsinghua.edu.cn/anaconda/cloud\n msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
\n bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud\n menpo: https://
mirrors.tuna.tsinghua.edu.cn/anaconda/cloud\n pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/
cloud\n pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud\n simpleitk: https://
mirrors.tuna.tsinghua.edu.cn/anaconda/cloud" > $HOME/.condarc && \
 echo -e "[global]\nindex-url = https://pypi.tuna.tsinghua.edu.cn/simple\n[install]\ntrusted-host = https://
pypi.tuna.tsinghua.edu.cn" > $HOME/.pip/pip.conf
section4: create a conda environment(only support python=3.7) and install pytorch1.8
RUN source /home/ma-user/anaconda3/bin/activate && \
 conda create -y --name pytorch_1_8 python=3.7 && \
 conda activate pytorch_1_8 && \
 pip install torch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 && \
 conda deactivate

Dockerfile on a Non-ModelArts Base Image
If a third-party image is used, add user ma-user whose UID is 1000 and user
group ma-group whose GID is 100 to the Dockerfile. If UID 1000 or GID 100 in
the base image has been used by another user or user group, delete the user or
user group. The user and user group have been added to the Dockerfile in this
case. You can directly use them.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 866

NO TE

You only need to set the user ma-user whose UID is 1000 and the user group ma-group
whose GID is 100, and grant the read, write, and execute permissions on the target
directory to user ma-user.

Run the vim command to create a Dockerfile and add a third-party (non-
ModelArts) image as the base image, for example, ubuntu 18.04. The content of
the Dockerfile is as follows:

Replace it with the actual image version.
FROM ubuntu:18.04
Set the user ma-user whose UID is 1000 and the user group ma-group whose GID is 100
USER root
RUN default_user=$(getent passwd 1000 | awk -F ':' '{print $1}') || echo "uid: 1000 does not exist" && \
 default_group=$(getent group 100 | awk -F ':' '{print $1}') || echo "gid: 100 does not exist" && \
 if [! -z ${default_user}] && [${default_user} != "ma-user"]; then \
 userdel -r ${default_user}; \
 fi && \
 if [! -z ${default_group}] && [${default_group} != "ma-group"]; then \
 groupdel -f ${default_group}; \
 fi && \
 groupadd -g 100 ma-group && useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash ma-user && \
Grant the read, write, and execute permissions on the target directory to the user ma-user.
chmod -R 750 /home/ma-user

#Configure the APT source and install the ZIP and Wget tools (required for installing conda).
RUN mv /etc/apt/sources.list /etc/apt/sources.list.bak && \
 echo "deb http://repo.huaweicloud.com/ubuntu/ bionic main restricted\ndeb http://
repo.huaweicloud.com/ubuntu/ bionic-updates main restricted\ndeb http://repo.huaweicloud.com/ubuntu/
bionic universe\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-updates universe\ndeb http://
repo.huaweicloud.com/ubuntu/ bionic multiverse\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-updates
multiverse\ndeb http://repo.huaweicloud.com/ubuntu/ bionic-backports main restricted universe multiverse
\ndeb http://repo.huaweicloud.com/ubuntu bionic-security main restricted\ndeb http://
repo.huaweicloud.com/ubuntu bionic-security universe\ndeb http://repo.huaweicloud.com/ubuntu bionic-
security multivers e" > /etc/apt/sources.list && \
apt-get update && \
apt-get install -y zip wget

#Modifying the system Configuration of the image (required for creating the Conda environment)
RUN rm /bin/sh && ln -s /bin/bash /bin/sh

#Switch to user ma-user , download miniconda from the Tsinghua repository, and install miniconda in /
home/ma-user.
USER ma-user
RUN cd /home/ma-user/ && \
 wget --no-check-certificate https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-4.6.14-
Linux-x86_64.sh && \
 bash Miniconda3-4.6.14-Linux-x86_64.sh -b -p /home/ma-user/anaconda3 && \
 rm -rf Miniconda3-4.6.14-Linux-x86_64.sh

#Configure the conda and pip sources
RUN mkdir -p /home/ma-user/.pip && \
 echo -e "channels:\n - defaults\nshow_channel_urls: true\ndefault_channels:\n - https://
mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main\n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
\n - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2" > /home/ma-user/.condarc && \
 echo -e "[global]\nindex-url = https://pypi.tuna.tsinghua.edu.cn/simple\n[install]\ntrusted-host = https://
pypi.tuna.tsinghua.edu.cn" > /home/ma-user/.pip/pip.conf

#Create the conda environment and install the Python third-party package. The ipykernel package is
mandatory for starting a kernel.
RUN source /home/ma-user/anaconda3/bin/activate && \
 conda create -y --name pytorch_1_8 python=3.7 && \
 conda activate pytorch_1_8 && \
 pip install torch==1.8.1 torchvision==0.9.1 && \
 pip install ipykernel==6.7.0 && \
 conda init bash && \
 conda deactivate

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 867

#Install FFmpeg and GCC
USER root
RUN apt-get -y install ffmpeg && \
 apt -y install gcc-8 g++-8

10.3.3 Creating a Custom Image Using Dockerfile

Scenario

This example shows how to use ma-cli commands in ModelArts CLI to create and
register a custom image for AI development with a preset PyTorch image. For
details, see ma-cli Image Building Command.

Procedure
1. Create a notebook instance.
2. Create a custom image in the notebook instance.
3. Register the image on ModelArts.
4. Create a notebook instance and verify the new image.

Creating a Notebook Instance
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Development Workspace > Notebook. On the displayed page,
click Create Notebook. Set Image to Public image and select a PyTorch
image. Retain the default values for other parameters. For details, see
Creating a Notebook Instance.

2. After the notebook instance is created and in the Running state, locate it in
the notebook list, and click Open in the Operation column. On the displayed
JupyterLab page, click Terminal.

Creating a Custom Image in a Notebook Instance

Step 1 Configure authentication information, specify a profile, and enter the account
information as prompted. For details, see ma-cli Authentication.
ma-cli configure --auth PWD -P xxx

Step 2 Run env|grep -i CURRENT_IMAGE_NAME to query the image used by the current
instance.

Step 3 Create an image.

1. Obtain the SWR address of the base image.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 868

CURRENT_IMAGE_NAME=swr.ap-southeast-1.myhuaweicloud.com/atelier/
pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-
x86_64-20220926104358-041ba2e

2. Load an image creation template.
Run the ma-cli image get-template command to query the image template.

Run the ma-cli image add-template command to load the image template
to the specified folder. The default path is where the current command is
located. For example, load the upgrade_current_notebook_apt_packages
image creation template.
ma-cli image add-template upgrade_current_notebook_apt_packages

3. Modify a Dockerfile.
The Dockerfile in this example is modified based on the base PyTorch image
pytorch1.8-cuda10.2-cudnn7-ubuntu18.04, the image template
upgrade_current_notebook_apt_packages is loaded, and GCC and G++ are
upgraded.
After the image template is loaded, the Dockerfile will be automatically
loaded in .ma/upgrade_current_notebook_apt_packages. The content is as
follows and you can modify it based on your needs.
FROM swr.ap-southeast-1.myhuaweicloud.com/atelier/pytorch_1_8:pytorch_1.8.0-cuda_10.2-py_3.7-
ubuntu_18.04-x86_64-20220926104358-041ba2e

Set proxy to download internet resources
ENV HTTP_PROXY=http://proxy.modelarts.com:80 \
 http_proxy=http://proxy.modelarts.com:80 \
 HTTPS_PROXY=http://proxy.modelarts.com:80 \
 https_proxy=http://proxy.modelarts.com:80

USER root

Config apt source which can accelerate the apt package download speed. Also install ffmpeg and
gcc-8 in root mode
RUN cp -f /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 apt update && \
 apt -y install ffmpeg && \
 apt install -y --no-install-recommends gcc-8 g++-8 && apt-get autoremove -y && \
 update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-8 80 --slave /usr/bin/g++ g++ /usr/bin/g+
+-8

ModelArts requires ma-user as the default user to start image
USER ma-user

4. Build an image.
Run the ma-cli image build command to build an image with the Dockerfile.
For details about the command, see ma-cli Image Building Commands.
ma-cli image build .ma/upgrade_current_notebook_apt_packages/Dockerfile -swr notebook-test/
my_image:0.0.1 -P XXX

The Dockerfile is stored in .ma/upgrade_current_notebook_apt_package/
Dockerfile and the new image is stored in notebook-test/my_image:0.0.1 in
SWR. XXX indicates the profile specified for authentication.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 869

----End

Registering an Image

After an image is created, register it with ModelArts image management so that
the image can be used in ModelArts.

Use either of the following methods:

● Method 1: Run the ma-cli image register command to register an image.
Then, the information of the registered image is returned, including image ID
and name, as shown in the following figure. For details about the command,
see ma-cli Image Building Commands.
ma-cli image register --swr-path=swr.ap-southeast-1.myhuaweicloud.com/notebook-test/
my_image:0.0.1 -P XXX

Figure 10-12 Registering an image

● Method 2: Register the image on the ModelArts management console.

Log in to the ModelArts management console. In the navigation pane on the
left, select Image Management. The Image Management page is displayed.

a. Click Register. Paste the complete SWR address or click to select a
private image from SWR for registration.

b. Set Architecture and Type based on the site requirements. The values
must be those of the image source.

Creating and Using a Notebook Instance

After an image is registered, it is available for development environment creation.
You can log in to the ModelArts management console, choose DevEnviron >
Notebook, and select the image during creation.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 870

10.3.4 Creating a Custom Image Using the Image Saving
Function

To save a notebook environment image, do as follows: Create a notebook instance
using a preset image, install custom software and dependencies on the base
image, and save the running instance as a container image. After the image is
saved, the default working directory is the / path in the root directory.

In the saved image, the installed dependencies are retained. The data stored in
home/ma-user/work for persistent storage will not be stored. When you use VS
Code for remote development, the plug-ins installed on the Server are retained.

NO TE

If the image fails to be saved, view the event on the notebook instance details page. For
details, see Viewing Notebook Events.

The image to be saved should not be larger than 35 GB and there should be no more than
125 layers. Otherwise, the image may fail to be saved. For details, see Space Allocation for
Container Engines.

● If a dedicated resource pool is used, log in to the ModelArts console. In the navigation
pane on the left, choose AI Dedicated Resource Pools > Elastic Clusters. On the
displayed page, configure the container engine size as needed. For details, see Resizing
a Dedicated Resource Pool.

● If the fault persists, contact technical support.

Prerequisites

The notebook instance is in Running state.

Saving an Image
1. In the notebook instance list, select the target notebook instance and choose

Save Image from the More drop-down list in the Operation column. The
Save Image dialog box is displayed.

Figure 10-13 Saving an image

2. In the Save Image dialog box, configure parameters. Click OK to save the
image.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 871

https://support.huaweicloud.com/intl/en-us/api-cce/cce_01_0341.html#section1
https://support.huaweicloud.com/intl/en-us/api-cce/cce_01_0341.html#section1
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/resmgmt-modelarts_0006.html#section2
https://support.huaweicloud.com/intl/en-us/usermanual-standard-modelarts/resmgmt-modelarts_0006.html#section2

Choose an organization from the Organization drop-down list. If no
organization is available, click Create on the right to create one.
Users in an organization can share all images in the organization.

3. The image will be saved as a snapshot, and it will take about 5 minutes.
During this period of time, do not perform any operations on the instance.

Figure 10-14 Saving as a snapshot

NO TICE

The time required for saving an image as a snapshot will be counted in the
instance running duration. If the instance running duration expires before the
snapshot is saved, saving the image will fail.

4. After the image is saved, the instance status changes to Running. View the
image on the Image Management page.

5. Click the name of the image to view its details.

Using a Custom Image to Create a Notebook Instance

The images saved from a notebook instance can be viewed on the Image
Management page. You can use these images to create new notebook instances,
which inherit the software configurations of the original notebook instances.

Method 1: On the Create Notebook page, click Private Image and select the
saved image.

Figure 10-15 Selecting a custom image to create a notebook instance

Method 2: On the Image Management page, click the target image to access its
details page. Then, click Create Notebook.

Which Data Can Be Saved When I Save an Image?
● Data that can be saved: Files and directories that are statically added to

images during container building,
for example, dependencies and the /home/ma-user directory are saved in the
image environment.

● Data that cannot be saved: Mounting directories or data volumes that are
dynamically connected to the host during container startup. You can run the

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 872

df -h command to view the mounted dynamic directories. Data that is not in
the / path will not be saved.
For example, data that is persistently stored in home/ma-user/work and
data that is dynamically mounted to /data is not saved.

10.4 Creating a Custom Image for Model Training

10.4.1 Creating a Custom Training Image
If you have developed a model or training script locally but the AI engine you used
is not supported by ModelArts, create a custom image and upload it to SWR.
Then, use this image to create a training job on ModelArts and use the resources
provided by ModelArts to train models.

Procedure

Figure 10-16 Creating a custom image for a training job

Scenario 1: If the preset images meet ModelArts training constraints but lack
necessary code dependencies, install additional software packages.

For details, see Creating a Custom Training Image Using a Preset Image.

Scenario 2: If the local images meet code dependency requirements but not
ModelArts training constraints, adapt them to ModelArts.

For details, see Migrating Existing Images to ModelArts.

Scenario 3: If neither the preset nor local images meet your needs, create an
image that has necessary code dependencies and meet ModelArts constraints. For
details, see the following cases:

Creating a Custom Training Image (PyTorch + CPU/GPU)

Creating a Custom Training Image (MPI + CPU/GPU)

Creating a Custom Training Image (Tensorflow + GPU)

Constraints on Custom Images of the Training Framework
● Use Ubuntu 18.04 for custom images to in case versions are not compatible.
● Do not use a custom image larger than 15 GB. The size should not exceed

half of the container engine space of the resource pool. Otherwise, the start
time of the training job is affected.
The container engine space of ModelArts public resource pool is 50 GB. By
default, the container engine space of the dedicated resource pool is also 50

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 873

GB. You can customize the container engine space when creating a dedicated
resource pool.

● The uid of the default user of a custom image must be 1000.
● The GPU or Ascend driver cannot be installed in a custom image. When you

select GPU resources to run training jobs, ModelArts automatically places the
GPU driver in the /usr/local/nvidia directory in the training environment.
When you select Ascend resources to run training jobs, ModelArts
automatically places the Ascend driver in the /usr/local/Ascend/driver
directory.

● x86- or Arm-based custom images can run only with specifications
corresponding to their architecture.
Run the following command to check the CPU architecture of a custom
image:
docker inspect {Custom image path} | grep Architecture

The following is the command output for an Arm-based custom image:
"Architecture": "arm64"

– If the name of a specification contains Arm, this specification is an Arm-
based CPU architecture.

– If the name of a specification does not contain Arm, this specification is
an x86-based CPU architecture.

● The ModelArts backend does not support the download of open source
installation packages. Install the dependency packages required for training in
the custom image.

● Custom images can be used to train models in ModelArts only after they are
uploaded to Software Repository for Container (SWR).

10.4.2 Creating a Custom Training Image Using a Preset
Image

Principles
If you use a preset image to create a training job and you need to modify or add
some software dependencies based on the preset image, you can create a custom
image. In this case, on the training job creation page, select a preset image and
choose Customize from the framework version drop-down list box.

The process of this method is the same as that of creating a training job based on
a preset image. For example:

● The system automatically injects environment variables, as shown below:
– PATH=${MA_HOME}/anaconda/bin:${PATH}
– LD_LIBRARY_PATH=${MA_HOME}/anaconda/lib:${LD_LIBRARY_PATH}
– PYTHONPATH=${MA_JOB_DIR}:${PYTHONPATH}

● The selected boot file will be automatically started using Python commands.
Ensure that the Python environment is correct. The PATH environment
variable is automatically injected. Run the following commands to check the
Python version for the training job:
– export MA_HOME=/home/ma-user; docker run --rm {image} $

{MA_HOME}/anaconda/bin/python -V

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 874

– docker run --rm {image} $(which python) -V

● The system automatically adds hyperparameters associated with the preset
image.

Creating a Training Image Using a Preset Image

ModelArts provides deep learning-powered base images such as TensorFlow,
PyTorch, and MindSpore images. In these images, the software mandatory for
running training jobs has been installed. If the software in the base images cannot
meet your service requirements, create new images based on the base images and
use the new images to create training jobs.

Perform the following operations to create an image using a training base image:

1. Install Docker. If the docker images command is executed, Docker has been
installed. In this case, skip this step.

The following uses Linux x86_64 as an example to describe how to obtain the
Docker installation package. Run the following command to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

2. Create a folder named context.
mkdir -p context

3. Obtain the pip.conf file.
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120

4. Create an image based on a training base image provided by ModelArts. Save
the edited Dockerfile in the context folder. For details about how to obtain a
training base image, see Preset Dedicated Images for Training.
FROM {Path to the training base image provided by ModelArts}

Configure pip.
RUN mkdir -p /home/ma-user/.pip/
COPY --chown=ma-user:ma-group pip.conf /home/ma-user/.pip/pip.conf

Configure the preset environment variables of the container image.
Add the Python interpreter path to the PATH environment variable.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=${ANACONDA_DIR}/envs/${ENV_NAME}/bin:$PATH \
 PYTHONUNBUFFERED=1

RUN /home/ma-user/anaconda/bin/pip install --no-cache-dir numpy

5. Create an image. Run the following command in the directory where the
Dockerfile is stored to build the container image training:v1:
docker build . -t training:v1

6. Upload the new image to SWR.

a. Log in to the SWR console and select the target region.

b. Click Create Organization in the upper right corner and enter an
organization name. In this case, deep-learning is used as an example.
Replace it in subsequent commands with the actual organization name.

c. Click Generate Login Command in the upper right corner to obtain a
login command. Log in to ECS as user root and enter the login command.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 875

Figure 10-17 Login command executed on ECS

d. Log in to SWR and run the docker tag command to add tags to the
image to be uploaded. In this case, deep-learning is used as an example.
Replace it with the information configured in a for subsequent
commands.
sudo docker tag tf-1.13.2:latest swr.Actual domain name.com/deep-learning/tf-1.13.2:latest

e. Run the docker push command to upload the image.
sudo docker push swr.Actual domain name.com/deep-learning/tf-1.13.2:latest

f. After the image is uploaded, choose My Images in navigation pane on
the left of the SWR console to view the uploaded custom images.
SWR URL of the custom image: swr.<Region>.myhuaweicloud.com/deep-
learning/tf-1.13.2:latest

7. Create a training job on ModelArts.

a. Log in to the ModelArts console.
b. In the navigation pane on the left, choose Model Training > Training

Jobs.
c. Click Create Training Job. On the displayed page, configure the

parameters by referring to Table 10-31. For details about the parameters,
see Creating a Production Training Job.

Table 10-31 Creating a training job

Parameter Description

Algorithm Type Mandatory. Select Custom algorithm.

Boot Mode Mandatory. Select Preset image and choose the
required framework and engine version. In this
case, choose Customize for the engine version.

Image Select the image uploaded to SWR for
container image.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 876

Parameter Description

Code Directory Mandatory. Select the OBS directory where the
training code file is stored.
● Upload code to the OBS bucket beforehand.

The total size of files in the directory cannot
exceed 5 GB, the number of files cannot
exceed 1,000, and the folder depth cannot
exceed 32.

● The training code file is automatically
downloaded to the ${MA_JOB_DIR}/demo-
code directory of the training container when
the training job is started. demo-code is the
last-level OBS directory for storing the code.
For example, if Code Directory is set to /test/
code, the training code file is downloaded to
the ${MA_JOB_DIR}/code directory of the
training container.

Boot File Mandatory. Select the Python boot script of the
training job in the code directory.
ModelArts supports only the boot file written in
Python. Therefore, the boot file must end
with .py.

10.4.3 Migrating Existing Images to ModelArts

Description
An image is available on the local host and needs to be adapted on the cloud for
ModelArts model training.

Procedure
1. Modify an existing image by referring to the following Dockerfile so that the

image complies with specifications for custom images of the model training.
FROM {An existing image}

USER root

If the user group whose GID is 100 already exists, delete the groupadd command.
RUN groupadd ma-group -g 100
If the user whose UID is 1000 already exists, delete the useradd command.
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Modify the permissions on image files so that user ma-user whose UID is 1000 can read and write
the files.
RUN chown -R ma-user:100 {Path to the Python software package}

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PYTHONUNBUFFERED=1

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 877

Note:

a. Add the default user group ma-group (gid = 100) of the model training
for the image.

NO TE

If the user group whose gid is 100 already exists, the error message "groupadd:
GID '100' already exists" may be displayed. You can use the cat /etc/group | grep
100 command to check whether the user group whose GID is 100 exists.

If the user group whose gid is 100 already exists, skip this step and delete the
command RUN groupadd ma-group -g 100 from the Dockerfile.

b. Add the default user ma-user (uid = 1000) of the model training for the
image.

NO TE

If the user whose uid is 1000 already exists, the error message "useradd: UID
1000 is not unique" may be displayed. You can use the cat /etc/passwd | grep
1000 command to check whether the user whose UID is 1000 exists.

If the user whose uid is 1000 already exists, skip this step and delete the
command RUN useradd -d /home/ma-user -m -u 1000 -g 100 -s /bin/bash
ma-user from the Dockerfile.

c. Modify the permissions on files in the image to allow ma-user whose uid
is 1000 to read and write the files.

2. After editing the Dockerfile, run the following command to build an image:
docker build -f Dockerfile . -t {New image}

3. Upload the new image to SWR. For details, see 6.

4. Create a training job on ModelArts.

a. Log in to the ModelArts console.

b. In the navigation pane on the left, choose Model Training > Training
Jobs.

c. Click Create Training Job. On the displayed page, configure the
parameters by referring to Table 10-31. For details about the parameters,
see Creating a Production Training Job.

Table 10-32 Creating a training job using a custom image

Parameter Description

Algorithm Type Mandatory. Select Custom algorithm.

Boot Mode Mandatory. Select Custom image.

Image Mandatory. Select the image uploaded to SWR
for container image.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 878

Parameter Description

Code Directory OBS directory where the training code file is
stored. Configure this parameter only if your
custom image does not contain training code.
● Upload code to the OBS bucket beforehand.

The total size of files in the directory cannot
exceed 5 GB, the number of files cannot
exceed 1,000, and the folder depth cannot
exceed 32.

● The training code file is automatically
downloaded to the ${MA_JOB_DIR}/demo-
code directory of the training container when
the training job is started. demo-code is the
last-level OBS directory for storing the code.
For example, if Code Directory is set to /test/
code, the training code file is downloaded to
the ${MA_JOB_DIR}/code directory of the
training container.

User ID User ID for running the container. The default
value 1000 is recommended.
If the UID needs to be specified, its value must
be within the specified range. The UID ranges of
different resource pools are as follows:
● Public resource pool: 1000 to 65535
● Dedicated resource pool: 0 to 65535

Boot Command Mandatory. Command for booting an image.
When a training job is running, the boot
command is automatically executed after the
code directory is downloaded.
● If the training boot script is a .py file, train.py

for example, the boot command is as follows:
python ${MA_JOB_DIR}/demo-code/train.py

● If the training boot script is an .sh file,
main.sh for example, the boot command is as
follows.
bash ${MA_JOB_DIR}/demo-code/main.sh

You can use semicolons (;) and ampersands (&&)
to combine multiple commands. demo-code in
the command is the last-level OBS directory
where the code is stored. Replace it with the
actual one.

Local Code
Directory

Specify the local directory of a training container.
When a training starts, the system automatically
downloads the code directory to this directory.
(Optional) The default local code directory is /
home/ma-user/modelarts/user-job-dir.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 879

Parameter Description

Work Directory During training, the system automatically runs
the cd command to execute the boot file in this
directory.

10.4.4 Creating a Custom Training Image (PyTorch + Ascend)
This section describes how to create an image and use it for training on
ModelArts. The AI engine used in the image is PyTorch, and the resources used for
training are powered by Ascend in a dedicated resource pool.

Prerequisites
A Linux virtual or physical server with Docker 18.09.7 or later versions installed is
available. The server can access the Internet and function as an image creation
node.

Run the docker pull, apt-get update/upgrade, and pip install commands to
check whether the node can access an external open-source software repository. If
so, the node can access the Internet.

NO TICE

● The preceding servers must be Arm64-powered.
● It is a good practice to install Ubuntu 18.04 on the image creation node.
● In this section, the /opt directory is used for the image creation task. Ensure

that the available storage of this directory is greater than 30 GB.
● For details about how to install Docker, see Install Docker Engine on Ubuntu.

Miniconda and TFLite installation packages are provided by third parties.
ModelArts is not responsible for their security issues. If you have security
requirements, harden the security of these packages, release them as files with
the same names, and upload them to the image creation node.

Creating a Custom Image
Step 1 Check the Docker engine version.

docker version | grep -A 1 Engine

The command output is as follows:
Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

Step 2 Create a folder named context.
mkdir -p context

Step 3 Obtain the pip.conf file. In this example, the pip source provided by Huawei
Mirrors is used, which is as follows:

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 880

https://docs.docker.com/engine/install/ubuntu/

[global]
index-url =
https://repo.huaweicloud.com/repository/pypi/simple
trusted-host =
repo.huaweicloud.com
timeout = 120

Step 4 Obtain the APT source file Ubuntu-Ports-bionic.list. In this example, the APT
source provided at Huawei Mirrors is used. Run the following command to obtain
the APT source file:
wget -O Ubuntu-Ports-bionic.list --no-check-certificate
https://repo.huaweicloud.com/repository/conf/Ubuntu-Ports-bionic.list

Step 5 Download the Ascend-cann-nnae_7.0.0_linux-aarch64.run, torch-2.1.0-cp39-
cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl, and
torch_npu-2.1.0.post7-cp39-cp39-
manylinux_2_17_aarch64.manylinux2014_aarch64.whl installation files.
● Download the Ascend-cann-nnae_7.0.0_linux-aarch64.run file. Click the

following link based on your user type. Search for CANN7 for version and
click the CANN7.0.0 link. On the displayed page, search for Ascend-cann-
nnae_7.0.0_linux-aarch64.run and download it.
– For enterprise users, click here for download.
– For carrier users, click here for download.

● Click here to download the torch-2.1.0-cp39-cp39-
manylinux_2_17_aarch64.manylinux2014_aarch64.whl file.

● Click here to download the torch_npu-2.1.0.post7-cp39-cp39-
manylinux_2_17_aarch64.manylinux2014_aarch64.whl file.

NO TE

ModelArts supports only the commercial CANN edition.

Step 6 Download the Miniconda3 installation file.

Click here to download the Miniconda3-py39_24.5.0-0 installation file (for
Python 3.9).

NO TE

Download Python of a different version from Miniconda3 File List. The MindSpore version
must correspond to the Python version.

Step 7 Store the pip source file, .list file, .run file, .whl file, and Miniconda3 installation
file in the context folder, which is as follows:
context
├── Ascend-cann-nnae_7.0.0_linux-aarch64.run
├── torch-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
├── Miniconda3-py39_24.5.0-0-Linux-aarch64.sh
├── torch_npu-2.1.0.post7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
├── pip.conf
└── Ubuntu-Ports-bionic.list

Step 8 Write the Dockerfile of the container image.

Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The server on which the container image is created must access the Internet.
FROM ubuntu:18.04 AS builder

The default user of the base container image is root.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 881

https://support.huawei.com/enterprise/en/ascend-computing/cann-pid-251168373/software/
https://support.huawei.com/carrier/productNewOffering?col=product&resTab=SW&lang=en&path=PBI1-262732867/PBI1-262735886/PBI1-22892969/PBI1-23710427/PBI1-251168373
https://download.pytorch.org/whl/cpu/torch-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl#sha256=de7d63c6ecece118684415a3dbd4805af4a4c1ee1490cccf7405d8c240a481b4
https://gitee.com/ascend/pytorch/releases/download/v6.0.rc2.1-pytorch2.1.0/torch_npu-2.1.0.post7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
https://repo.anaconda.com/miniconda/Miniconda3-py39_24.5.0-0-Linux-aarch64.sh
https://repo.anaconda.com/miniconda

USER root

Install OS dependencies.
COPY Ubuntu-Ports-bionic.list /tmp
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 mv /tmp/Ubuntu-Ports-bionic.list /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y \
 # utils
 ca-certificates vim curl \
 # CANN 7.0.0
 gcc g++ make cmake zlib1g zlib1g-dev openssl libsqlite3-dev libssl-dev libffi-dev unzip pciutils net-tools
libblas-dev gfortran libblas3 libopenblas-dev \
 # MindSpore 2.2.0
 libgmp-dev && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 # Grant the write permission of the parent directory of the CANN 7.0.0 installation directory to ma-user.
 chmod o+w /usr/local

RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

Use the PyPI configuration obtained at the open-source image website.
RUN mkdir -p /home/ma-user/.pip/
COPY --chown=ma-user:100 pip.conf /home/ma-user/.pip/pip.conf

Copy the installation files to the /tmp directory in the base container image.
COPY --chown=ma-user:100 Miniconda3-py39_24.5.0-0-Linux-aarch64.sh /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 in the /home/ma-user/miniconda3 directory of the base container image.
RUN bash /tmp/Miniconda3-py39_24.5.0-0-Linux-aarch64.sh -b -p /home/ma-user/miniconda3

ENV PATH=$PATH:/home/ma-user/miniconda3/bin

Install the CANN 7.0.0 Python dependency package.
RUN pip install numpy~=1.19.2 decorator~=4.4.0 sympy~=1.5.1 cffi~=1.12.3 protobuf~=3.13.0 \
 attrs pyyaml pathlib2 scipy requests psutil absl-py

Install CANN 7.0.0 in /usr/local/Ascend.
COPY --chown=ma-user:100 Ascend-cann-nnae_7.0.0_linux-aarch64.run /tmp
RUN chmod +x /tmp/Ascend-cann-nnae_7.0.0_linux-aarch64.run && \
 echo Y|/tmp/Ascend-cann-nnae_7.0.0_linux-aarch64.run --install --install-path=/usr/local/Ascend

Install PyTorch 2.1.0.
COPY --chown=ma-user:100 torch-2.1.0-cp39-cp39-
manylinux_2_17_aarch64.manylinux2014_aarch64.whl /tmp
RUN chmod +x /tmp/torch-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl && \
 pip install /tmp/torch-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl

Install touch-npu.
COPY --chown=ma-user:100 torch_npu-2.1.0.post7-cp39-cp39-
manylinux_2_17_aarch64.manylinux2014_aarch64.whl /tmp
RUN chmod +x /tmp/torch_npu-2.1.0.post7-cp39-cp39-
manylinux_2_17_aarch64.manylinux2014_aarch64.whl && \
 pip install /tmp/torch_npu-2.1.0.post7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl

Create the container image.
FROM ubuntu:18.04

Install OS dependencies.
COPY Ubuntu-Ports-bionic.list /tmp
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 mv /tmp/Ubuntu-Ports-bionic.list /etc/apt/sources.list && \

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 882

 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y \
 # utils
 ca-certificates vim curl \
 # CANN 7.0.RC1
 gcc g++ make cmake zlib1g zlib1g-dev openssl libsqlite3-dev libssl-dev libffi-dev unzip pciutils net-tools
libblas-dev gfortran libblas3 libopenblas-dev \
 # MindSpore 2.2.0
 libgmp-dev && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list

RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the directories from the builder stage to the directories with the same name in the current
container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3
COPY --chown=ma-user:100 --from=builder /home/ma-user/Ascend /home/ma-user/Ascend
COPY --chown=ma-user:100 --from=builder /home/ma-user/var /home/ma-user/var
COPY --chown=ma-user:100 --from=builder /usr/local/Ascend /usr/local/Ascend

Configure the preset environment variables of the container image.
Configure CANN environment variables.
Configure Ascend driver environment variables.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=$PATH:/usr/local/Ascend/nnae/latest/bin:/usr/local/Ascend/nnae/latest/compiler/ccec_compiler/
bin:/home/ma-user/miniconda3/bin \
 LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/Ascend/driver/lib64:/usr/local/Ascend/driver/lib64/
common:/usr/local/Ascend/driver/lib64/driver:/usr/local/Ascend/nnae/latest/lib64:/usr/local/Ascend/nnae/
latest/lib64/plugin/opskernel:/usr/local/Ascend/nnae/latest/lib64/plugin/nnengine \
 PYTHONPATH=$PYTHONPATH:/usr/local/Ascend/nnae/latest/python/site-packages:/usr/local/Ascend/
nnae/latest/opp/op_impl/built-in/ai_core/tbe \
 ASCEND_AICPU_PATH=$ASCEND_AICPU_PATH:/usr/local/Ascend/nnae/latest \
 ASCEND_OPP_PATH=$ASCEND_OPP_PATH:/usr/local/Ascend/nnae/latest/opp \
 ASCEND_HOME_PATH=$ASCEND_HOME_PATH:/usr/local/Ascend/nnae/latest \
 PYTHONUNBUFFERED=1

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

For details about how to write a Dockerfile, see official Docker documents.

Step 9 Verify that the Dockerfile has been created. The following shows the context
folder:
context
├── Ascend-cann-nnae_7.0.0_linux-aarch64.run
├── Dockerfile
├── torch-2.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
├── torch_npu-2.1.0.post7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
├── Miniconda3-py39_24.5.0-0-Linux-aarch64.sh
├── pip.conf
└── Ubuntu-Ports-bionic.list

Step 10 Create the container image. Run the following command in the directory where
the Dockerfile is stored to create a container image:
docker build . -t pytorch:2.1.0-cann7.0.0

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 883

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

NO TE

If "connection refused" or "Client.Timeout exceeded" is reported when you access https://
registry-1.docker.io/v2/ during image creation, configure the Docker proxy.
vi /etc/docker/daemon.json
Add the following content to the file and save the file:
{
"registry-mirrors":[
"https://docker.m.daocloud.io",
"https://docker.jianmuhub.com",
"https://huecker.io",
"https://dockerhub.timeweb.cloud",
"https://dockerhub1.beget.com",
"https://noohub.ru"]
}
Run the systemctl daemon-reload and systemctl restart docker commands in sequence.
Recreate

The following log shows that the image has been created.
Successfully tagged pytorch:2.1.0-cann7.0.0

----End

Uploading an Image to SWR
1. Log in to the SWR console and select a region. It must share the same region

with ModelArts. Otherwise, the image cannot be selected.
2. Click Create Organization in the upper right corner and enter an

organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

3. Click Generate Login Command in the upper right corner to obtain the login
command. In this example, the temporary login command is copied.

4. Log in to the local environment as user root and enter the copied temporary
login command.

5. Upload the image to SWR.

a. Run the docker tag command to add tags to the uploaded image:
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker tag pytorch:2.1.0-cann7.0.0 swr.{region-id}.{domain}/deep-learning/pytorch:2.1.0-
cann7.0.0

b. Run the following command to upload the image:
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker push swr.{region-id}.{domain}/deep-learning/pytorch:2.1.0-cann7.0.0

6. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Creating a Training Job on ModelArts
1. Log in to the ModelArts management console, check whether access

authorization has been configured for your account. For details, see

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 884

Configuring Agency Authorization for ModelArts with One Click. If you
have been authorized using access keys, clear the authorization and configure
agency authorization.

2. In the navigation pane on the left, choose Model Training > Training Jobs.
Then, click Create Training Job.

3. On the displayed page, configure parameters and click Submit.
– Algorithm Type: Custom algorithm
– Boot Mode: Custom image
– Image: swr.cn-north-4.myhuaweicloud.com/deep-learning/

pytorch:2.1.0-cann7.0.0
– Code Directory: directory where the boot script file is stored in OBS, for

example, obs://test-modelarts/pytorch/demo-code/. The training code
is automatically downloaded to the ${MA_JOB_DIR}/demo-code
directory of the training container. demo-code (customizable) is the last-
level directory of the OBS path.

– Boot Command: /home/ma-user/miniconda3/bin/python $
{MA_JOB_DIR}/demo-code/pytorch-verification.py. demo-code
(customizable) is the last-level directory of the OBS path.

– Resource Pool: Dedicated resource pool
– Resource Type: Ascend with the required driver and firmware version
– Job Log Path: OBS path to stored training logs, for example, obs://test-

modelarts/pytorch/log/.
4. Confirm the configurations of the training job and click Submit.
5. Wait until the training job is created.

After you submit the job creation request, the system will automatically
perform operations on the backend, such as downloading the container image
and code directory and running the boot command. A training job requires a
certain period of time for running. The duration ranges from dozens of
minutes to several hours, depending on the service logic and selected
resources. You can view log information on the job details page.

10.4.5 Creating a Custom Training Image (PyTorch + CPU/
GPU)

This section describes how to create an image and use the image for training on
the ModelArts platform. The AI engine used for training is PyTorch, and the
resources are CPUs or GPUs.

NO TE

This section applies only to training jobs of the new version.

Scenarios
In this example, write a Dockerfile to create a custom image on a Linux x86_64
server running Ubuntu 18.04.

Objective: Build and install container images of the following software and use the
images and CPUs/GPUs for training on ModelArts.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 885

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● pytorch-1.8.1

Procedure
Before using a custom image to create a training job, get familiar with Docker and
have development experience. The following is the detailed procedure:

1. Prerequisites
2. Step 1 Creating an OBS Bucket and Folder
3. Step 2 Preparing the Training Script and Uploading It to OBS
4. Step 3 Preparing a Host
5. Step 4 Creating a Custom Image
6. Step 5 Uploading an Image to SWR
7. Step 6 Creating a Training Job on ModelArts

Prerequisites
You have registered a Huawei ID and enabled Huawei Cloud services, and the
account is not in arrears or frozen.

Step 1 Creating an OBS Bucket and Folder
Create a bucket and folders in OBS for storing the sample dataset and training
code. Table 10-33 lists the folders to be created. Replace the bucket name and
folder names in the example with actual names.

For details about how to create an OBS bucket and folder, see Creating a Bucket
and Creating a Folder.

Ensure that the OBS directory you use and ModelArts are in the same region.

Table 10-33 Folder to create

Name Description

obs://test-modelarts/pytorch/
demo-code/

Stores the training script.

obs://test-modelarts/pytorch/log/ Stores training log files.

Step 2 Preparing the Training Script and Uploading It to OBS
Prepare the training script pytorch-verification.py and upload it to the obs://test-
modelarts/pytorch/demo-code/ folder of the OBS bucket.

The pytorch-verification.py file contains the following information:

import torch
import torch.nn as nn

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 886

https://support.huaweicloud.com/intl/en-us/usermanual-obs/en-us_topic_0045829088.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html

x = torch.randn(5, 3)
print(x)

available_dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
y = torch.randn(5, 3).to(available_dev)
print(y)

Step 3 Preparing a Host

Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC
will do.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. Set CPU Architecture to x86 and Image to Public image. Ubuntu
18.04 images are recommended.

Step 4 Creating a Custom Image

Create a container image with the following configurations and use the image to
create a training job on ModelArts:

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● pytorch-1.8.1

This section describes how to write a Dockerfile to create a custom image.

1. Install Docker.
The following uses the Linux x86_64 OS as an example to describe how to
obtain the Docker installation package. For more details about how to install
Docker, Run the following commands to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command is executed, Docker has been installed. In this
case, skip this step.

2. Run the following command to check the Docker Engine version:
docker version | grep -A 1 Engine

The following information is displayed:
...
Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

3. Create a folder named context.
mkdir -p context

4. Obtain the pip.conf file. In this example, the pip source provided by Huawei
Mirrors is used, which is as follows:
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 887

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

NO TE

To obtain pip.conf, go to Huawei Mirrors at https://mirrors.huaweicloud.com/home
and search for pypi.

5. Download the torch*.whl files. Download the following .whl files from
https://download.pytorch.org/whl/torch_stable.html:
– torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
– torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
– torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

NO TE

The URL code of the + symbol is %2B. When searching for a file in the above website,
replace the + symbol in the file name with %2B.
For example, torch-1.8.1%2Bcu111-cp37-cp37m-linux_x86_64.whl.

6. Download the Miniconda3-py37_4.12.0-Linux-x86_64.sh installation file
(Python 3.7.13) from https://repo.anaconda.com/miniconda/Miniconda3-
py37_4.12.0-Linux-x86_64.sh.

7. Store the pip source file, torch*.whl file, and Miniconda3 installation file in the
context folder, which is as follows:
context
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
├── pip.conf
├── torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
├── torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
└── torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

8. Write the container image Dockerfile.
Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The host must be connected to the public network for creating a container image.

Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA

https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#
builder stage
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 AS builder

The default user of the base container image is root.
USER root

Use the PyPI configuration provided by Huawei Mirrors.
RUN mkdir -p /root/.pip/
COPY pip.conf /root/.pip/pip.conf

Copy the installation files to the /tmp directory in the base container image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp
COPY torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp
COPY torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl /tmp
COPY torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 to the /home/ma-user/miniconda3 directory of the base container image.
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Install torch*.whl using the default Miniconda3 Python environment in /home/ma-user/
miniconda3/bin/pip.
RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir \
 /tmp/torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl \

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 888

 /tmp/torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl \
 /tmp/torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl

Create the final container image.
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04

Install vim and cURL in Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 apt-get update && \
 apt-get install -y vim curl && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list

Add user ma-user (UID = 1000, GID = 100).
A user group whose GID is 100 of the base container image exists. User ma-user can directly use it.
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to avoid log loss.
ENV PATH=$PATH:/home/ma-user/miniconda3/bin \
 PYTHONUNBUFFERED=1

Set the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

For details about how to write a Dockerfile, see official Docker documents.
9. Verify that the Dockerfile has been created. The following shows the context

folder:
context
├── Dockerfile
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
├── pip.conf
├── torch-1.8.1+cu111-cp37-cp37m-linux_x86_64.whl
├── torchaudio-0.8.1-cp37-cp37m-linux_x86_64.whl
└── torchvision-0.9.1+cu111-cp37-cp37m-linux_x86_64.whl

10. Create the container image. Run the following command in the directory
where the Dockerfile is stored to build the container image pytorch:1.8.1-
cuda11.1:
docker build . -t pytorch:1.8.1-cuda11.1

The following log information displayed during image creation indicates that
the image has been created.
Successfully tagged pytorch:1.8.1-cuda11.1

Step 5 Uploading an Image to SWR
1. Log in to the SWR console and select a region. It must share the same region

with ModelArts. Otherwise, the image cannot be selected.
2. Click Create Organization in the upper right corner and enter an

organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

3. Click Generate Login Command in the upper right corner to obtain the login
command. In this example, the temporary login command is copied.

4. Log in to the local environment as user root and enter the copied temporary
login command.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 889

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

5. Upload the image to SWR.

a. Run the following command to tag the uploaded image:
#Replace the region and domain information with the actual values, and replace the
organization name deep-learning with your custom value.
sudo docker tag pytorch:1.8.1-cuda11.1 swr.{region-id}.{domain}/deep-learning/pytorch:1.8.1-
cuda11.1

b. Run the following command to upload the image:
#Replace the region and domain information with the actual values, and replace the
organization name deep-learning with your custom value.
sudo docker push swr.{region-id}.{domain}/deep-learning/pytorch:1.8.1-cuda11.1

6. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Step 6 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console and check whether access

authorization has been configured for your account. For details, see
Configuring Agency Authorization for ModelArts with One Click. If you
have been authorized using access keys, clear the authorization and configure
agency authorization.

2. In the navigation pane on the left, choose Model Training > Training Jobs.
The training job list is displayed by default.

3. On the Create Training Job page, set required parameters and click Submit.

– Created By: Custom algorithms

– Boot Mode: Custom images

– Image path: image created in Step 5 Uploading an Image to SWR.

– Code Directory: directory where the boot script file is stored in OBS, for
example, obs://test-modelarts/pytorch/demo-code/. The training code
is automatically downloaded to the ${MA_JOB_DIR}/demo-code
directory of the training container. demo-code (customizable) is the last-
level directory of the OBS path.

– Boot Command: /home/ma-user/miniconda3/bin/python $
{MA_JOB_DIR}/demo-code/pytorch-verification.py. demo-code
(customizable) is the last-level directory of the OBS path.

– Resource Pool: Public resource pools

– Resource Type: Select CPU or GPU.

– Persistent Log Saving: enabled

– Job Log Path: Set this parameter to the OBS path for storing training
logs, for example, obs://test-modelarts/pytorch/log/.

4. Check the parameters of the training job and click Submit.

5. Wait until the training job is completed.

After a training job is created, the operations such as container image
downloading, code directory downloading, and boot command execution are
automatically performed in the backend. Generally, the training duration
ranges from dozens of minutes to several hours, depending on the training
procedure and selected resources. After the training job is executed, the log
similar to the following is output.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 890

Figure 10-18 Run logs of training jobs with GPU specifications

10.4.6 Creating a Custom Training Image (MPI + CPU/GPU)
This section describes how to create an image and use the image for training on
the ModelArts platform. The AI engine used for training is MPI, and the resources
are CPUs or GPUs.

NO TE

This section applies only to training jobs of the new version.

Scenarios

In this example, write a Dockerfile to create a custom image on a Linux x86_64
server running Ubuntu 18.04.

Objective: Build and install container images of the following software and use the
images and CPUs/GPUs for training on ModelArts.

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● openmpi-3.0.0

Procedure

Before using a custom image to create a training job, get familiar with Docker and
have development experience. The following is the detailed procedure:

1. Prerequisites
2. Step 1 Creating an OBS Bucket and Folder
3. Step 2 Preparing Script Files and Uploading Them to OBS
4. Step 3 Preparing an Image Server
5. Step 4 Creating a Custom Image
6. Step 5 Uploading an Image to SWR
7. Step 6 Creating a Training Job on ModelArts

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 891

Prerequisites
You have registered a Huawei ID and enabled Huawei Cloud services, and the
account is not in arrears or frozen.

Step 1 Creating an OBS Bucket and Folder
Create a bucket and folders in OBS for storing the sample dataset and training
code. Table 10-34 lists the folders to be created. Replace the bucket name and
folder names in the example with actual names.

For details about how to create an OBS bucket and folder, see Creating a Bucket
and Creating a Folder.

Ensure that the OBS directory you use and ModelArts are in the same region.

Table 10-34 Folder to create

Name Description

obs://test-modelarts/mpi/demo-
code/

Stores the MPI boot script and training
script file.

obs://test-modelarts/mpi/log/ Stores training log files.

Step 2 Preparing Script Files and Uploading Them to OBS
Prepare the MPI boot script run_mpi.sh and training script mpi-verification.py
and upload them to the obs://test-modelarts/mpi/demo-code/ folder of the OBS
bucket.

● The content of the MPI boot script run_mpi.sh is as follows:
#!/bin/bash
MY_HOME=/home/ma-user

MY_SSHD_PORT=${MY_SSHD_PORT:-"38888"}

MY_TASK_INDEX=${MA_TASK_INDEX:-${VC_TASK_INDEX:-${VK_TASK_INDEX}}}

MY_MPI_SLOTS=${MY_MPI_SLOTS:-"${MA_NUM_GPUS}"}

MY_MPI_TUNE_FILE="${MY_HOME}/env_for_user_process"

if [-z ${MY_MPI_SLOTS}]; then
 echo "[run_mpi] MY_MPI_SLOTS is empty, set it be 1"
 MY_MPI_SLOTS="1"
fi

printf "MY_HOME: ${MY_HOME}\nMY_SSHD_PORT: ${MY_SSHD_PORT}\nMY_MPI_BTL_TCP_IF: $
{MY_MPI_BTL_TCP_IF}\nMY_TASK_INDEX: ${MY_TASK_INDEX}\nMY_MPI_SLOTS: ${MY_MPI_SLOTS}\n"

env | grep -E '^MA_|^SHARED_|^S3_|^PATH|^VC_WORKER_|^SCC|^CRED' | grep -v '=$' > $
{MY_MPI_TUNE_FILE}
add -x to each line
sed -i 's/^/-x /' ${MY_MPI_TUNE_FILE}

sed -i "s|{{MY_SSHD_PORT}}|${MY_SSHD_PORT}|g" ${MY_HOME}/etc/ssh/sshd_config

start sshd service
bash -c "$(which sshd) -f ${MY_HOME}/etc/ssh/sshd_config"

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 892

https://support.huaweicloud.com/intl/en-us/usermanual-obs/en-us_topic_0045829088.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html

confirm the sshd is up
netstat -anp | grep LIS | grep ${MY_SSHD_PORT}

if [$MY_TASK_INDEX -eq 0]; then
 # generate the hostfile of mpi
 for ((i=0; i<$MA_NUM_HOSTS; i++))
 do
 eval hostname=${MA_VJ_NAME}-${MA_TASK_NAME}-${i}.${MA_VJ_NAME}
 echo "[run_mpi] hostname: ${hostname}"

 ip=""
 while [-z "$ip"]; do
 ip=$(ping -c 1 ${hostname} | grep "PING" | sed -E 's/PING .* .([0-9.]+). .*/\1/g')
 sleep 1
 done
 echo "[run_mpi] resolved ip: ${ip}"

 # test the sshd is up
 while :
 do
 if [cat < /dev/null >/dev/tcp/${ip}/${MY_SSHD_PORT}]; then
 break
 fi
 sleep 1
 done

 echo "[run_mpi] the sshd of ip ${ip} is up"

 echo "${ip} slots=$MY_MPI_SLOTS" >> ${MY_HOME}/hostfile
 done

 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"
fi

RET_CODE=0

if [$MY_TASK_INDEX -eq 0]; then

 echo "[run_mpi] start exec command time: "$(date +"%Y-%m-%d-%H:%M:%S")

 np=$((${MA_NUM_HOSTS} * ${MY_MPI_SLOTS}))

 echo "[run_mpi] command: mpirun -np ${np} -hostfile ${MY_HOME}/hostfile -mca plm_rsh_args \"-
p ${MY_SSHD_PORT}\" -tune ${MY_MPI_TUNE_FILE} ... $@"

 # execute mpirun at worker-0
 # mpirun
 mpirun \
 -np ${np} \
 -hostfile ${MY_HOME}/hostfile \
 -mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -tune ${MY_MPI_TUNE_FILE} \
 -bind-to none -map-by slot \
 -x NCCL_DEBUG -x NCCL_SOCKET_IFNAME -x NCCL_IB_HCA -x NCCL_IB_TIMEOUT -x
NCCL_IB_GID_INDEX -x NCCL_IB_TC \
 -x HOROVOD_MPI_THREADS_DISABLE=1 \
 -x PATH -x LD_LIBRARY_PATH \
 -mca pml ob1 -mca btl ^openib -mca plm_rsh_no_tree_spawn true \
 "$@"

 RET_CODE=$?

 if [$RET_CODE -ne 0]; then
 echo "[run_mpi] exec command failed, exited with $RET_CODE"
 else
 echo "[run_mpi] exec command successfully, exited with $RET_CODE"
 fi

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 893

 # stop 1...N worker by killing the sleep proc
 sed -i '1d' ${MY_HOME}/hostfile
 if [`cat ${MY_HOME}/hostfile | wc -l` -ne 0]; then
 echo "[run_mpi] stop 1 to (N - 1) worker by killing the sleep proc"

 sed -i 's/${MY_MPI_SLOTS}/1/g' ${MY_HOME}/hostfile
 printf "[run_mpi] hostfile:\n`cat ${MY_HOME}/hostfile`\n"

 mpirun \
 --hostfile ${MY_HOME}/hostfile \
 --mca plm_rsh_args "-p ${MY_SSHD_PORT}" \
 -x PATH -x LD_LIBRARY_PATH \
 pkill sleep \
 > /dev/null 2>&1
 fi

 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
else
 echo "[run_mpi] the training log is in worker-0"
 sleep 365d
 echo "[run_mpi] exit time: "$(date +"%Y-%m-%d-%H:%M:%S")
fi

exit $RET_CODE

NO TE

The script run_mpi.sh uses LF line endings. If CRLF line endings are used, executing
the training job will fail, and the error "$'\r': command not found" will be displayed in
logs.

● The content of the training script mpi-verification.py is as follows:
import os
import socket

if __name__ == '__main__':
 print(socket.gethostname())

 # https://www.open-mpi.org/faq/?category=running#mpi-environmental-variables
 print('OMPI_COMM_WORLD_SIZE: ' + os.environ['OMPI_COMM_WORLD_SIZE'])
 print('OMPI_COMM_WORLD_RANK: ' + os.environ['OMPI_COMM_WORLD_RANK'])
 print('OMPI_COMM_WORLD_LOCAL_RANK: ' + os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])

Step 3 Preparing an Image Server
Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC
will do.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. Set CPU Architecture to x86 and Image to Public image. Ubuntu
18.04 images are recommended.

Step 4 Creating a Custom Image
Create a container image with the following configurations and use the image to
create a training job on ModelArts:

● ubuntu-18.04
● cuda-11.1
● python-3.7.13
● openmpi-3.0.0

This section describes how to write a Dockerfile to create a custom image.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 894

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

1. Install Docker.
The following uses the Linux x86_64 OS as an example to describe how to
obtain the Docker installation package. For more details, see Docker official
documents. Run the following commands to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command is executed, Docker has been installed. In this
case, skip this step.

2. Check the Docker engine version. Run the following command:
docker version | grep -A 1 Engine

The following information is displayed:
 Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

3. Create a folder named context.
mkdir -p context

4. Download the Miniconda3 installation file.
Download the Miniconda3 py37 4.12.0 installation file (Python 3.7.13) from
https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-
x86_64.sh.

5. Download the openmpi 3.0.0 installation file.
Download the openmpi 3.0.0 file edited using Horovod v0.22.1 from https://
github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz.

6. Store the Miniconda3 and openmpi 3.0.0 files in the context folder. The
following shows the context folder:
context
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
└── openmpi-3.0.0-bin.tar.gz

7. Write the Dockerfile of the container image.
Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The host must be connected to the public network for creating a container image.

Basic container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA
#
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#
builder stage
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04 AS builder

The default user of the basic container image is root.
USER root

Copy the Miniconda3 (Python 3.7.13) installation files to the /tmp directory of the basic container
image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp

Install Miniconda3 to the /home/ma-user/miniconda3 directory of the basic container image.
https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Create the final container image.
FROM nvidia/cuda:11.1.1-runtime-ubuntu18.04

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 895

https://docs.docker.com/engine/install/binaries/#install-static-binaries
https://docs.docker.com/engine/install/binaries/#install-static-binaries

Install vim, cURL, net-tools, and the SSH tool in Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y vim curl net-tools iputils-ping \
 openssh-client openssh-server && \
 ssh -V && \
 mkdir -p /run/sshd && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 rm /etc/apt/apt.conf.d/00skip-verify-peer.conf

Install the Open MPI 3.0.0 file written using Horovod v0.22.1.
https://github.com/horovod/horovod/blob/v0.22.1/docker/horovod/Dockerfile
https://github.com/horovod/horovod/files/1596799/openmpi-3.0.0-bin.tar.gz
COPY openmpi-3.0.0-bin.tar.gz /tmp
RUN cd /usr/local && \
 tar -zxf /tmp/openmpi-3.0.0-bin.tar.gz && \
 ldconfig && \
 mpirun --version

Add user ma-user (UID = 1000, GID = 100).
A user group whose GID is 100 of the basic container image exists. User ma-user can directly use it.
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to avoid log loss.
ENV PATH=$PATH:/home/ma-user/miniconda3/bin \
 PYTHONUNBUFFERED=1

Set the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

Configure sshd to support SSH password-free login.
RUN MA_HOME=/home/ma-user && \
 # setup sshd dir
 mkdir -p ${MA_HOME}/etc && \
 ssh-keygen -f ${MA_HOME}/etc/ssh_host_rsa_key -N '' -t rsa && \
 mkdir -p ${MA_HOME}/etc/ssh ${MA_HOME}/var/run && \
 # setup sshd config (listen at {{MY_SSHD_PORT}} port)
 echo "Port {{MY_SSHD_PORT}}\n\
HostKey ${MA_HOME}/etc/ssh_host_rsa_key\n\
AuthorizedKeysFile ${MA_HOME}/.ssh/authorized_keys\n\
PidFile ${MA_HOME}/var/run/sshd.pid\n\
StrictModes no\n\
UsePAM no" > ${MA_HOME}/etc/ssh/sshd_config && \
 # generate ssh key
 ssh-keygen -t rsa -f ${MA_HOME}/.ssh/id_rsa -P '' && \
 cat ${MA_HOME}/.ssh/id_rsa.pub >> ${MA_HOME}/.ssh/authorized_keys && \
 # disable ssh host key checking for all hosts
 echo "Host *\n\
 StrictHostKeyChecking no" > ${MA_HOME}/.ssh/config

For details about how to write a Dockerfile, see official Docker documents.
8. Verify that the Dockerfile has been created. The following shows the context

folder:
context
├── Dockerfile
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
└── openmpi-3.0.0-bin.tar.gz

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 896

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

9. Create the container image. Run the following command in the directory
where the Dockerfile is stored to build the container image mpi:3.0.0-
cuda11.1:
docker build . -t mpi:3.0.0-cuda11.1

The following log information displayed during image creation indicates that
the image has been created.
naming to docker.io/library/mpi:3.0.0-cuda11.1

Step 5 Uploading an Image to SWR
1. Log in to the SWR console and select a region. It must share the same region

with ModelArts. Otherwise, the image cannot be selected.
2. Click Create Organization in the upper right corner and enter an

organization name. Customize the organization name. Replace the
organization name deep-learning in subsequent commands with the actual
organization name.

3. Click Generate Login Command in the upper right corner to obtain the login
command. In this example, the temporary login command is copied.

4. Log in to the local environment as user root and enter the copied temporary
login command.

5. Upload the image to SWR.

a. Run the following command to tag the uploaded image:
#Replace the region and domain information with the actual values, and replace the
organization name deep-learning with your custom value.
sudo docker tag mpi:3.0.0-cuda11.1 swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-
cuda11.1

b. Run the following command to upload the image:
#Replace the region and domain information with the actual values, and replace the
organization name deep-learning with your custom value.
sudo docker push swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-cuda11.1

6. After the image is uploaded, choose My Images on the left navigation pane
of the SWR console to view the uploaded custom images.
swr.cn-north-4.myhuaweicloud.com/deep-learning/mpi:3.0.0-cuda11.1 is
the SWR URL of the custom image.

Step 6 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console, check whether access

authorization has been configured for your account. For details, see
Configuring Agency Authorization for ModelArts with One Click. If you
have been authorized using access keys, clear the authorization and configure
agency authorization.

2. Log in to the ModelArts management console. In the navigation pane on the
left, choose Model Training > Training Jobs.

3. On the Create Training Job page, configure parameters and click Submit.
– Created By: Custom algorithms
– Boot Mode: Custom images
– Image path: swr.cn-north-4.myhuaweicloud.com/deep-learning/

mpi:3.0.0-cuda11.1
– Code Directory: OBS path to the boot script, for example, obs://test-

modelarts/mpi/demo-code/.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 897

– Boot Command: bash ${MA_JOB_DIR}/demo-code/run_mpi.sh python
${MA_JOB_DIR}/demo-code/mpi-verification.py

– Environment Variable: Add MY_SSHD_PORT = 38888.
– Resource Pool: Public resource pools
– Resource Type: Select GPU.
– Compute Nodes: Enter 1 or 2.
– Persistent Log Saving: enabled
– Job Log Path: Set this parameter to the OBS path for storing training

logs, for example, obs://test-modelarts/mpi/log/.
4. Check the parameters of the training job and click Submit.
5. Wait until the training job is completed.

After a training job is created, the operations such as container image
downloading, code directory downloading, and boot command execution are
automatically performed in the backend. Generally, the training duration
ranges from dozens of minutes to several hours, depending on the training
procedure and selected resources. After the training job is executed, the log
similar to the following is output.

Figure 10-19 Run logs of worker-0 with one compute node and GPU
specifications

Set Compute Nodes to 2 and run the training job. Figure 10-20 and Figure
10-21 show the log information.

Figure 10-20 Run logs of worker-0 with two compute nodes and GPU
specifications

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 898

Figure 10-21 Run logs of worker-1 with two compute nodes and GPU
specifications

10.4.7 Creating a Custom Training Image (Tensorflow + GPU)
This section describes how to create an image and use it for training on
ModelArts. The AI engine used in the image is TensorFlow, and the resources used
for training are GPUs.

NO TE

This section applies only to training jobs of the new version.

Scenario
In this example, write a Dockerfile to create a custom image on a Linux x86_64
server running Ubuntu 18.04.

Create a container image with the following configurations and use the image to
create a GPU-powered training job on ModelArts:

● ubuntu-18.04
● cuda-11.2
● python-3.7.13
● mlnx ofed-5.4
● tensorflow gpu-2.10.0

Procedure
Before using a custom image to create a training job, you need to be familiar with
Docker and have development experience.

1. Prerequisites
2. Step 1 Creating an OBS Bucket and Folder
3. Step 2 Creating a Dataset and Uploading It to OBS
4. Step 3 Preparing the Training Script and Uploading It to OBS
5. Step 4 Preparing a Server
6. Step 5 Creating a Custom Image
7. Step 6 Uploading the Image to SWR
8. Step 7 Creating a Training Job on ModelArts

Prerequisites
You have registered a Huawei Cloud account. The account is not in arrears or
frozen.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 899

Step 1 Creating an OBS Bucket and Folder
Create a bucket and folders in OBS for storing the sample dataset and training
code. Table 10-35 lists the folders to be created. Replace the bucket name and
folder names in the example with actual names.

For details about how to create an OBS bucket and folder, see Creating a Bucket
and Creating a Folder.

Ensure that the OBS directory you use and ModelArts are in the same region.

Table 10-35 Required OBS folders

Folder Description

obs://test-modelarts/tensorflow/
code/

Stores the training script.

obs://test-modelarts/tensorflow/
data/

Stores dataset files.

obs://test-modelarts/
tensorflow/log/

Store training log files.

Step 2 Creating a Dataset and Uploading It to OBS
Download mnist.npz from https://storage.googleapis.com/tensorflow/tf-keras-
datasets/mnist.npz, and upload it to obs://test-modelarts/tensorflow/data/ in
the OBS bucket.

Step 3 Preparing the Training Script and Uploading It to OBS
Obtain the training script mnist.py and upload it to obs://test-modelarts/
tensorflow/code/ in the OBS bucket.

mnist.py is as follows:

import argparse
import tensorflow as tf

parser = argparse.ArgumentParser(description='TensorFlow quick start')
parser.add_argument('--data_url', type=str, default="./Data", help='path where the dataset is saved')
args = parser.parse_args()

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url)
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10)
])

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

model.compile(optimizer='adam',

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 900

https://support.huaweicloud.com/intl/en-us/usermanual-obs/en-us_topic_0045829088.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html
https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz

 loss=loss_fn,
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)

Step 4 Preparing a Server

Obtain a Linux x86_64 server running Ubuntu 18.04. Either an ECS or your local PC
will do.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. Set CPU Architecture to x86 and Image to Public image. Ubuntu
18.04 images are recommended.

Step 5 Creating a Custom Image

Create a container image with the following configurations and use the image to
create a training job on ModelArts:

● ubuntu-18.04

● cuda-11.1

● python-3.7.13

● mlnx ofed-5.4

● mindspore gpu-1.8.1

The following describes how to create a custom image by writing a Dockerfile.

1. Install Docker.

The following uses the Linux x86_64 OS as an example to describe how to
obtain the Docker installation package. For details about how to install
Docker, see official Docker documents. Run the following commands to
install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command is executed, Docker has been installed. In this
case, skip this step.

2. Check the Docker engine version. Run the following command:
docker version | grep -A 1 Engine

The following information is displayed:
 Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

3. Create a folder named context.
mkdir -p context

4. Obtain the pip.conf file. In this example, the pip source provided by Huawei
Mirrors is used, which is as follows:
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 901

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://docs.docker.com/engine/install/binaries/#install-static-binaries

NO TE

To obtain pip.conf, go to Huawei Mirrors at https://mirrors.huaweicloud.com/home
and search for pypi.

5. Download tensorflow_gpu-2.10.0-cp37-cp37m-
manylinux_2_17_x86_64.manylinux2014_x86_64.whl.
Download tensorflow_gpu-2.10.0-cp37-cp37m-
manylinux_2_17_x86_64.manylinux2014_x86_64.whl from https://pypi.org/
project/tensorflow-gpu/2.10.0/#files.

6. Download the Miniconda3 installation file.
Download the Miniconda3 py37 4.12.0 installation file (Python 3.7.13) from
https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-
x86_64.sh.

7. Write the container image Dockerfile.
Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The server on which the container image is created must access the Internet.

Base container image at https://github.com/NVIDIA/nvidia-docker/wiki/CUDA
#
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
require Docker Engine >= 17.05
#
builder stage
FROM nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu18.04 AS builder

The default user of the base container image is root.
USER root

Use the PyPI configuration obtained from Huawei Mirrors.
RUN mkdir -p /root/.pip/
COPY pip.conf /root/.pip/pip.conf

Copy the installation files to the /tmp directory in the base container image.
COPY Miniconda3-py37_4.12.0-Linux-x86_64.sh /tmp
COPY tensorflow_gpu-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 in the /home/ma-user/miniconda3 directory of the base container image.
RUN bash /tmp/Miniconda3-py37_4.12.0-Linux-x86_64.sh -b -p /home/ma-user/miniconda3

Install the TensorFlow .whl file using default Miniconda3 Python environment /home/ma-user/
miniconda3/bin/pip.
RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir \
 /tmp/tensorflow_gpu-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

RUN cd /tmp && \
 /home/ma-user/miniconda3/bin/pip install --no-cache-dir keras==2.10.0

Create the container image.
FROM nvidia/cuda:11.2.2-cudnn8-runtime-ubuntu18.04

COPY MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz /tmp

Install the vim, cURL, net-tools, and MLNX_OFED tools obtained from Huawei Mirrors.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y vim curl net-tools iputils-ping && \
 # mlnx ofed

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 902

 apt-get install -y python libfuse2 dpatch libnl-3-dev autoconf libnl-route-3-dev pciutils libnuma1
libpci3 m4 libelf1 debhelper automake graphviz bison lsof kmod libusb-1.0-0 swig libmnl0 autotools-
dev flex chrpath libltdl-dev && \
 cd /tmp && \
 tar -xvf MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz && \
 MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64/mlnxofedinstall --user-space-only --basic --
without-fw-update -q && \
 cd - && \
 rm -rf /tmp/* && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 rm /etc/apt/apt.conf.d/00skip-verify-peer.conf

Add user ma-user (UID = 1000, GID = 100).
A user group whose GID is 100 exists in the base container image. User ma-user can directly run
the following command:
RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the /home/ma-user/miniconda3 directory from the builder stage to the directory with the
same name in the current container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

Configure the preset environment variables of the container image.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=/home/ma-user/miniconda3/bin:$PATH \
 LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH \
 PYTHONUNBUFFERED=1

For details about how to write a Dockerfile, see official Docker documents.
8. Download MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz.

Go to Linux Drivers. In the Download tab, set Version to 5.4-3.5.8.0-LTS, OS
Distribution Version to Ubuntu 18.04, Architecture to x86_64, and
download MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz.

9. Store the Dockerfile and Miniconda3 installation file in the context folder,
which is as follows:
context
├── Dockerfile
├── MLNX_OFED_LINUX-5.4-3.5.8.0-ubuntu18.04-x86_64.tgz
├── Miniconda3-py37_4.12.0-Linux-x86_64.sh
├── pip.conf
└── tensorflow_gpu-2.10.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

10. Create the container image. Run the following command in the directory
where the Dockerfile is stored to build the container image
tensorflow:2.10.0-ofed-cuda11.2:
docker build . -t tensorflow:2.10.0-ofed-cuda11.2

The following log shows that the image has been created.
Successfully tagged tensorflow:2.10.0-ofed-cuda11.2

Step 6 Uploading the Image to SWR
1. Log in to the SWR console and select a region. It must share the same region

with ModelArts. Otherwise, the image cannot be selected.
2. Click Create Organization in the upper right corner and enter an

organization name. Customize the organization name. Replace the
organization name deep-learning in subsequent commands with the actual
organization name.

3. Click Generate Login Command in the upper right corner to obtain the login
command. In this example, the temporary login command is copied.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 903

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://network.nvidia.com/products/infiniband-drivers/linux/mlnx_ofed/

4. Log in to the local environment as user root and enter the copied temporary
login command.

5. Upload the image to SWR.

a. Tag the uploaded image.
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker tag tensorflow:2.10.0-ofed-cuda11.2 swr.{region-id}.{domain}/deep-learning/
tensorflow:2.10.0-ofed-cuda11.2

b. Run the following command to upload the image:
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker push swr.{region-id}.{domain}/deep-learning/tensorflow:2.10.0-ofed-cuda11.2

6. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Step 7 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console, check whether access

authorization has been configured for your account. For details, see
Configuring Agency Authorization for ModelArts with One Click. If you
have been authorized using access keys, clear the authorization and configure
agency authorization.

2. In the navigation pane on the left, choose Model Training > Training Jobs.
The training job list is displayed by default.

3. Click Create Training Job. On the page that is displayed, configure
parameters and click Next.
– Created By: Custom algorithms
– Boot Mode: Custom images
– Image path: image created in Step 5 Creating a Custom Image .
– Code Directory: directory where the boot script file is stored in OBS, for

example, obs://test-modelarts/tensorflow/code/. The training code is
automatically downloaded to the ${MA_JOB_DIR}/code directory of the
training container. code (customizable) is the last-level directory of the
OBS path.

– Boot Command: python ${MA_JOB_DIR}/code/mnist.py. code
(customizable) is the last-level directory of the OBS path.

– Training Input: Click Add Training Input. Enter data_path for the name,
select the OBS path to mnist.npz, for example, obs://test-modelarts/
tensorflow/data/mnist.npz, and set Obtained from to
Hyperparameters.

– Resource Pool: Select Public resource pools.
– Resource Type: Select GPU.
– Compute Nodes: Enter 1.
– Persistent Log Saving: enabled
– Job Log Path: OBS path to stored training logs, for example, obs://test-

modelarts/mindspore-gpu/log/
4. Confirm the configurations of the training job and click Submit.
5. Wait until the training job is created.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 904

After you submit the job creation request, the system will automatically
perform operations on the backend, such as downloading the container image
and code directory and running the boot command. A training job requires a
certain period of time for running. The duration ranges from dozens of
minutes to several hours, varying depending on the service logic and selected
resources. After the training job is executed, the log similar to the following is
output.

Figure 10-22 Run logs of training jobs with GPU specifications

10.4.8 Creating a Custom Training Image (MindSpore +
Ascend)

This section describes how to create an Ascend container image from scratch and
use the image for training on ModelArts. The AI engine used in the image is
MindSpore, and the resources used for training are powered by Ascend in a
dedicated resource pool.

Description
Create a container image with the following configurations and use the image to
create an Ascend-powered training job on ModelArts:

● ubuntu-18.04
● CANN 6.3.RC2 (commercial edition)
● python-3.7.13
● mindspore-2.1.1

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 905

NO TE

● CANN 6.3.RC2 and MindSpore 2.1.1 are used in the following examples.

● These examples show how to create an Ascend container image and run the image in a
dedicated resource pool with the required Ascend driver or firmware installed.

Procedure

Before using a custom image to create a training job, get familiar with Docker and
have development experience. The detailed procedure is as follows:

1. Step 1 Creating an OBS Bucket and Folder

2. Step 2 Preparing Script Files and Uploading Them to OBS

3. Step 3 Creating a Custom Image

4. Step 4 Uploading the Image to SWR

5. Step 5 Creating and Debugging a Notebook Instance on ModelArts

6. Step 6 Creating a Training Job on ModelArts

Constraints
● This example requires the CANN commercial edition. If you do not have

permission to download the CANN commercial edition, see other examples
for creating a custom image.

● Pay attention to the version mapping between MindSpore and CANN, and
between CANN and Ascend driver or firmware. Unmatched versions will lead
to a training failure.

Step 1 Creating an OBS Bucket and Folder

Create a bucket and folders in OBS for storing the sample dataset and training
code. In this example, create a bucket named test-modelarts and folders listed in
Table 10-36.

For details about how to create an OBS bucket and folder, see Creating a Bucket
and Creating a Folder.

Ensure that the OBS directory you use and ModelArts are in the same region.

Table 10-36 Required OBS folders

Folder Description

obs://test-modelarts/ascend/demo-
code/

Store the Ascend training script.

obs://test-modelarts/ascend/demo-
code/run_ascend/

Store the startup scripts of the Ascend
training script.

obs://test-modelarts/ascend/log/ Store training log files.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 906

https://support.huaweicloud.com/intl/en-us/usermanual-obs/en-us_topic_0045829088.html
https://support.huaweicloud.com/intl/en-us/usermanual-obs/obs_03_0316.html

Step 2 Preparing Script Files and Uploading Them to OBS
1. Prepare the training script mindspore-verification.py and Ascend startup

scripts (five in total) required in this example.
– For details about the training script, see Training the mindspore-

verification.py File.
– For details about the following Ascend startup scripts, see Ascend

Startup Scripts.

i. run_ascend.py
ii. common.py
iii. rank_table.py
iv. manager.py
v. fmk.py

NO TE

The mindspore-verification.py and run_ascend.py scripts are invoked by the Boot
Command parameter during training job creation. For details, see Boot Command.

The common.py, rank_table.py, manager.py, and fmk.py scripts are invoked when
the run_ascend.py script is running.

2. Upload the training script mindspore-verification.py to obs://test-
modelarts/ascend/demo-code/ in the OBS bucket.

3. Upload the five Ascend startup scripts to the obs://test-modelarts/ascend/
demo-code/run_ascend/ folder in the OBS bucket.

Step 3 Creating a Custom Image

The following describes how to create a custom image by writing a Dockerfile.

Create a container image with the following configurations and use the image to
create a training job on ModelArts:

● ubuntu-18.04
● CANN 6.3.RC2 (commercial edition)
● python-3.7.13
● mindspore-2.1.1

NO TE

Pay attention to the version mapping between MindSpore and CANN, and between CANN
and Ascend driver or firmware. Unmatched versions will lead to a training failure.

These examples show how to create an Ascend container image and run the image in a
dedicated resource pool with the required Ascend driver or firmware installed.

1. Obtain a Linux AArch64 server running Ubuntu 18.04. Either an ECS or your
local PC will do.
For details about how to purchase an ECS, see Purchasing and Logging In to
a Linux ECS. Set CPU Architecture to x86 and Image to Public image.
Ubuntu 18.04 images are recommended.

2. Install Docker.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 907

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html

The following uses Linux AArch64 as an example to describe how to obtain a
Docker installation package. For more details, see official Docker documents.
Run the following commands to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

If the docker images command is executed, Docker has been installed. In this
case, skip this step.
Start Docker.
systemctl start docker

3. Run the following command to check the Docker engine version:
docker version | grep -A 1 Engine

The command output is as follows:
 Engine:
 Version: 18.09.0

NO TE

Use the Docker engine of the preceding version or later to create a custom image.

4. Create a folder named context.
mkdir -p context

5. Obtain the pip.conf file. In this example, the pip source provided by Huawei
Mirrors is used, which is as follows:
[global]
index-url = https://repo.huaweicloud.com/repository/pypi/simple
trusted-host = repo.huaweicloud.com
timeout = 120

NO TE

To obtain pip.conf, go to Huawei Mirrors at https://mirrors.huaweicloud.com/home
and search for pypi.

6. Obtain the APT source file Ubuntu-Ports-bionic.list. In this example, the APT
source provided at Huawei Mirrors is used. Run the following command to
obtain the APT source file:
wget -O Ubuntu-Ports-bionic.list https://repo.huaweicloud.com/repository/conf/Ubuntu-Ports-
bionic.list

NO TE

To obtain the APT source file, go to Huawei Mirrors at https://
mirrors.huaweicloud.com/home and search for Ubuntu-Ports.

7. Download the CANN 6.3.RC2-linux aarch64 and mindspore-2.1.1-cp37-
cp37m-linux_aarch64.whl installation files.
– Download the Ascend-cann-nnae_6.3.RC2_linux-aarch64.run file by

referring to CANN 6.3.RC2.
– Download the mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl file.

NO TE

ModelArts supports only the commercial CANN edition.

8. Download the Miniconda3 installation file.
Download Miniconda3-py37-4.10.3 (Python 3.7.10) at https://
repo.anaconda.com/miniconda/Miniconda3-py37_4.10.3-Linux-aarch64.sh.

9. Store the pip source file, .run file, .whl file, and Miniconda3 installation file in
the context folder, which is as follows:

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 908

https://docs.docker.com/engine/install/binaries/#install-static-binaries
https://support.huawei.com/enterprise/en/ascend-computing/cann-pid-251168373/software/259676909?idAbsPath=fixnode01%7C23710424%7C251366513%7C22892968%7C251168373
https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.1.1/MindSpore/unified/aarch64/mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl

context
├── Ascend-cann-nnae_6.3.RC2_linux-aarch64.run
├── mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl
├── Miniconda3-py37_4.10.3-Linux-aarch64.sh
├── pip.conf
└── Ubuntu-Ports-bionic.list

10. Write the Dockerfile of the container image.

Create an empty file named Dockerfile in the context folder and copy the
following content to the file:
The server on which the container image is created must access the Internet.
FROM arm64v8/ubuntu:18.04 AS builder

The default user of the base container image is root.
USER root

Install OS dependencies obtained from Huawei Mirrors.
COPY Ubuntu-Ports-bionic.list /tmp
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 mv /tmp/Ubuntu-Ports-bionic.list /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y \
 # utils
 ca-certificates vim curl \
 # CANN 6.3.RC2
 gcc-7 g++ make cmake zlib1g zlib1g-dev openssl libsqlite3-dev libssl-dev libffi-dev unzip pciutils
net-tools libblas-dev gfortran libblas3 && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list && \
 # Grant the write permission of the parent directory of the CANN 6.3.RC2 installation directory to
ma-user.
 chmod o+w /usr/local

RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

Use the PyPI configuration provided by Huawei Mirrors.
RUN mkdir -p /home/ma-user/.pip/
COPY --chown=ma-user:100 pip.conf /home/ma-user/.pip/pip.conf

Copy the installation files to the /tmp directory in the base container image.
COPY --chown=ma-user:100 Miniconda3-py37_4.10.3-Linux-aarch64.sh /tmp

https://conda.io/projects/conda/en/latest/user-guide/install/linux.html#installing-on-linux
Install Miniconda3 in the /home/ma-user/miniconda3 directory of the base container image.
RUN bash /tmp/Miniconda3-py37_4.10.3-Linux-aarch64.sh -b -p /home/ma-user/miniconda3

ENV PATH=$PATH:/home/ma-user/miniconda3/bin

Install the CANN 6.3.RC2 Python dependency package.
RUN pip install numpy~=1.14.3 decorator~=4.4.0 sympy~=1.4 cffi~=1.12.3 protobuf~=3.11.3 \
 attrs pyyaml pathlib2 scipy requests psutil absl-py

Install CANN 6.3.RC2 in /usr/local/Ascend.
COPY --chown=ma-user:100 Ascend-cann-nnae_6.3.RC2_linux-aarch64.run /tmp
RUN chmod +x /tmp/Ascend-cann-nnae_6.3.RC2_linux-aarch64.run && \
 /tmp/Ascend-cann-nnae_6.3.RC2_linux-aarch64.run --install --install-path=/usr/local/Ascend

Install MindSpore 2.1.1.
COPY --chown=ma-user:100 mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl /tmp
RUN chmod +x /tmp/mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl && \
 pip install /tmp/mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl

Create the container image.
FROM arm64v8/ubuntu:18.04

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 909

Install OS dependencies obtained from Huawei Mirrors.
COPY Ubuntu-Ports-bionic.list /tmp
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 mv /tmp/Ubuntu-Ports-bionic.list /etc/apt/sources.list && \
 echo > /etc/apt/apt.conf.d/00skip-verify-peer.conf "Acquire { https::Verify-Peer false }" && \
 apt-get update && \
 apt-get install -y \
 # utils
 ca-certificates vim curl \
 # CANN 6.3.RC2
 gcc-7 g++ make cmake zlib1g zlib1g-dev openssl libsqlite3-dev libssl-dev libffi-dev unzip pciutils
net-tools libblas-dev gfortran libblas3 && \
 apt-get clean && \
 mv /etc/apt/sources.list.bak /etc/apt/sources.list

RUN useradd -m -d /home/ma-user -s /bin/bash -g 100 -u 1000 ma-user

Copy the directories from the builder stage to the directories with the same name in the current
container image.
COPY --chown=ma-user:100 --from=builder /home/ma-user/miniconda3 /home/ma-user/miniconda3
COPY --chown=ma-user:100 --from=builder /home/ma-user/Ascend /home/ma-user/Ascend
COPY --chown=ma-user:100 --from=builder /home/ma-user/var /home/ma-user/var
COPY --chown=ma-user:100 --from=builder /usr/local/Ascend /usr/local/Ascend

Configure the preset environment variables of the container image.
Configure CANN environment variables.
Configure Ascend driver environment variables.
Set PYTHONUNBUFFERED to 1 to prevent log loss.
ENV PATH=$PATH:/usr/local/Ascend/nnae/latest/bin:/usr/local/Ascend/nnae/latest/compiler/
ccec_compiler/bin:/home/ma-user/miniconda3/bin \
 LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/Ascend/driver/lib64:/usr/local/Ascend/driver/
lib64/common:/usr/local/Ascend/driver/lib64/driver:/usr/local/Ascend/nnae/latest/lib64:/usr/local/
Ascend/nnae/latest/lib64/plugin/opskernel:/usr/local/Ascend/nnae/latest/lib64/plugin/nnengine \
 PYTHONPATH=$PYTHONPATH:/usr/local/Ascend/nnae/latest/python/site-packages:/usr/local/
Ascend/nnae/latest/opp/built-in/op_impl/ai_core/tbe \
 ASCEND_AICPU_PATH=/usr/local/Ascend/nnae/latest \
 ASCEND_OPP_PATH=/usr/local/Ascend/nnae/latest/opp \
 ASCEND_HOME_PATH=/usr/local/Ascend/nnae/latest \
 PYTHONUNBUFFERED=1

Configure the default user and working directory of the container image.
USER ma-user
WORKDIR /home/ma-user

For details about how to write a Dockerfile, see official Docker documents.
11. Verify that the Dockerfile has been created. The following shows the context

folder:
context
├── Ascend-cann-nnae_6.3.RC2_linux-aarch64.run
├── Dockerfile
├── mindspore-2.1.1-cp37-cp37m-linux_aarch64.whl
├── Miniconda3-py37_4.10.3-Linux-aarch64.sh
├── pip.conf
└── Ubuntu-Ports-bionic.list

12. Create the container image. Run the following command in the directory
where the Dockerfile is stored to create a container image:
docker build . -t mindspore:2.1.1-cann6.3.RC2

The following log shows that the image has been created.
Successfully tagged mindspore:2.1.1-cann6.3.RC2

13. Upload the created image to SWR. For details, see Step 4 Uploading the
Image to SWR.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 910

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Step 4 Uploading the Image to SWR

Upload the created image to SWR so that it can be used to create training jobs on
ModelArts.

1. Log in to the SWR console and select a region. It must share the same region
with ModelArts. Otherwise, the image cannot be selected.

2. Click Create Organization in the upper right corner and enter an
organization name to create an organization. Customize the organization
name. Replace the organization name deep-learning in subsequent
commands with the actual organization name.

3. Click Generate Login Command in the upper right corner to obtain the login
command. In this example, the temporary login command is copied.

4. Log in to the local environment as user root and enter the copied temporary
login command.

5. Upload the image to SWR.

a. Run the docker tag command to add tags to the uploaded image:
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker tag mindspore:2.1.1-cann6.3.RC2 swr.{region}.{domain}/deep-learning/
mindspore:2.1.1-cann6.3.RC2

b. Run the following command to upload the image:
Replace the region, domain, as well as organization name deep-learning with the actual
values.
sudo docker push swr.{region}.{domain}/deep-learning/mindspore:2.1.1-cann6.3.RC2

6. After the image is uploaded, choose My Images in navigation pane on the
left of the SWR console to view the uploaded custom images.

Step 5 Creating and Debugging a Notebook Instance on ModelArts
1. Register the image uploaded to SWR with ModelArts Image Management.

Log in to the ModelArts management console. In the navigation pane on the
left, choose Image Management. Click Register and register the image. The
registered image can be used to create notebook instances.

2. Use the custom image to create a notebook instance and debug it. After the
debugging is successful, save the image.

a. Create a custom image using a custom image.
b. Save the image.

3. After the image is debugged, create a training job on ModelArts.

Step 6 Creating a Training Job on ModelArts
1. Log in to the ModelArts management console. In the navigation pane on the

left, choose Model Training > Training Jobs. The training job list is displayed
by default.

2. On the Create Training Job page, configure parameters and click Submit.
– Algorithm Type: Custom algorithm
– Boot Mode: Custom image
– Image Path:

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 911

– Code Directory: OBS path to startup scripts, for example, obs://test-
modelarts/ascend/demo-code/

– Boot Command: python ${MA_JOB_DIR}/demo-code/run_ascend/
run_ascend.py python ${MA_JOB_DIR}/demo-code/mindspore-
verification.py

– Resource Pool: Dedicated resource pools
– Resource Type: Ascend with the required driver and firmware version
– Job Log Path: OBS path to stored training logs, for example, obs://test-

modelarts/ascend/log/
3. Confirm the configurations of the training job and click Submit.
4. Wait until the training job is created.

After you submit the job creation request, the system will automatically
perform operations on the backend, such as downloading the container image
and code directory and running the boot command. A training job requires a
certain period of time for running. The duration ranges from dozens of
minutes to several hours, depending on the service logic and selected
resources. After the training job is executed, logs are displayed.

Figure 10-23 Runtime logs of a training job powered by Ascend resources in a
dedicated resource pool

Training the mindspore-verification.py File
The mindspore-verification.py file contains the following information:

import os
import numpy as np
from mindspore import Tensor
import mindspore.ops as ops
import mindspore.context as context

print('Ascend Envs')
print('------')
print('JOB_ID: ', os.environ['JOB_ID'])
print('RANK_TABLE_FILE: ', os.environ['RANK_TABLE_FILE'])
print('RANK_SIZE: ', os.environ['RANK_SIZE'])

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 912

print('ASCEND_DEVICE_ID: ', os.environ['ASCEND_DEVICE_ID'])
print('DEVICE_ID: ', os.environ['DEVICE_ID'])
print('RANK_ID: ', os.environ['RANK_ID'])
print('------')

context.set_context(device_target="Ascend")
x = Tensor(np.ones([1,3,3,4]).astype(np.float32))
y = Tensor(np.ones([1,3,3,4]).astype(np.float32))

print(ops.add(x, y))

Ascend Startup Scripts
● run_ascend.py

import sys
import os

from common import RunAscendLog
from common import RankTableEnv

from rank_table import RankTable, RankTableTemplate1, RankTableTemplate2

from manager import FMKManager

if __name__ == '__main__':
 log = RunAscendLog.setup_run_ascend_logger()

 if len(sys.argv) <= 1:
 log.error('there are not enough args')
 sys.exit(1)

 train_command = sys.argv[1:]
 log.info('training command')
 log.info(train_command)

 if os.environ.get(RankTableEnv.RANK_TABLE_FILE_V1) is not None:
 # new format rank table file
 rank_table_path = os.environ.get(RankTableEnv.RANK_TABLE_FILE_V1)
 RankTable.wait_for_available(rank_table_path)
 rank_table = RankTableTemplate1(rank_table_path)
 else:
 # old format rank table file
 rank_table_path_origin = RankTableEnv.get_rank_table_template2_file_path()
 RankTable.wait_for_available(rank_table_path_origin)
 rank_table = RankTableTemplate2(rank_table_path_origin)

 if rank_table.get_device_num() >= 1:
 log.info('set rank table %s env to %s' % (RankTableEnv.RANK_TABLE_FILE,
rank_table.get_rank_table_path()))
 RankTableEnv.set_rank_table_env(rank_table.get_rank_table_path())
 else:
 log.info('device num < 1, unset rank table %s env' % RankTableEnv.RANK_TABLE_FILE)
 RankTableEnv.unset_rank_table_env()

 instance = rank_table.get_current_instance()
 server = rank_table.get_server(instance.server_id)
 current_instance = RankTable.convert_server_to_instance(server)

 fmk_manager = FMKManager(current_instance)
 fmk_manager.run(rank_table.get_device_num(), train_command)
 return_code = fmk_manager.monitor()

 fmk_manager.destroy()

 sys.exit(return_code)

● common.py
import logging
import os

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 913

logo = 'Training'

Rank Table Constants
class RankTableEnv:
 RANK_TABLE_FILE = 'RANK_TABLE_FILE'

 RANK_TABLE_FILE_V1 = 'RANK_TABLE_FILE_V_1_0'

 HCCL_CONNECT_TIMEOUT = 'HCCL_CONNECT_TIMEOUT'

 # jobstart_hccl.json is provided by the volcano controller of Cloud-Container-Engine(CCE)
 HCCL_JSON_FILE_NAME = 'jobstart_hccl.json'

 RANK_TABLE_FILE_DEFAULT_VALUE = '/user/config/%s' % HCCL_JSON_FILE_NAME

 @staticmethod
 def get_rank_table_template1_file_dir():
 parent_dir = os.environ[ModelArts.MA_MOUNT_PATH_ENV]
 return os.path.join(parent_dir, 'rank_table')

 @staticmethod
 def get_rank_table_template2_file_path():
 rank_table_file_path = os.environ.get(RankTableEnv.RANK_TABLE_FILE)
 if rank_table_file_path is None:
 return RankTableEnv.RANK_TABLE_FILE_DEFAULT_VALUE

 return os.path.join(os.path.normpath(rank_table_file_path),
RankTableEnv.HCCL_JSON_FILE_NAME)

 @staticmethod
 def set_rank_table_env(path):
 os.environ[RankTableEnv.RANK_TABLE_FILE] = path

 @staticmethod
 def unset_rank_table_env():
 del os.environ[RankTableEnv.RANK_TABLE_FILE]

class ModelArts:
 MA_MOUNT_PATH_ENV = 'MA_MOUNT_PATH'
 MA_CURRENT_INSTANCE_NAME_ENV = 'MA_CURRENT_INSTANCE_NAME'
 MA_VJ_NAME = 'MA_VJ_NAME'

 MA_CURRENT_HOST_IP = 'MA_CURRENT_HOST_IP'

 CACHE_DIR = '/cache'

 TMP_LOG_DIR = '/tmp/log/'

 FMK_WORKSPACE = 'workspace'

 @staticmethod
 def get_current_instance_name():
 return os.environ[ModelArts.MA_CURRENT_INSTANCE_NAME_ENV]

 @staticmethod
 def get_current_host_ip():
 return os.environ.get(ModelArts.MA_CURRENT_HOST_IP)

 @staticmethod
 def get_job_id():
 ma_vj_name = os.environ[ModelArts.MA_VJ_NAME]
 return ma_vj_name.replace('ma-job', 'modelarts-job', 1)

 @staticmethod
 def get_parent_working_dir():
 if ModelArts.MA_MOUNT_PATH_ENV in os.environ:

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 914

 return os.path.join(os.environ.get(ModelArts.MA_MOUNT_PATH_ENV),
ModelArts.FMK_WORKSPACE)

 return ModelArts.CACHE_DIR

class RunAscendLog:

 @staticmethod
 def setup_run_ascend_logger():
 name = logo
 formatter = logging.Formatter(fmt='[run ascend] %(asctime)s - %(levelname)s - %(message)s')

 handler = logging.StreamHandler()
 handler.setFormatter(formatter)

 logger = logging.getLogger(name)
 logger.setLevel(logging.INFO)
 logger.addHandler(handler)
 logger.propagate = False
 return logger

 @staticmethod
 def get_run_ascend_logger():
 return logging.getLogger(logo)

● rank_table.py
import json
import time
import os

from common import ModelArts
from common import RunAscendLog
from common import RankTableEnv

log = RunAscendLog.get_run_ascend_logger()

class Device:
 def __init__(self, device_id, device_ip, rank_id):
 self.device_id = device_id
 self.device_ip = device_ip
 self.rank_id = rank_id

class Instance:
 def __init__(self, pod_name, server_id, devices):
 self.pod_name = pod_name
 self.server_id = server_id
 self.devices = self.parse_devices(devices)

 @staticmethod
 def parse_devices(devices):
 if devices is None:
 return []
 device_object_list = []
 for device in devices:
 device_object_list.append(Device(device['device_id'], device['device_ip'], ''))

 return device_object_list

 def set_devices(self, devices):
 self.devices = devices

class Group:
 def __init__(self, group_name, device_count, instance_count, instance_list):
 self.group_name = group_name
 self.device_count = int(device_count)
 self.instance_count = int(instance_count)

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 915

 self.instance_list = self.parse_instance_list(instance_list)

 @staticmethod
 def parse_instance_list(instance_list):
 instance_object_list = []
 for instance in instance_list:
 instance_object_list.append(
 Instance(instance['pod_name'], instance['server_id'], instance['devices']))

 return instance_object_list

class RankTable:
 STATUS_FIELD = 'status'
 COMPLETED_STATUS = 'completed'

 def __init__(self):
 self.rank_table_path = ""
 self.rank_table = {}

 @staticmethod
 def read_from_file(file_path):
 with open(file_path) as json_file:
 return json.load(json_file)

 @staticmethod
 def wait_for_available(rank_table_file, period=1):
 log.info('Wait for Rank table file at %s ready' % rank_table_file)
 complete_flag = False
 while not complete_flag:
 with open(rank_table_file) as json_file:
 data = json.load(json_file)
 if data[RankTable.STATUS_FIELD] == RankTable.COMPLETED_STATUS:
 log.info('Rank table file is ready for read')
 log.info('\n' + json.dumps(data, indent=4))
 return True

 time.sleep(period)

 return False

 @staticmethod
 def convert_server_to_instance(server):
 device_list = []
 for device in server['device']:
 device_list.append(
 Device(device_id=device['device_id'], device_ip=device['device_ip'],
rank_id=device['rank_id']))

 ins = Instance(pod_name='', server_id=server['server_id'], devices=[])
 ins.set_devices(device_list)
 return ins

 def get_rank_table_path(self):
 return self.rank_table_path

 def get_server(self, server_id):
 for server in self.rank_table['server_list']:
 if server['server_id'] == server_id:
 log.info('Current server')
 log.info('\n' + json.dumps(server, indent=4))
 return server

 log.error('server [%s] is not found' % server_id)
 return None

class RankTableTemplate2(RankTable):

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 916

 def __init__(self, rank_table_template2_path):
 super().__init__()

 json_data = self.read_from_file(file_path=rank_table_template2_path)

 self.status = json_data[RankTableTemplate2.STATUS_FIELD]
 if self.status != RankTableTemplate2.COMPLETED_STATUS:
 return

 # sorted instance list by the index of instance
 # assert there is only one group
 json_data["group_list"][0]["instance_list"] = sorted(json_data["group_list"][0]["instance_list"],
 key=RankTableTemplate2.get_index)

 self.group_count = int(json_data['group_count'])
 self.group_list = self.parse_group_list(json_data['group_list'])

 self.rank_table_path, self.rank_table = self.convert_template2_to_template1_format_file()

 @staticmethod
 def parse_group_list(group_list):
 group_object_list = []
 for group in group_list:
 group_object_list.append(
 Group(group['group_name'], group['device_count'], group['instance_count'],
group['instance_list']))

 return group_object_list

 @staticmethod
 def get_index(instance):
 # pod_name example: job94dc1dbf-job-bj4-yolov4-15
 pod_name = instance["pod_name"]
 return int(pod_name[pod_name.rfind("-") + 1:])

 def get_current_instance(self):
 """
 get instance by pod name
 specially, return the first instance when the pod name is None
 :return:
 """
 pod_name = ModelArts.get_current_instance_name()
 if pod_name is None:
 if len(self.group_list) > 0:
 if len(self.group_list[0].instance_list) > 0:
 return self.group_list[0].instance_list[0]

 return None

 for group in self.group_list:
 for instance in group.instance_list:
 if instance.pod_name == pod_name:
 return instance
 return None

 def convert_template2_to_template1_format_file(self):
 rank_table_template1_file = {
 'status': 'completed',
 'version': '1.0',
 'server_count': '0',
 'server_list': []
 }

 logic_index = 0
 server_map = {}
 # collect all devices in all groups
 for group in self.group_list:
 if group.device_count == 0:
 continue

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 917

 for instance in group.instance_list:
 if instance.server_id not in server_map:
 server_map[instance.server_id] = []

 for device in instance.devices:
 template1_device = {
 'device_id': device.device_id,
 'device_ip': device.device_ip,
 'rank_id': str(logic_index)
 }
 logic_index += 1
 server_map[instance.server_id].append(template1_device)

 server_count = 0
 for server_id in server_map:
 rank_table_template1_file['server_list'].append({
 'server_id': server_id,
 'device': server_map[server_id]
 })
 server_count += 1

 rank_table_template1_file['server_count'] = str(server_count)

 log.info('Rank table file (Template1)')
 log.info('\n' + json.dumps(rank_table_template1_file, indent=4))

 if not os.path.exists(RankTableEnv.get_rank_table_template1_file_dir()):
 os.makedirs(RankTableEnv.get_rank_table_template1_file_dir())

 path = os.path.join(RankTableEnv.get_rank_table_template1_file_dir(),
RankTableEnv.HCCL_JSON_FILE_NAME)
 with open(path, 'w') as f:
 f.write(json.dumps(rank_table_template1_file))
 log.info('Rank table file (Template1) is generated at %s', path)

 return path, rank_table_template1_file

 def get_device_num(self):
 total_device_num = 0
 for group in self.group_list:
 total_device_num += group.device_count
 return total_device_num

class RankTableTemplate1(RankTable):
 def __init__(self, rank_table_template1_path):
 super().__init__()
 self.rank_table_path = rank_table_template1_path
 self.rank_table = self.read_from_file(file_path=rank_table_template1_path)

 def get_current_instance(self):
 current_server = None
 server_list = self.rank_table['server_list']
 if len(server_list) == 1:
 current_server = server_list[0]
 elif len(server_list) > 1:
 host_ip = ModelArts.get_current_host_ip()
 if host_ip is not None:
 for server in server_list:
 if server['server_id'] == host_ip:
 current_server = server
 break
 else:
 current_server = server_list[0]

 if current_server is None:
 log.error('server is not found')
 return None
 return self.convert_server_to_instance(current_server)

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 918

 def get_device_num(self):
 server_list = self.rank_table['server_list']
 device_num = 0
 for server in server_list:
 device_num += len(server['device'])
 return device_num

● manager.py
import time
import os
import os.path
import signal

from common import RunAscendLog
from fmk import FMK

log = RunAscendLog.get_run_ascend_logger()

class FMKManager:
 # max destroy time: ~20 (15 + 5)
 # ~ 15 (1 + 2 + 4 + 8)
 MAX_TEST_PROC_CNT = 4

 def __init__(self, instance):
 self.instance = instance
 self.fmk = []
 self.fmk_processes = []
 self.get_sigterm = False
 self.max_test_proc_cnt = FMKManager.MAX_TEST_PROC_CNT

 # break the monitor and destroy processes when get terminate signal
 def term_handle(func):
 def receive_term(signum, stack):
 log.info('Received terminate signal %d, try to destroyed all processes' % signum)
 stack.f_locals['self'].get_sigterm = True

 def handle_func(self, *args, **kwargs):
 origin_handle = signal.getsignal(signal.SIGTERM)
 signal.signal(signal.SIGTERM, receive_term)
 res = func(self, *args, **kwargs)
 signal.signal(signal.SIGTERM, origin_handle)
 return res

 return handle_func

 def run(self, rank_size, command):
 for index, device in enumerate(self.instance.devices):
 fmk_instance = FMK(index, device)
 self.fmk.append(fmk_instance)

 self.fmk_processes.append(fmk_instance.run(rank_size, command))

 @term_handle
 def monitor(self, period=1):
 # busy waiting for all fmk processes exit by zero
 # or there is one process exit by non-zero

 fmk_cnt = len(self.fmk_processes)
 zero_ret_cnt = 0
 while zero_ret_cnt != fmk_cnt:
 zero_ret_cnt = 0
 for index in range(fmk_cnt):
 fmk = self.fmk[index]
 fmk_process = self.fmk_processes[index]
 if fmk_process.poll() is not None:
 if fmk_process.returncode != 0:
 log.error('proc-rank-%s-device-%s (pid: %d) has exited with non-zero code: %d'

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 919

 % (fmk.rank_id, fmk.device_id, fmk_process.pid, fmk_process.returncode))
 return fmk_process.returncode

 zero_ret_cnt += 1
 if self.get_sigterm:
 break
 time.sleep(period)

 return 0

 def destroy(self, base_period=1):
 log.info('Begin destroy training processes')
 self.send_sigterm_to_fmk_process()
 self.wait_fmk_process_end(base_period)
 log.info('End destroy training processes')

 def send_sigterm_to_fmk_process(self):
 # send SIGTERM to fmk processes (and process group)
 for r_index in range(len(self.fmk_processes) - 1, -1, -1):
 fmk = self.fmk[r_index]
 fmk_process = self.fmk_processes[r_index]
 if fmk_process.poll() is not None:
 log.info('proc-rank-%s-device-%s (pid: %d) has exited before receiving the term signal',
 fmk.rank_id, fmk.device_id, fmk_process.pid)
 del self.fmk_processes[r_index]
 del self.fmk[r_index]

 try:
 os.killpg(fmk_process.pid, signal.SIGTERM)
 except ProcessLookupError:
 pass

 def wait_fmk_process_end(self, base_period):
 test_cnt = 0
 period = base_period
 while len(self.fmk_processes) > 0 and test_cnt < self.max_test_proc_cnt:
 for r_index in range(len(self.fmk_processes) - 1, -1, -1):
 fmk = self.fmk[r_index]
 fmk_process = self.fmk_processes[r_index]
 if fmk_process.poll() is not None:
 log.info('proc-rank-%s-device-%s (pid: %d) has exited',
 fmk.rank_id, fmk.device_id, fmk_process.pid)
 del self.fmk_processes[r_index]
 del self.fmk[r_index]
 if not self.fmk_processes:
 break

 time.sleep(period)
 period *= 2
 test_cnt += 1

 if len(self.fmk_processes) > 0:
 for r_index in range(len(self.fmk_processes) - 1, -1, -1):
 fmk = self.fmk[r_index]
 fmk_process = self.fmk_processes[r_index]
 if fmk_process.poll() is None:
 log.warn('proc-rank-%s-device-%s (pid: %d) has not exited within the max waiting time,
'
 'send kill signal',
 fmk.rank_id, fmk.device_id, fmk_process.pid)
 os.killpg(fmk_process.pid, signal.SIGKILL)

● fmk.py
import os
import subprocess
import pathlib
from contextlib import contextmanager

from common import RunAscendLog
from common import RankTableEnv

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 920

from common import ModelArts

log = RunAscendLog.get_run_ascend_logger()

class FMK:

 def __init__(self, index, device):
 self.job_id = ModelArts.get_job_id()
 self.rank_id = device.rank_id
 self.device_id = str(index)

 def gen_env_for_fmk(self, rank_size):
 current_envs = os.environ.copy()

 current_envs['JOB_ID'] = self.job_id

 current_envs['ASCEND_DEVICE_ID'] = self.device_id
 current_envs['DEVICE_ID'] = self.device_id

 current_envs['RANK_ID'] = self.rank_id
 current_envs['RANK_SIZE'] = str(rank_size)

 FMK.set_env_if_not_exist(current_envs, RankTableEnv.HCCL_CONNECT_TIMEOUT, str(1800))

 log_dir = FMK.get_log_dir()
 process_log_path = os.path.join(log_dir, self.job_id, 'ascend', 'process_log', 'rank_' + self.rank_id)
 FMK.set_env_if_not_exist(current_envs, 'ASCEND_PROCESS_LOG_PATH', process_log_path)
 pathlib.Path(current_envs['ASCEND_PROCESS_LOG_PATH']).mkdir(parents=True, exist_ok=True)

 return current_envs

 @contextmanager
 def switch_directory(self, directory):
 owd = os.getcwd()
 try:
 os.chdir(directory)
 yield directory
 finally:
 os.chdir(owd)

 def get_working_dir(self):
 fmk_workspace_prefix = ModelArts.get_parent_working_dir()
 return os.path.join(os.path.normpath(fmk_workspace_prefix), 'device%s' % self.device_id)

 @staticmethod
 def get_log_dir():
 parent_path = os.getenv(ModelArts.MA_MOUNT_PATH_ENV)
 if parent_path:
 log_path = os.path.join(parent_path, 'log')
 if os.path.exists(log_path):
 return log_path

 return ModelArts.TMP_LOG_DIR

 @staticmethod
 def set_env_if_not_exist(envs, env_name, env_value):
 if env_name in os.environ:
 log.info('env already exists. env_name: %s, env_value: %s ' % (env_name, env_value))
 return

 envs[env_name] = env_value

 def run(self, rank_size, command):
 envs = self.gen_env_for_fmk(rank_size)
 log.info('bootstrap proc-rank-%s-device-%s' % (self.rank_id, self.device_id))

 log_dir = FMK.get_log_dir()
 if not os.path.exists(log_dir):

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 921

 os.makedirs(log_dir)

 log_file = '%s-proc-rank-%s-device-%s.txt' % (self.job_id, self.rank_id, self.device_id)
 log_file_path = os.path.join(log_dir, log_file)

 working_dir = self.get_working_dir()
 if not os.path.exists(working_dir):
 os.makedirs(working_dir)

 with self.switch_directory(working_dir):
 # os.setsid: change the process(forked) group id to itself
 training_proc = subprocess.Popen(command, env=envs, preexec_fn=os.setsid,
 stdout=subprocess.PIPE, stderr=subprocess.STDOUT)

 log.info('proc-rank-%s-device-%s (pid: %d)', self.rank_id, self.device_id, training_proc.pid)

 # https://docs.python.org/3/library/subprocess.html#subprocess.Popen.wait
 subprocess.Popen(['tee', log_file_path], stdin=training_proc.stdout)

 return training_proc

10.5 Creating a Custom Image for Inference

10.5.1 Creating a Custom Image for a Model
If you have developed a model using an AI engine that is not supported by
ModelArts, to use this model to create AI applications, create a custom image,
import the image to ModelArts, and use it to create models. The models created
in this way can be centrally managed and deployed as services.

Procedure
Scenario 1: The environment software of the preset image meets the
requirements. You only need to import a model package to create a model by
saving the image. For details, see Creating a Custom Image in a Notebook
Instance Using the Image Saving Function.

Figure 10-24 Creating a custom image for a model (scenario 1)

Scenario 2: The preset image does not meet the software environment
requirements. You need to import a model package and create the image using
Dockerfile. For details, see Creating a Custom Image in a Notebook Instance
Using Dockerfile.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 922

Figure 10-25 Creating a custom image for a model (scenario 2)

Scenario 3: The preset does not meet the software environment requirements. You
need to import a model package. The new image is larger than 35 GB and needs
to be created on a server such as ECS. For details, see Creating a Custom Image
on ECS.

Figure 10-26 Creating a custom image for a model (scenario 3)

Constraints
● No malicious code is allowed.
● The image for creating a model cannot be larger than 50 GB.
● For models in synchronous request mode, if the prediction request latency

exceeds 60 seconds, the request will fail, and there is a possibility that the
service may be interrupted. Therefore, in this case, create a model in
asynchronous mode.

Specifications for Custom Images
● External APIs

Set the external service API for a custom image. The inference API must be
the same as the URL defined by apis in config.json. Then, the external service
API can be directly accessed when the image is started. The following is an
example of accessing an MNIST image. The image contains a model trained
using an MNIST dataset and can identify handwritten digits. listen_ip
indicates the container IP address. You can start a custom image to obtain the
container IP address from the container.
– Sample request

curl -X POST \ http://{listen_ip}:8080/ \ -F images=@seven.jpg

Figure 10-27 Example of obtaining listen_ip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 923

– Sample response
{"mnist_result": 7}

● (Optional) Health check APIs
If services must not be interrupted during a rolling upgrade, the health check
APIs must be configured in config.json for ModelArts. The health check APIs
return the health status for a service when the service is running properly or
an error when the service becomes faulty.

NO TICE

● The health check APIs must be configured for a hitless rolling upgrade.
● If you need to use OBS external storage mounting for custom images in

real-time services, create a new directory for OBS data, for example, /obs-
mount/. Otherwise, the existing files will be overwritten. You can add,
view, and modify files in the OBS mount directory. To delete the files,
delete them in the OBS parallel file system.

The following shows a sample health check API:
– URI

GET /health

– Sample request: curl -X GET \ http://{Listening IP address}:8080/health
– Sample response

{"health": "true"}

– Status code

Table 10-37 Status code

Status Code Message Description

200 OK Request sent.

● Log file output

To ensure that logs can be properly displayed, the logs must be standard
output.

● Image boot file
To deploy a batch service, set the boot file of an image to /home/run.sh and
use CMD to set the default boot path. The following is a sample Dockerfile:
CMD ["sh", "/home/run.sh"]

● Image dependencies
To deploy a batch service, install dependencies such as Python, JRE/JDK, and
ZIP in the image.

● (Optional) Maintaining HTTP persistent connections for hitless rolling
upgrade
To ensure that services are not interrupted during a rolling upgrade, set HTTP
keep-alive to 200. For example, Gunicorn does not support keep-alive by
default. To ensure hitless rolling upgrade, install Gevent and configure --keep-
alive 200 -k gevent in the image. The parameter settings vary depending on
the service framework. Set the parameters as required.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 924

● (Optional) Processing SIGTERM signals and gracefully exiting a container
To ensure that services are not interrupted during a rolling upgrade, the
system must capture SIGTERM signals in the container and wait for 60s
before gracefully exiting the container. If the duration is less than 60s before
the graceful exit, services may be interrupted during the rolling upgrade. To
ensure uninterrupted service running, the system exits the container after the
system receives SIGTERM signals and processes all received requests. The
whole duration is not longer than 90s. The following shows example run.sh:
#!/bin/bash
gunicorn_pid=""

handle_sigterm() {
 echo "Received SIGTERM, send SIGTERM to $gunicorn_pid"
 if [$gunicorn_pid != ""]; then
 sleep 60
 kill -15 $gunicorn_pid # Pass SIGTERM signals to the Gunicorn process.
 wait $gunicorn_pid # Wait until the Gunicorn process stops.
 fi
}

trap handle_sigterm TERM

10.5.2 Creating a Custom Image in a Notebook Instance Using
the Image Saving Function

Description
This section describes how to import a local model package to ModelArts
notebook for debugging and saving, and then deploy the saved image for
inference. This case applies only to Huawei Cloud CN North-Beijing4 and CN East-
Shanghai1 regions.

The procedure is as follows:

1. Step1 Copying a Model Package in a Notebook Instance
2. Step2 Debugging a Model in a Notebook Instance
3. Step3 Saving an Image in a Notebook Instance
4. Step4 Using the Saved Image for Inference Deployment

Step1 Copying a Model Package in a Notebook Instance
1. Log in to the ModelArts console. In the navigation pane on the left, choose

Development Workspace > Notebook.
2. Click Create in the upper right corner. On the Create Notebook page,

configure the parameters.

a. Configure basic information of the notebook instance, including its name,
description, and auto stop status.

b. Select an image and configure resource specifications for the instance.

▪ Image: Select image tensorflow_2.1-cuda_10.1-cudnn7-
ubuntu_18.04 or pytorch1.8-cuda10.2-cudnn7-ubuntu18.04. For
details about the images, see Engine Version 1: tensorflow_2.1.0-
cuda_10.1-py_3.7-ubuntu_18.04-x86_64 and Engine Version 1:
pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 925

▪ Resource Type: Select a public resource pool or a dedicated resource
pool. A public resource pool is used as an example.

▪ Type: GPU is recommended.

▪ Flavor: GP Tnt004 is recommended.

3. Click Next. Confirm the information and click Submit.
Switch to the notebook instance list. The notebook instance is being created.
It will take several minutes

4. before its status changes to Running. Then, locate the notebook in the list
and click Open in the Operation column. The JupyterLab Launcher page is
displayed.

Figure 10-28 JupyterLab Launcher

5. Click to upload the model package file to the notebook instance. The
default working directory of the instance is /home/ma-user/work/. Prepare
the model package file. For details, see Sample Model Package File.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 926

Figure 10-29 Uploading a model package

6. Start the Terminal. Decompress model.zip and delete it.
Decompress the ZIP file.
unzip model.zip

Figure 10-30 Decompressing model.zip on the Terminal

7. In the Terminal tab, run the copy command.
cp -rf model/* /home/ma-user/infer/model/1

Check whether the image file is copied.
cd /home/ma-user/infer/model/1
ll

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 927

Figure 10-31 Image file copied

Sample Model Package File
A model file in the model package file model.zip must be prepared by yourself.
The following uses a handwritten digit recognition model as an example.

The inference script file customize_service.py must be available in the model
directory for model pre-processing and post-processing.

Figure 10-32 Model directory of the inference model

For details about the inference script customize_service.py, see Specifications for
Writing a Model Inference Code File customize_service.py.

The content of the customize_service.py file used in this case is as follows:

import logging
import threading

import numpy as np
import tensorflow as tf
from PIL import Image

from model_service.tfserving_model_service import TfServingBaseService

class mnist_service(TfServingBaseService):

 def __init__(self, model_name, model_path):
 self.model_name = model_name
 self.model_path = model_path
 self.model = None
 self.predict = None

 # Load the model in saved_model format in non-blocking mode to prevent blocking timeout.
 thread = threading.Thread(target=self.load_model)
 thread.start()

 def load_model(self):
 # Load the model in saved_model format.
 self.model = tf.saved_model.load(self.model_path)

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 928

 signature_defs = self.model.signatures.keys()

 signature = []
 # only one signature allowed
 for signature_def in signature_defs:
 signature.append(signature_def)

 if len(signature) == 1:
 model_signature = signature[0]
 else:
 logging.warning("signatures more than one, use serving_default signature from %s", signature)
 model_signature = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY

 self.predict = self.model.signatures[model_signature]

 def _preprocess(self, data):
 images = []
 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((28, 28, 1))
 images.append(image1)

 images = tf.convert_to_tensor(images, dtype=tf.dtypes.float32)
 preprocessed_data = images

 return preprocessed_data

 def _inference(self, data):

 return self.predict(data)

 def _postprocess(self, data):

 return {
 "result": int(data["output"].numpy()[0].argmax())
 }

Step2 Debugging a Model in a Notebook Instance
1. In a new Terminal tab, go to the /home/ma-user/infer/ directory, run the

run.sh script, and predict the model. In a base image, run.sh is used as the
boot script by default. The start command is as follows:
sh run.sh

Figure 10-33 Running the boot script

2. Upload an image with a handwritten digit to the notebook instance for
prediction.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 929

Figure 10-34 Handwritten digit

Figure 10-35 Uploading an image for prediction

3. Open a new Terminal and run the following command for prediction:
curl -kv -F 'images=@/home/ma-user/work/test.png' -X POST http://127.0.0.1:8080/

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 930

Figure 10-36 Prediction

If the model file or inference script file is modified during debugging, restart
the run.sh script. To do so, run the following command to stop Nginx and
then run the run.sh script:
Obtain the Nginx process.
ps -ef |grep nginx
Stop all Nginx-related processes.
kill -9 {Process ID}
Execute run.sh.
sh run.sh

You can also run the pkill nginx command to stop all Nginx processes.
Stop all Nginx processes.
pkill nginx
Execute run.sh.
sh run.sh

Figure 10-37 Restarting run.sh

Step3 Saving an Image in a Notebook Instance
NO TE

A running notebook instance must be available.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 931

1. Locate the target notebook instance in the list and choose More > Save
Image in the Operation column.

2. In the displayed Save Image dialog box, configure the parameters. Then, click
OK.
Choose an organization from the Organization drop-down list. If no
organization is available, click Create on the right to create one.
Users in an organization can share all images in the organization.

3. The image will be saved as a snapshot, which will take about 5 minutes.
During this period of time, do not perform any operations on the instance.
(You can still perform operations on the accessed JupyterLab page and local
IDE.)

NO TICE

The time required for saving an image as a snapshot will be counted in the
instance running duration. If the instance running duration expires before the
snapshot is saved, saving the image will fail.

4. After the image is saved, the instance status changes to Running. View the
image on the Image Management page.

5. Click the image name to view its details.

Step4 Using the Saved Image for Inference Deployment
Import the custom image debugged in Step2 Debugging a Model in a Notebook
Instance to models and deploy it as a real-time service.

1. Log in to the ModelArts console. In the navigation pane on the left, choose
Model Management. On the displayed, click Create Model.

2. Configure the parameters, as shown in Figure 10-38.
– Meta Model Source: Select Container image.

– Container Image Path: Click to select an image file. For details about
the path, see the SWR address in 5.

– Container API: Select HTTPS.
– host: Set to 8443.
– Deployment Type: Select Real-Time Services.

Figure 10-38 Configuring model parameters

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 932

3. Enter the boot command.
sh /home/ma-user/infer/run.sh

4. Enable APIs, edit the API, and click Save. Specify a file as the input. The
following shows a code example.

Figure 10-39 API definition

The API definition is as follows:
[{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "result": {
 "type": "integer"
 }
 }
 }
 }
}]

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 933

NO TICE

After enabling this function, you can edit RESTful APIs to define the input and
output formats of a model.
● Configure APIs during model creation. The system will automatically

identify the prediction type after the created model is deployed.
● Do not configure APIs during model creation. You will be required to select

a request type for prediction after the created model is deployed. The
request type can be application/json or multipart/form-data. Select a
proper type based on the meta model.
● If you select application/json, enter code for text prediction.
● If you select multipart/form-data, configure the request parameter.

The request parameter value is the KEY value in the Body tab when
GUI-based software (Postman as an example) is used for
prediction. It is also the parameter name in the prediction request
sent by running the cURL command.

5. After the APIs are configured, click Create now. Wait until the model runs
properly.

6. Click the triangle on the left of the created model name to expand the version
list. Choose Deploy > Real-Time Services in the Operation column. The page
for deploying the AI application as a real-time service is displayed.

7. On the Deploy page, set key parameters as follows:
Name: Enter a custom real-time service name or use the default name.
Resource Pool: Select a public resource pool.
Model Source and Model and Version: The model and version are
automatically selected.
Specifications: Select specifications with limited time offer.
Retain default settings for other parameters.

NO TE

If free specifications have been sold out, use charged CPU specifications instead.
Resource fees are displayed on the GUI.

8. After configuring the parameters, click Next, confirm parameter settings, and
click Submit.

9. In the navigation pane on the left, choose Service Deployment > Real-Time
Services. When the service status changes to Running, the service is
deployed. Click Predict in the Operation column. The Prediction page on the
service details page is displayed. Upload an image for prediction.

10.5.3 Creating a Custom Image in a Notebook Instance Using
Dockerfile

Scenario
For AI engines that are not supported by ModelArts, you can import the models
you compile to ModelArts from custom images for creating models.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 934

This section describes how to use a base image in ModelArts notebook to create
an inference image, use the image to create a model, and deploy the model as a
real-time service. This case applies only to Huawei Cloud CN North-Beijing4 and
CN East-Shanghai1 regions.

The procedure is as follows:

1. Step 1 Creating an Image in a Notebook Instance. For details, see
Specifications for Custom Images.

2. Step 2 Registering the Image in Image Management.
3. Step 3 Changing and Debugging the Image in a Notebook Instance.
4. Step 4 Using a Debugged Image for Inference Deployment.

Step 1 Creating an Image in a Notebook Instance
This section uses a TensorFlow base image provided in ModelArts as an example
to create an image in ModelArts notebook.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose Settings and check whether access authorization has been
configured. If not, configure access authorization by referring to Configuring
Agency Authorization for ModelArts with One Click.

2. Log in to the ModelArts management console. In the navigation pane on the
left, choose DevEnviron > Notebook.

3. Click Create in the upper right corner. On the Create Notebook page,
configure the parameters.

a. Configure basic information of the notebook instance, including its name,
description, and auto stop status.

b. Select an image and configure resource specifications for the instance.

▪ Image: Select a public image that can run on CPUs, for example,
tensorflow2.1-cuda10.1-cudnn7-ubuntu18.04.

▪ Resource Type: Select a public resource pool or a dedicated resource
pool. A public resource pool is used as an example.

▪ Type: GPU is recommended.

▪ Flavor: GP Tnt004 is recommended.

4. Click Next. Confirm the information and click Submit.
Switch to the notebook instance list. The notebook instance is being created.
It will take several minutes before its status changes to Running.

5. Access the running notebook instance.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 935

Figure 10-40 Accessed notebook instance

6. Click to upload the Dockerfile and model package file to the notebook
instance. The default working directory of the instance is /home/ma-user/
work/.
For details about the Dockerfile, see Dockerfile Template. Prepare the model
package file. For details, see Sample Model Package File.

Figure 10-41 Uploading Dockerfile and model package file

7. Start the Terminal. Decompress model.zip and delete it.
Decompress the ZIP file.
unzip model.zip

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 936

Figure 10-42 Decompressing model.zip on the Terminal

8. Open a new IPYNB file, start the image creation script, and specify the paths
to the Dockerfile and image. The image creation script is available only in
Huawei Cloud CN North Beijing4 and CN East Shanghai1 regions.

Figure 10-43 Image creation script

The image creation script is as follows:
from modelarts.image_builder import ImageBuilder
from modelarts.session import Session
session = Session()

image = ImageBuilder(session=session,
 dockerfile_path="/home/ma-user/work/Dockerfile",
 image_url="custom_test/pytorch1.8:1.0.0",# custom_test is the organization name, pytorch1.8 is
the image name, and 1.0.0 is the tag.
 context="/home/ma-user/work")
result = image.build_push()

Wait until the image is created. The image will be automatically pushed to
SWR.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 937

Figure 10-44 Image being created

Dockerfile Template
The following provides a sample Dockerfile, which can be saved as another
Dockerfile. For details about the available base images, see Preset Dedicated
Images for Inference.
FROM swr.cn-north-4.myhuaweicloud.com/atelier/tensorflow_2_1:tensorflow_2.1.0-cuda_10.1-py_3.7-
ubuntu_18.04-x86_64-20221121111529-d65d817

Create a soft link from /home/ma-user/anaconda/lib/python3.7/site-packages/model_service to /
home/ma-user/infer/model_service, which is the built-in inference framework code directory.
if the installed python version of this base image is python3.8, you should create a soft link from '/
home/ma-user/anaconda/lib/python3.8/site-packages/model_service' to '/home/ma-user/infer/
model_service'.
USER root
RUN ln -s /home/ma-user/anaconda/lib/python3.7/site-packages/model_service /home/ma-user/infer/
model_service
USER ma-user

here we supply a demo, you can change it to your own model files
ADD model/ /home/ma-user/infer/model/1
USER root
RUN chown -R ma-user:ma-group /home/ma-user/infer/model/1
USER ma-user

default MODELARTS_SSL_CLIENT_VERIFY switch is "true". In order to debug, we set it to be "false"
ENV MODELARTS_SSL_CLIENT_VERIFY="false"

change your port and protocol here, default is 8443 and https
ENV MODELARTS_SERVICE_PORT=8080
ENV MODELARTS_SSL_ENABLED="false"

add pip install here
RUN pip install numpy==1.16.4
RUN pip install -r requirements.txt

default cmd, you can chage it here
CMD sh /home/ma-user/infer/run.sh

Sample Model Package File
A model file in the model package file model.zip must be prepared by yourself.
The following uses a handwritten digit recognition model as an example.

The inference script file customize_service.py must be available in the model
directory for model pre-processing and post-processing.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 938

Figure 10-45 Model directory of the inference model

For details about the inference script customize_service.py, see Specifications for
Writing a Model Inference Code File customize_service.py.

The content of the customize_service.py file used in this case is as follows:

import logging
import threading

import numpy as np
import tensorflow as tf
from PIL import Image

from model_service.tfserving_model_service import TfServingBaseService

class mnist_service(TfServingBaseService):

 def __init__(self, model_name, model_path):
 self.model_name = model_name
 self.model_path = model_path
 self.model = None
 self.predict = None

 # Load the model in saved_model format in non-blocking mode to prevent blocking timeout.
 thread = threading.Thread(target=self.load_model)
 thread.start()

 def load_model(self):
 # Load the model in saved_model format.
 self.model = tf.saved_model.load(self.model_path)

 signature_defs = self.model.signatures.keys()

 signature = []
 # only one signature allowed
 for signature_def in signature_defs:
 signature.append(signature_def)

 if len(signature) == 1:
 model_signature = signature[0]
 else:
 logging.warning("signatures more than one, use serving_default signature from %s", signature)
 model_signature = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY

 self.predict = self.model.signatures[model_signature]

 def _preprocess(self, data):
 images = []
 for k, v in data.items():
 for file_name, file_content in v.items():
 image1 = Image.open(file_content)
 image1 = np.array(image1, dtype=np.float32)
 image1.resize((28, 28, 1))
 images.append(image1)

 images = tf.convert_to_tensor(images, dtype=tf.dtypes.float32)
 preprocessed_data = images

 return preprocessed_data

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 939

 def _inference(self, data):

 return self.predict(data)

 def _postprocess(self, data):

 return {
 "result": int(data["output"].numpy()[0].argmax())
 }

Step 2 Registering the Image in Image Management

Register the custom image created in Step 1 Creating an Image in a Notebook
Instance in ModelArts image management for future use.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose Image Management. Then, click Register on the displayed page.

2. Specify the image source, select the architecture and type, and click Register.

– SWR Source: The image source is swr.cn-north-4-myhuaweicloud.com/
custom_test/tensorflow2.1:1.0.0, where custom_test/
tensorflow2.1:1.0.0 is the image path set in the image creation script in
8.

– Architecture: Select X86_64.

– Type: Select CPU.

Figure 10-46 Registering an image

3. View the registered image on the Image Management page.

Step 3 Changing and Debugging the Image in a Notebook Instance

Debug the created custom image for inference. Then, import the debugged image
to ModelArts models and deploy the image as a real-time service.

1. Log in to the ModelArts management console. In the navigation pane on the
left, choose DevEnviron > Notebook. Stop the notebook instance created in
Step 1 Creating an Image in a Notebook Instance.

2. Locate the target notebook instance in the list and choose More > Change
Image in the Operation column. In the displayed dialog box, set Change
Image to Private image, and select the image registered in Step 2
Registering the Image in Image Management, as shown in Figure 10-47.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 940

Figure 10-47 Changing an Image

3. Start the notebook instance and access it. Go to the Terminal page, run the
boot script run.sh in the working directory, and run the model for prediction.
In a base image, run.sh is used as the boot script by default.

Figure 10-48 Running the boot script

4. Upload an image with a handwritten digit to the notebook instance for
prediction.

Figure 10-49 Handwritten digit

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 941

Figure 10-50 Uploading an image for prediction

5. Open a new Terminal and run the following command for prediction:
curl -kv -F 'images=@/home/ma-user/work/test.png' -X POST http://127.0.0.1:8080/

Figure 10-51 Prediction

If the model file or inference script file is modified during debugging, restart
the run.sh script. To do so, run the following command to stop Nginx and
then run the run.sh script:
Obtain the Nginx process.
ps -ef |grep nginx
Stop all Nginx-related processes.
kill -9 {Process ID}
Execute run.sh.
sh run.sh

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 942

You can also run the pkill nginx command to stop all Nginx processes.
Stop all Nginx processes.
pkill nginx
Execute run.sh.
sh run.sh

Figure 10-52 Restarting run.sh

Step 4 Using a Debugged Image for Inference Deployment
Import the custom image debugged in Step 3 Changing and Debugging the
Image in a Notebook Instance to models and deploy it as a real-time service.

1. Log in to the ModelArts console. In the navigation pane on the left, choose
Model Management. On the displayed page, click Create Model.

2. Configure the parameters, as shown in Figure 10-53.
– Meta Model Source: Select Container image.

– Container Image Path: Click and select the created custom image.
– Container API: Select HTTPS.
– host: Set to 8443.
– Deployment Type: Select Real-Time Services.

Figure 10-53 Configuring model parameters

3. Enable APIs, edit the API, and click Save. Specify a file as the input. The
following shows a code example.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 943

Figure 10-54 API definition

The API definition is as follows:
[{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "multipart/form-data",
 "data": {
 "type": "object",
 "properties": {
 "images": {
 "type": "file"
 }
 }
 }
 },
 "response": {
 "Content-type": "applicaton/json",
 "data": {
 "type": "object",
 "properties": {
 "result": {
 "type": "integer"
 }
 }
 }
 }
}]

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 944

NO TICE

After enabling this function, you can edit RESTful APIs to define the input and
output formats of a model.
● Configure APIs during model creation. The system will automatically

identify the prediction type after the created model is deployed.
● Do not configure APIs during model creation. You will be required to select

a request type for prediction after the created model is deployed. The
request type can be application/json or multipart/form-data. Select a
proper type based on the meta model.
● If you select application/json, enter code for text prediction.
● If you select multipart/form-data, configure the request parameter.

The request parameter value is the KEY value in the Body tab when
GUI-based software (Postman as an example) is used for
prediction. It is also the parameter name in the prediction request
sent by running the cURL command.

4. After the APIs are configured, click Create now. Wait until the model runs
properly.

5. Click the triangle on the left of the created model name to expand the version
list. Choose Deploy > Real-Time Services in the Operation column. The page
for deploying the AI application as a real-time service is displayed.

6. On the Deploy page, set key parameters as follows:
Name: Enter a custom real-time service name or use the default name.
Resource Pool: Select a public resource pool.
Model Source and Model and Version: The model and version are
automatically selected.
Specifications: Select specifications with limited time offer.
Retain default settings for other parameters.

NO TE

If free specifications have been sold out, use charged CPU specifications instead.
Resource fees are displayed on the GUI.

7. After configuring the parameters, click Next, confirm parameter settings, and
click Submit.

8. In the navigation pane on the left, choose Service Deployment > Real-Time
Services. When the service status changes to Running, the service is
deployed. Click Predict in the Operation column. The Prediction page on the
service details page is displayed. Upload an image for prediction.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 945

Figure 10-55 Prediction

10.5.4 Creating a Custom Image on ECS
If you want to use an AI engine that is not supported by ModelArts, create a
custom image for the engine, import the image to ModelArts, and use the image
to create models. This section describes how to use a custom image to create a
model and deploy it as a real-time service.

The procedure is as follows:

1. Building an Image Locally: Create a custom image package locally. For
details, see Creating a Custom Image for a Model.

2. Verifying the Image Locally and Uploading It to SWR: Verify the APIs of the
custom image and upload the custom image to SWR.

3. Creating a Model Using a Custom Image: Import the image to ModelArts AI
application management.

4. Deploying the Model as a Real-Time Service: Deploy the model as a real-
time service.

Building an Image Locally
This section uses a Linux x86_x64 host as an example. You can purchase an ECS of
the same specifications or use an existing local host to create a custom image.

For details about how to purchase an ECS, see Purchasing and Logging In to a
Linux ECS. When creating the ECS, select an Ubuntu 18.04 public image.

Figure 10-56 Creating an ECS using an x86 public image

1. After logging in to the host, install Docker. For details, see Docker official
documents. Alternatively, run the following commands to install Docker:
curl -fsSL get.docker.com -o get-docker.sh
sh get-docker.sh

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 946

https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://support.huaweicloud.com/intl/en-us/qs-ecs/ecs_01_0103.html
https://docs.docker.com/engine/install/binaries/#install-static-binaries
https://docs.docker.com/engine/install/binaries/#install-static-binaries

2. Obtain the base image. Ubuntu 18.04 is used in this example.
docker pull ubuntu:18.04

3. Create the self-define-images folder, and edit Dockerfile and test_app.py in
the folder for the custom image. In the sample code, the application code
runs on the Flask framework.
The file structure is as follows:
self-define-images/
 --Dockerfile
 --test_app.py

– Dockerfile
From ubuntu:18.04
Configure the Huawei Cloud source and install Python, Python3-PIP, and Flask.
RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
 sed -i "s@http://.*security.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list
&& \
 sed -i "s@http://.*archive.ubuntu.com@http://repo.huaweicloud.com@g" /etc/apt/sources.list
&& \
 apt-get update && \
 apt-get install -y python3 python3-pip && \
 pip3 install --trusted-host https://repo.huaweicloud.com -i https://repo.huaweicloud.com/
repository/pypi/simple Flask

Copy the application code to the image.
COPY test_app.py /opt/test_app.py

Specify the boot command of the image.
CMD python3 /opt/test_app.py

– test_app.py
from flask import Flask, request
import json
app = Flask(__name__)

@app.route('/greet', methods=['POST'])
def say_hello_func():
 print("----------- in hello func ----------")
 data = json.loads(request.get_data(as_text=True))
 print(data)
 username = data['name']
 rsp_msg = 'Hello, {}!'.format(username)
 return json.dumps({"response":rsp_msg}, indent=4)

@app.route('/goodbye', methods=['GET'])
def say_goodbye_func():
 print("----------- in goodbye func ----------")
 return '\nGoodbye!\n'

@app.route('/', methods=['POST'])
def default_func():
 print("----------- in default func ----------")
 data = json.loads(request.get_data(as_text=True))
 return '\n called default func !\n {} \n'.format(str(data))

host must be "0.0.0.0", port must be 8080
if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8080)

4. Switch to the self-define-images folder and run the following command to
create custom image test:v1:
docker build -t test:v1 .

5. Run docker images to view the custom image you have created.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 947

Verifying the Image Locally and Uploading It to SWR
1. Run the following command in the local environment to start the custom

image:
docker run -it -p 8080:8080 test:v1

Figure 10-57 Starting a custom image

2. Open another terminal and run the following commands to test the functions
of the three APIs of the custom image:
curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/
curl -X POST -H "Content-Type: application/json" --data '{"name":"Tom"}' 127.0.0.1:8080/greet
curl -X GET 127.0.0.1:8080/goodbye

If information similar to the following is displayed, the function verification is
successful.

Figure 10-58 Testing API functions

3. Upload the custom image to SWR.
4. After the custom image is uploaded, view the uploaded image on the My

Images > Private Images page of the SWR console.

Creating a Model Using a Custom Image
When you import a meta model by referring to Importing a Meta Model from a
Container Image, pay attention to the following parameters:
● Meta Model Source: Select Container image.

– Container Image Path: Select the created private image.

Figure 10-59 Created private image

– Container API: Protocol and port number for starting a model. Ensure
that the protocol and port number are the same as those provided in the
custom image.

– Image Replication: indicates whether to copy the model image in the
container image to ModelArts. This parameter is optional.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 948

– Health Check: checks health status of a model. This parameter is
optional. This parameter is configurable only when the health check API
is configured in the custom image. Otherwise, creating the model will fail.

● APIs: APIs of a custom image. This parameter is optional. Ensure that the APIs
comply with ModelArts specifications. For details, see Specifications for
Editing a Model Configuration File.
The configuration file is as follows:
[{
 "url": "/",
 "method": "post",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 },
{
 "url": "/greet",
 "method": "post",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 },
{
 "url": "/goodbye",
 "method": "get",
 "request": {
 "Content-type": "application/json"
 },
 "response": {
 "Content-type": "application/json"
 }
 }
]

Deploying the Model as a Real-Time Service
1. Deploy a model as a real-time service.
2. View the details about the real-time service.
3. Access the real-time service in the Prediction tab.

ModelArts
User Guide (ModelArts Standard) 10 Image Management

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 949

11 Resource Monitoring

11.1 Overview
ModelArts Standard provides multiple methods for you to view metrics.

● Method 1: View the metrics on the ModelArts Standard console.
You can view the metrics on the ModelArts Overview page or the monitoring
tab of each module.
– You can view metrics on the ModelArts Overview page. For details, see

Viewing Monitoring Metrics on the ModelArts Console.
– Standard training jobs: When a training job is running, you can view the

usage of resources such as CPUs, GPUs, and NPUs. For details, see
Viewing the Resource Usage of a Training Job.

– Standard real-time services: After deploying a model as a real-time
service, you can see how much CPU, memory, and GPU resources it is
using, as well as how many model calls it has received. For details, see
Viewing Details About a Real-Time Service.

● Method 2: View all metrics on AOM.
All metrics reported by ModelArts Standard are stored in AOM, which enables
you to consume metrics. You can set metric threshold alarms and report
alarms on the AOM console. For details, see Viewing All ModelArts
Monitoring Metrics on the AOM Console.

● Method 3: View all metrics on Grafana.
If AOM's monitoring templates cannot meet your requirements, you can use
Grafana to view and analyze metrics. Grafana provides different views and
templates for monitoring, which allow you to see the real-time resource
usage on dashboards clearly.
After adding the data source in Grafana, you can view all ModelArts Standard
monitoring metrics stored in AOM using Grafana. For details, see Using
Grafana to View AOM Monitoring Metrics.
To view AOM monitoring metrics using Grafana plugins, follow these steps:

a. Install and configure Grafana.
You can install and configure Grafana using any of the following ways:
Installing and Configuring Grafana on Windows, Installing and

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 950

Configuring Grafana on Linux, and Installing and Configuring Grafana
on a Notebook Instance.

b. Configuring a Grafana Data Source
c. Configuring a Dashboard to View Metric Data

11.2 Viewing Monitoring Metrics on the ModelArts
Console
Viewing ModelArts Monitoring Metrics on the Overview Page

On the ModelArts overview page, you can view various information, including
production overview, resource usage, and resource usage of training jobs. Click the
links the view more details.

Figure 11-1 Viewing monitoring information on the Overview page

NO TE

If there is a discrepancy between the total number of events displayed at the top and
bottom of the Overview page, refresh the page.

Viewing ModelArts Monitoring Metrics of Each Module
● Training jobs: When a training job is running, you can view the usage of

resources such as CPUs, GPUs, and NPUs. For details, see Viewing the
Resource Usage of a Training Job.

● Real-time services: After deploying a model as a real-time service, you can see
how much CPU, memory, and GPU resources it is using, as well as how many
model calls it has received. For details, see Viewing Details About a Real-
Time Service.

11.3 Viewing All ModelArts Monitoring Metrics on the
AOM Console

ModelArts periodically collects the usage of key metrics (such as GPUs, NPUs,
CPUs, and memory) of each node in a resource pool as well as the usage of key

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 951

metrics of development environments, training jobs, and inference services, and
reports the data to AOM. You can view the information on AOM.

Viewing Monitoring Metrics on the AOM Console
1. Log in to the console and search for AOM to go to the AOM console.
2. In the navigation pane on the left, choose Metric Browsing.
3. Select the Prometheus_AOM_Default instance from the drop-down list.

Figure 11-2 Specifying the metric source

4. Select one or more metrics from All metrics or Prometheus statement.

Figure 11-3 Adding a metric

For details about how to view metrics, see Application Operations
Management > User Guide (2.0) > Metric Browsing in the Huawei Cloud
Help Center.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 952

https://support.huaweicloud.com/intl/en-us/usermanual-aom2/mon_01_0026.html
https://support.huaweicloud.com/intl/en-us/usermanual-aom2/mon_01_0026.html

Container-level Metrics

Table 11-1 Container metrics

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

CPU CPU
Usage

ma_cont
ainer_cp
u_util

CPU usage of
a measured
object

% 0%–
100
%

Raw
data
>
95%
for
two
conse
cutiv
e
perio
ds

Su
gg
est
ion

Chec
k
whet
her
the
servi
ce
resou
rce
usag
e
meet
s the
expe
ctati
on. If
the
servi
ce is
norm
al,
no
actio
n is
requi
red.

Used
CPU
Cores

ma_cont
ainer_cp
u_used_c
ore

Number of
CPU cores
used by a
measured
object

Cores ≥ 0 N/A N/
A

N/A

Total
CPU
Cores

ma_cont
ainer_cp
u_limit_c
ore

Total number
of CPU cores
that have
been applied
for a
measured
object

Cores ≥ 1 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 953

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

CPU
Memory
Usage

ma_cont
ainer_gp
u_mem_
util

Percentage of
the used GPU
memory to
the total GPU
memory

% 0%–
100
%

Raw
data
>
95%
for
two
conse
cutiv
e
perio
ds

Su
gg
est
ion

Chec
k
whet
her
the
servi
ce
resou
rce
usag
e
meet
s the
expe
ctati
on. If
the
servi
ce is
norm
al,
no
actio
n is
requi
red.

Me
mor
y

Total
Physical
Memory

ma_cont
ainer_me
mory_ca
pacity_m
egabytes

Total physical
memory that
has been
requested for
a measured
object

MB ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 954

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

Physical
Memory
Usage

ma_cont
ainer_me
mory_uti
l

Percentage of
the used
physical
memory to
the total
physical
memory

% 0%–
100
%

Raw
data
>
95%
for
two
conse
cutiv
e
perio
ds

Su
gg
est
ion

Chec
k
whet
her
the
servi
ce
resou
rce
usag
e
meet
s the
expe
ctati
on. If
the
servi
ce is
norm
al,
no
actio
n is
requi
red.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 955

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

Used
Physical
Memory

ma_cont
ainer_me
mory_us
ed_mega
bytes

Physical
memory that
has been used
by a
measured
object
(container_m
emory_worki
ng_set_bytes
in the current
working set)
(Memory
usage in a
working set =
Active
anonymous
page and
cache, and
file-baked
page ≤
container_me
mory_usage_
bytes)

MB ≥ 0 N/A N/
A

N/A

Stor
age

Disk
Read
Rate

ma_cont
ainer_dis
k_read_k
ilobytes

Volume of
data read
from a disk
per second

KB/s ≥ 0 N/A N/
A

N/A

Disk
Write
Rate

ma_cont
ainer_dis
k_write_
kilobytes

Volume of
data written
into a disk per
second

KB/s ≥ 0 N/A N/
A

N/A

GPU
me
mor
y

Total
GPU
Memory

ma_cont
ainer_gp
u_mem_t
otal_me
gabytes

Total GPU
memory of a
training job

MB > 0 N/A N/
A

N/A

GPU
Memory
Usage

ma_cont
ainer_gp
u_mem_
util

Percentage of
the used GPU
memory to
the total GPU
memory

% 0%–
100
%

N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 956

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

Used
GPU
Memory

ma_cont
ainer_gp
u_mem_
used_me
gabytes

GPU memory
used by a
measured
object

MB ≥ 0 N/A N/
A

N/A

Idle GPU
Memory

ma_cont
ainer_gp
u_mem_f
ree_meg
abytes

Idle GPU
memory of a
measured
object

MB ≥ 0 N/A N/
A

N/A

GPU GPU
usage

ma_cont
ainer_gp
u_util

GPU usage of
a measured
object

% 0%–
100
%

Raw
data
>
95%
for
two
conse
cutiv
e
perio
ds

Su
gg
est
ion

Chec
k
whet
her
the
servi
ce
resou
rce
usag
e
meet
s the
expe
ctati
on. If
the
servi
ce is
norm
al,
no
actio
n is
requi
red.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 957

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

GPU
Memory
Bandwid
th Usage

ma_cont
ainer_gp
u_mem_
copy_util

GPU memory
bandwidth
usage of a
measured
object For
example, the
maximum
memory
bandwidth of
GP Vnt1 is
900 GB/s. If
the current
memory
bandwidth is
450 GB/s, the
memory
bandwidth
usage is 50%.

% 0%–
100
%

N/A N/
A

N/A

GPU
Encoder
Usage

ma_cont
ainer_gp
u_enc_ut
il

GPU encoder
usage of a
measured
object

% % N/A N/
A

N/A

GPU
Decoder
Usage

ma_cont
ainer_gp
u_dec_ut
il

GPU decoder
usage of a
measured
object

% % N/A N/
A

N/A

GPU
Tempera
ture

DCGM_F
I_DEV_G
PU_TEM
P

GPU
temperature

°C Nat
ural
num
ber

N/A N/
A

N/A

GPU
Power

DCGM_F
I_DEV_P
OWER_U
SAGE

GPU power Watt
(W)

> 0 N/A N/
A

N/A

GPU
Memory
Tempera
ture

DCGM_F
I_DEV_M
EMORY_
TEMP

GPU memory
temperature

°C Nat
ural
num
ber

N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 958

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

Net
wor
k
I/O

Downlin
k Rate

ma_cont
ainer_ne
twork_re
ceive_byt
es

Inbound
traffic rate of
a measured
object

Bytes
/s

≥ 0 N/A N/
A

N/A

Packet
RX Rate

ma_cont
ainer_ne
twork_re
ceive_pa
ckets

Number of
data packets
received by an
NIC per
second

Pack
ets/s

≥ 0 N/A N/
A

N/A

Downlin
k Error
Rate

ma_cont
ainer_ne
twork_re
ceive_err
or_packe
ts

Number of
error packets
received by a
NIC per
second

Pack
ets/s

≥ 0 Raw
data
> 1
for
two
conse
cutiv
e
perio
ds

Cri
tic
al

Pack
et
loss
on
the
netw
ork.
Sub
mit a
servi
ce
ticket
and
cont
act
the
O&M
supp
ort
to
locat
e the
fault.

Uplink
Rate

ma_cont
ainer_ne
twork_tr
ansmit_b
ytes

Outbound
traffic rate of
a measured
object

Bytes
/s

≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 959

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

Uplink
Error
Rate

ma_cont
ainer_ne
twork_tr
ansmit_e
rror_pac
kets

Number of
error packets
sent by a NIC
per second

Pack
ets/s

≥ 0 Raw
data
> 1
for
two
conse
cutiv
e
perio
ds

Cri
tic
al

Pack
et
loss
on
the
netw
ork.
Sub
mit a
servi
ce
ticket
and
cont
act
the
O&M
supp
ort
to
locat
e the
fault.

Packet
TX Rate

ma_cont
ainer_ne
twork_tr
ansmit_p
ackets

Number of
data packets
sent by a NIC
per second

Pack
ets/s

≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 960

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

NPU NPU
Usage

ma_cont
ainer_np
u_util

NPU usage of
a measured
object (To be
replaced by
ma_container
_npu_ai_core
_util)

% 0%–
100
%

Raw
data
>
95%
for
two
conse
cutiv
e
perio
ds

Su
gg
est
ion

Chec
k
whet
her
the
servi
ce
resou
rce
usag
e
meet
s the
expe
ctati
on. If
the
servi
ce is
norm
al,
no
actio
n is
requi
red.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 961

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

NPU
Memory
Usage

ma_cont
ainer_np
u_memo
ry_util

Percentage of
the used NPU
memory to
the total NPU
memory (To
be replaced
by
ma_container
_npu_ddr_me
mory_util for
Snt3 series,
and
ma_container
_npu_hbm_ut
il for Snt9
series)

% 0%–
100
%

Raw
data
>
98%
for
two
conse
cutiv
e
perio
ds

Su
gg
est
ion

Chec
k
whet
her
the
servi
ce
resou
rce
usag
e
meet
s the
expe
ctati
on. If
the
servi
ce is
norm
al,
no
actio
n is
requi
red.

Used
NPU
Memory

ma_cont
ainer_np
u_memo
ry_used_
megabyt
es

NPU memory
used by a
measured
object (To be
replaced by
ma_container
_npu_ddr_me
mory_usage_
bytes for Snt3
series, and
ma_container
_npu_hbm_us
age_bytes for
Snt9 series)

≥ 0 MB N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 962

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

Total
NPU
Memory

ma_cont
ainer_np
u_memo
ry_total_
megabyt
es

Total NPU
memory of a
measured
object (To be
replaced by
ma_container
_npu_ddr_me
mory_bytes
for Snt3
series, and
ma_container
_npu_hbm_by
tes for Snt9
series)

> 0 MB N/A N/
A

N/A

AI
Processo
r Error
Codes

ma_cont
ainer_np
u_ai_core
_error_co
de

Error codes of
Ascend AI
processors

- - Raw
data
> 0
for
three
conse
cutiv
e
perio
ds

Cri
tic
al

Abno
rmal
card.
Sub
mit a
servi
ce
ticket
and
cont
act
the
O&M
supp
ort.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 963

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

AI
Processo
r Health
Status

ma_cont
ainer_np
u_ai_core
health
status

Health status
of Ascend AI
processors

- ● 1
:
h
e
a
lt
h
y

● 0
:
u
n
h
e
a
lt
h
y

Raw
data
> 0
for
two
conse
cutiv
e
perio
ds

Cri
tic
al

Abno
rmal
card.
Sub
mit a
servi
ce
ticket
and
cont
act
the
O&M
supp
ort.

AI
Processo
r Power
Consum
ption

ma_cont
ainer_np
u_ai_core
power
usage_w
atts

Power
consumption
of Ascend AI
processors

Watt
(W)

> 0 N/A N/
A

N/A

AI
Processo
r
Tempera
ture

ma_cont
ainer_np
u_ai_core
_temper
ature_cel
sius

Temperature
of Ascend AI
processors

°C Nat
ural
num
ber

N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 964

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

AI Core
Usage

ma_cont
ainer_np
u_ai_core
_util

AI core usage
of Ascend AI
processors

% 0%–
100
%

Raw
data
>
95%
for
two
conse
cutiv
e
perio
ds

Su
gg
est
ion

Chec
k
whet
her
the
servi
ce
resou
rce
usag
e
meet
s the
expe
ctati
on. If
the
servi
ce is
norm
al,
no
actio
n is
requi
red.

Overall
NPU
Usage

ma_cont
ainer_np
u_genera
l_util

NPU usage of
Ascend AI
processors
(supported by
driver version
24.1.RC2 and
later)

% 0%–
100
%

N/A N/
A

N/A

AI Core
Clock
Frequenc
y

ma_cont
ainer_np
u_ai_core
_frequen
cy_hertz

AI core clock
frequency of
Ascend AI
processors

Hertz
(Hz)

> 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 965

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

AI
Processo
r Voltage

ma_cont
ainer_np
u_ai_core
_voltage
_volts

Voltage of
Ascend AI
processors

Volt
(V)

Nat
ural
num
ber

N/A N/
A

N/A

AI
Processo
r DDR
Memory

ma_cont
ainer_np
u_ddr_m
emory_b
ytes

Total DDR
memory
capacity of
Ascend AI
processors

Byte > 0 N/A N/
A

N/A

AI
Processo
r DDR
Usage

ma_cont
ainer_np
u_ddr_m
emory_u
sage_byt
es

DDR memory
usage of
Ascend AI
processors

Byte > 0 N/A N/
A

N/A

AI
Processo
r DDR
Memory
Utilizatio
n

ma_cont
ainer_np
u_ddr_m
emory_u
til

DDR memory
utilization of
Ascend AI
processors
Invalid metric
for Snt9C.

% 0%–
100
%

Raw
data
>
95%
for
two
conse
cutiv
e
perio
ds

Su
gg
est
ion

Chec
k
whet
her
the
servi
ce
resou
rce
usag
e
meet
s the
expe
ctati
on. If
the
servi
ce is
norm
al,
no
actio
n is
requi
red.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 966

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

AI
Processo
r HBM
Memory

ma_cont
ainer_np
u_hbm_b
ytes

Total HBM
memory of
Ascend AI
processors
(dedicated for
Snt9
processors)

Byte > 0 N/A N/
A

N/A

AI
Processo
r HBM
Memory
Usage

ma_cont
ainer_np
u_hbm_u
sage_byt
es

HBM memory
usage of
Ascend AI
processors
(dedicated for
Snt9
processors)

Byte > 0 N/A N/
A

N/A

AI
Processo
r HBM
Memory
Utilizatio
n

ma_cont
ainer_np
u_hbm_u
til

HBM memory
utilization of
Ascend AI
processors
(dedicated for
Snt9
processors)

% 0%–
100
%

Raw
data
>
95%
for
two
conse
cutiv
e
perio
ds

Su
gg
est
ion

Chec
k
whet
her
the
servi
ce
resou
rce
usag
e
meet
s the
expe
ctati
on. If
the
servi
ce is
norm
al,
no
actio
n is
requi
red.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 967

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

AI
Processo
r HBM
Memory
Bandwid
th
Utilizatio
n

ma_cont
ainer_np
u_hbm_b
andwidt
h_util

HBM memory
bandwidth
utilization of
Ascend AI
processors
(dedicated for
Snt9
processors)

% 0%–
100
%

Raw
data
>
95%
for
two
conse
cutiv
e
perio
ds

Su
gg
est
ion

Chec
k
whet
her
the
servi
ce
resou
rce
usag
e
meet
s the
expe
ctati
on. If
the
servi
ce is
norm
al,
no
actio
n is
requi
red.

AI
Processo
r HBM
Memory
Clock
Frequenc
y

ma_cont
ainer_np
u_hbm_f
requency
_hertz

HBM memory
clock
frequency of
Ascend AI
processors
(dedicated for
Snt9
processors)

Hertz
(Hz)

> 0 N/A N/
A

N/A

AI
Processo
r HBM
Memory
Tempera
ture

ma_cont
ainer_np
u_hbm_t
emperat
ure_celsi
us

HBM memory
temperature
of Ascend AI
processors
(dedicated for
Snt9
processors)

°C Nat
ural
num
ber

N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 968

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

AI CPU
Utilizatio
n

ma_cont
ainer_np
u_ai_cpu
_util

AI CPU
utilization of
Ascend AI
processors

% 0%–
100
%

N/A N/
A

N/A

AI
Processo
r Control
CPU
Utilizatio
n

ma_cont
ainer_np
u_ctrl_cp
u_util

Control CPU
utilization of
Ascend AI
processors

% 0%–
100
%

N/A N/
A

N/A

AI
Processo
r Control
CPU
Frequenc
y

ma_node
_npu_ctrl
_cpu_fre
quency_
hertz

Control CPU
frequency of
Ascend AI
processors

Hertz
(Hz)

> 0
Syst
em
mod
e
(ded
icat
ed
reso
urce
pool
user
mod
e)

N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 969

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

AI Vector
Core
Usage

ma_cont
ainer_np
u_vector
_core_uti
l

AI vector core
usage of
Ascend AI
processors

% 0%–
100
%

Raw
data
>
95%
for
two
conse
cutiv
e
perio
ds

Su
gg
est
ion

Chec
k
whet
her
the
servi
ce
resou
rce
usag
e
meet
s the
expe
ctati
on. If
the
servi
ce is
norm
al,
no
actio
n is
requi
red.

NPU
RoC
E
net
wor
k

NPU
RoCE
Network
Uplink
Rate

ma_cont
ainer_np
u_roce_t
x_rate_b
ytes_per_
second

Uplink rate of
the NPU
network
module used
by the
container

Bytes
/s

≥ 0 N/A N/
A

N/A

NPU
RoCE
Network
Downlin
k Rate

ma_cont
ainer_np
u_roce_r
x_rate_b
ytes_per_
second

Downlink rate
of the NPU
network
module used
by the
container

Bytes
/s

≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 970

Cate
gory

Name Metric Description Unit Val
ue
Ran
ge

Alar
m
Thres
hold

Al
ar
m
Se
ve
rit
y

Solut
ion

Not
ebo
ok
servi
ce
metr
ics

Noteboo
k Cache
Directory
Size

ma_cont
ainer_no
tebook_c
ache_dir
_size_byt
es

A high-speed
local disk is
attached to
the /cache
directory for
GPU and NPU
notebook
instances. This
metric
indicates the
total size of
the directory.

Bytes ≥ 0 N/A N/
A

N/A

Noteboo
k Cache
Directory
Utilizatio
n

ma_cont
ainer_no
tebook_c
ache_dir
_util

A high-speed
local disk is
attached to
the /cache
directory for
GPU and NPU
notebook
instances. This
metric
indicates the
utilization of
the directory.

% 0%–
100
%

Raw
data
>
90%
for
two
conse
cutiv
e
perio
ds

Ma
jor

If the
disk
usag
e is
too
high,
the
note
book
insta
nce
will
be
resta
rted.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 971

Node-level Metrics

Table 11-2 Node metrics (collected only in dedicated resource pools)

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

CPU Total
CPU
Cores

ma_nod
e_cpu_li
mit_core

Total number
of CPU cores
that have
been
requested for
a measured
object

Cores ≥ 1 N/A N/
A

N/A

Used
CPU
Cores

ma_nod
e_cpu_us
ed_core

Number of
CPU cores
used by a
measured
object

Cores ≥ 0 N/A N/
A

N/A

CPU
Usage

ma_nod
e_cpu_ut
il

CPU usage of
a measured
object

% 0%
–
100
%

Raw
data >
95% for
two
consecu
tive
periods

M
ajo
r

Check
wheth
er the
servic
e
resour
ce
usage
meets
the
expec
tation
. If
the
servic
e is
norm
al, no
action
is
requir
ed.

CPU
I/O
Wait
Time

ma_nod
e_cpu_io
wait_cou
nter

Disk I/O wait
time
accumulated
since system
startup

jiffies ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 972

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

Me
mor
y

Physica
l
Memor
y
Usage

ma_nod
e_memo
ry_util

Percentage
of the used
physical
memory to
the total
physical
memory

% 0%
–
100
%

Raw
data >
95% for
two
consecu
tive
periods

M
ajo
r

Check
wheth
er the
servic
e
resour
ce
usage
meets
the
expec
tation
. If
the
servic
e is
norm
al, no
action
is
requir
ed.

Total
Physica
l
Memor
y

ma_nod
e_memo
ry_total_
megabyt
es

Total physical
memory that
has been
applied for a
measured
object

MB ≥ 0 N/A N/
A

N/A

Net
wor
k
I/O

Downli
nk
Rate
(BPS)

ma_nod
e_netwo
rk_receiv
e_rate_b
ytes_sec
onds

Inbound
traffic rate of
a measured
object

Bytes
/s

≥ 0 N/A N/
A

N/A

Uplink
Rate
(BPS)

ma_nod
e_netwo
rk_trans
mit_rate
_bytes_s
econds

Outbound
traffic rate of
a measured
object

Bytes
/s

≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 973

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

Stor
age

Disk
Read
Rate

ma_nod
e_disk_r
ead_rate
_kilobyte
s_second
s

Volume of
data read
from a disk
per second
(Only data
disks used by
containers
are
collected.)

KB/s ≥ 0 N/A N/
A

N/A

Disk
Write
Rate

ma_nod
e_disk_w
rite_rate
_kilobyte
s_second
s

Volume of
data written
into a disk
per second
(Only data
disks used by
containers
are
collected.)

KB/s ≥ 0 N/A N/
A

N/A

Total
Cache

ma_nod
e_cache_
space_ca
pacity_m
egabytes

Total cache
of the
Kubernetes
space

MB ≥ 0 N/A N/
A

N/A

Used
Cache

ma_nod
e_cache_
space_us
ed_capa
city_meg
abytes

Used cache
of the
Kubernetes
space

MB ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 974

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

Cache
Usage

ma_nod
e_cache_
space_us
ed_perce
nt

Cache usage
of the
Kubernetes
space

% ≥ 0 Raw
data >
90% for
two
consecu
tive
periods

Cri
tic
al

Check
the
disk
in a
timely
mann
er to
avoid
affect
ing
servic
es.
Clear
invali
d
data
on
comp
ute
nodes
.

Total
Contai
ner
Space

ma_nod
e_contai
ner_spac
e_capaci
ty_mega
bytes

Total
container
space

MB ≥ 0 N/A N/
A

N/A

Used
Contai
ner
Space

ma_nod
e_contai
ner_spac
e_used_c
apacity_
megabyt
es

Used
container
space

MB ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 975

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

Contai
ner
Space
Usage

ma_nod
e_contai
ner_spac
e_used_
percent

Space usage
of a
container

% ≥ 0 Raw
data >
90% for
two
consecu
tive
periods

Cri
tic
al

Check
the
disk
in a
timely
mann
er to
avoid
affect
ing
servic
es.
Clear
invali
d
data
on
comp
ute
nodes
.

Disk
Inform
ation

ma_nod
e_disk_in
fo

Basic disk
information

- ≥ 0 N/A N/
A

N/A

Total
Reads

ma_nod
e_disk_r
eads_co
mpleted
_total

Total number
of successful
reads

- ≥ 0 N/A N/
A

N/A

Merge
d
Reads

ma_nod
e_disk_r
eads_me
rged_tot
al

Number of
merged reads

- ≥ 0 N/A N/
A

N/A

Bytes
Read

ma_nod
e_disk_r
ead_byte
s_total

Total number
of bytes that
are
successfully
read

Bytes ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 976

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

Read
Time
Spent

ma_nod
e_disk_r
ead_tim
e_secon
ds_total

Time spent
on all reads

Secon
ds

≥ 0 N/A N/
A

N/A

Total
Writes

ma_nod
e_disk_w
rites_co
mpleted
_total

Total number
of successful
writes

- ≥ 0 N/A N/
A

N/A

Merge
d
Writes

ma_nod
e_disk_w
rites_me
rged_tot
al

Number of
merged
writes

- ≥ 0 N/A N/
A

N/A

Writte
n Bytes

ma_nod
e_disk_w
ritten_by
tes_total

Total number
of bytes that
are
successfully
written

Bytes ≥ 0 N/A N/
A

N/A

Write
Time
Spent

ma_nod
e_disk_w
rite_time
_seconds
_total

Time spent
on all write
operations

Secon
ds

≥ 0 N/A N/
A

N/A

Ongoin
g I/Os

ma_nod
e_disk_io
_now

Number of
ongoing I/Os

- ≥ 0 N/A N/
A

N/A

I/O
Executi
on
Durati
on

ma_nod
e_disk_io
_time_se
conds_to
tal

Time spent
on executing
I/Os

Secon
ds

≥ 0 N/A N/
A

N/A

I/O
Executi
on
Weight
ed
Time

ma_nod
e_disk_io
_time_w
eighted_
seconds_
tota

Weighted
time spent
on executing
I/Os

Secon
ds

≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 977

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

GPU GPU
Usage

ma_nod
e_gpu_u
til

GPU usage of
a measured
object

% 0%
–
100
%

N/A N/
A

N/A

Total
GPU
Memor
y

ma_nod
e_gpu_
mem_to
tal_meg
abytes

Total GPU
memory of a
measured
object

MB > 0 N/A N/
A

N/A

GPU
Memor
y
Usage

ma_nod
e_gpu_
mem_uti
l

Percentage
of the used
GPU memory
to the total
GPU memory

% 0%
–
100
%

Raw
data >
97% for
two
consecu
tive
periods

Su
gg
est
ion

Check
wheth
er the
servic
e
resour
ce
usage
meets
the
expec
tation
. If
the
servic
e is
norm
al, no
action
is
requir
ed.

Used
GPU
Memor
y

ma_nod
e_gpu_
mem_us
ed_meg
abytes

GPU memory
used by a
measured
object

MB ≥ 0 N/A N/
A

N/A

Idle
GPU
Memor
y

ma_nod
e_gpu_
mem_fre
e_mega
bytes

Idle GPU
memory of a
measured
object

MB > 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 978

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

Tasks
on a
Shared
GPU

node_gp
u_share_
job_coun
t

Number of
tasks running
on a shared
GPU

Num
ber

≥ 0 N/A N/
A

N/A

GPU
Tempe
rature

DCGM_F
I_DEV_G
PU_TEM
P

GPU
temperature

°C Nat
ural
nu
mb
er

N/A N/
A

N/A

GPU
Power

DCGM_F
I_DEV_P
OWER_
USAGE

GPU power Watt
(W)

> 0 N/A N/
A

N/A

GPU
Memor
y
Tempe
rature

DCGM_F
I_DEV_M
EMORY_
TEMP

GPU memory
temperature

°C Nat
ural
nu
mb
er

N/A N/
A

N/A

NPU NPU
Usage

ma_nod
e_npu_u
til

NPU usage
of a
measured
object (To be
replaced by
ma_node_np
u_ai_core_uti
l)

% 0%
–
100
%

N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 979

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

NPU
Memor
y
Usage

ma_nod
e_npu_
memory
_util

Percentage
of the used
NPU memory
to the total
NPU memory
(To be
replaced by
ma_node_np
u_ddr_memo
ry_util for
Snt3 series,
and
ma_node_np
u_hbm_util
for Snt9
series)

% 0%
–
100
%

Raw
data >
97% for
two
consecu
tive
periods

Su
gg
est
ion

Check
wheth
er the
servic
e
resour
ce
usage
meets
the
expec
tation
. If
the
servic
e is
norm
al, no
action
is
requir
ed.

Used
NPU
Memor
y

ma_nod
e_npu_
memory
_used_m
egabytes

NPU memory
used by a
measured
object (To be
replaced by
ma_node_np
u_ddr_memo
ry_usage_byt
es for Snt3
series, and
ma_node_np
u_hbm_usag
e_bytes for
Snt9 series)

≥ 0 MB N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 980

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

Total
NPU
Memor
y

ma_nod
e_npu_
memory
_total_m
egabytes

Total NPU
memory of a
measured
object (To be
replaced by
ma_node_np
u_ddr_memo
ry_bytes for
Snt3 series,
and
ma_node_np
u_hbm_byte
s for Snt9
series)

> 0 MB N/A N/
A

N/A

AI
Process
or
Error
Codes

ma_nod
e_npu_ai
_core_er
ror_code

Error codes
of Ascend AI
processors

- - N/A N/
A

N/A

AI
Process
or
Health
Status

ma_nod
e_npu_ai
_core_he
alth_stat
us

Health status
of Ascend AI
processors

- ● 1
:
h
e
a
l
t
h
y

● 0
:
u
n
h
e
a
l
t
h
y

The
value is
0 for
two
consecu
tive
periods.

Cri
tic
al

Subm
it a
servic
e
ticket.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 981

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

AI
Process
or
Power
Consu
mption

ma_nod
e_npu_ai
_core_po
wer_usa
ge_watts

Power
consumption
of Ascend AI
processors

Watt
(W)

> 0 N/A N/
A

N/A

AI
Process
or
Tempe
rature

ma_nod
e_npu_ai
_core_te
mperatu
re_celsiu
s

Temperature
of Ascend AI
processors

°C Nat
ural
nu
mb
er

N/A N/
A

N/A

AI Core
Usage

ma_nod
e_npu_ai
_core_uti
l

AI core usage
of Ascend AI
processors

% 0%
–
100
%

N/A N/
A

N/A

Overall
NPU
Usage

ma_nod
e_npu_g
eneral_u
til

NPU usage
of Ascend AI
processors
(supported
by driver
version
24.1.RC2 and
later)

% 0%
–
100
%

N/A N/
A

N/A

AI Core
Clock
Freque
ncy

ma_nod
e_npu_ai
_core_fre
quency_
hertz

AI core clock
frequency of
Ascend AI
processors

Hertz
(Hz)

> 0 N/A N/
A

N/A

AI
Process
or
Voltag
e

ma_nod
e_npu_ai
_core_vo
ltage_vo
lts

Voltage of
Ascend AI
processors

Volt
(V)

Nat
ural
nu
mb
er

N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 982

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

AI
Process
or DDR
Memor
y

ma_nod
e_npu_d
dr_mem
ory_byte
s

Total DDR
memory
capacity of
Ascend AI
processors
Invalid metric
for Snt9C.

Byte > 0 N/A N/
A

N/A

AI
Process
or DDR
Usage

ma_nod
e_npu_d
dr_mem
ory_usag
e_bytes

DDR memory
usage of
Ascend AI
processors

Byte > 0 N/A N/
A

N/A

AI
Process
or DDR
Memor
y
Utilizat
ion

ma_nod
e_npu_d
dr_mem
ory_util

DDR memory
utilization of
Ascend AI
processors

% 0%
–
100
%

Raw
data >
90% for
two
consecu
tive
periods

Su
gg
est
ion

Check
wheth
er the
servic
e
resour
ce
usage
meets
the
expec
tation
. If
the
servic
e is
norm
al, no
action
is
requir
ed.

AI
Process
or
HBM
Memor
y

ma_nod
e_npu_h
bm_byte
s

Total HBM
memory of
Ascend AI
processors
(dedicated
for Snt9
processors)

Byte > 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 983

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

AI
Process
or
HBM
Memor
y
Usage

ma_nod
e_npu_h
bm_usag
e_bytes

HBM
memory
usage of
Ascend AI
processors
(dedicated
for Snt9
processors)

Byte > 0 N/A N/
A

N/A

AI
Process
or
HBM
Memor
y
Utilizat
ion

ma_nod
e_npu_h
bm_util

HBM
memory
utilization of
Ascend AI
processors
(dedicated
for Snt9
processors)

% 0%
–
100
%

Raw
data >
97% for
two
consecu
tive
periods

Su
gg
est
ion

Check
wheth
er the
servic
e
resour
ce
usage
meets
the
expec
tation
. If
the
servic
e is
norm
al, no
action
is
requir
ed.

AI
Process
or
HBM
Memor
y
Bandwi
dth
Utilizat
ion

ma_nod
e_npu_h
bm_ban
dwidth_
util

HBM
memory
bandwidth
utilization of
Ascend AI
processors
(dedicated
for Snt9
processors)

% 0%
–
100
%

N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 984

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

AI
Process
or
HBM
Memor
y Clock
Freque
ncy

ma_nod
e_npu_h
bm_freq
uency_h
ertz

HBM
memory
clock
frequency of
Ascend AI
processors
(dedicated
for Snt9
processors)

Hertz
(Hz)

> 0 N/A N/
A

N/A

AI
Process
or
HBM
Memor
y
Tempe
rature

ma_nod
e_npu_h
bm_tem
perature
_celsius

HBM
memory
temperature
of Ascend AI
processors
(dedicated
for Snt9
processors)

°C Nat
ural
nu
mb
er

N/A N/
A

N/A

AI CPU
Utilizat
ion

ma_nod
e_npu_ai
_cpu_util

AI CPU
utilization of
Ascend AI
processors

% 0%
–
100
%

N/A N/
A

N/A

AI
Process
or
Control
CPU
Utilizat
ion

ma_nod
e_npu_ct
rl_cpu_u
til

Control CPU
utilization of
Ascend AI
processors

% 0%
–
100
%

N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 985

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

AI
Process
or
Control
CPU
Freque
ncy

ma_nod
e_npu_ct
rl_cpu_fr
equency
_hertz

Control CPU
frequency of
Ascend AI
processors

Hertz
(Hz)

> 0
Syst
em
mo
de
(av
aila
ble
for
ded
icat
ed
reso
urc
e
poo
l
use
rs)

N/A N/
A

N/A

HBM
ECC
Detecti
on
Switch

ma_nod
e_npu_h
bm_ecc_
enable

0 indicates
that ECC
detection is
disabled. 1
indicates that
ECC
detection is
enabled.

- ● 1
:
e
n
a
b
l
e
d

● 0
:
d
i
s
a
b
l
e
d

N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 986

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

Curren
t HBM
Single-
bit
Errors

ma_nod
e_npu_h
bm_singl
e_bit_err
or_total

Current
number of
HBM single-
bit errors

Num
ber

≥ 0 N/A N/
A

N/A

Curren
t HBM
Multi-
bit
Errors

ma_nod
e_npu_h
bm_dou
ble_bit_e
rror_tota
l

Current
number of
HBM multi-
bit errors

Num
ber

≥ 0 N/A N/
A

N/A

Total
Single-
bit
Errors
in the
HBM
Life
Cycle

ma_nod
e_npu_h
bm_total
single
bit_error
_total

Total number
of single-bit
errors in the
HBM life
cycle

Num
ber

≥ 0 N/A N/
A

N/A

Total
Multi-
bit
Errors
in the
HBM
Life
Cycle

ma_nod
e_npu_h
bm_total
double
bit_error
_total

Total number
of multi-bit
errors in the
HBM life
cycle

Num
ber

≥ 0 N/A N/
A

N/A

Isolate
d NPU
Memor
y
Pages
with
HBM
Single-
bit
Errors

ma_nod
e_npu_h
bm_singl
e_bit_iso
lated_pa
ges_tota
l

Number of
isolated NPU
memory
pages with
HBM single-
bit errors

Num
ber

≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 987

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

Isolate
d NPU
Memor
y
Pages
with
HBM
Multi-
bit
Errors

ma_nod
e_npu_h
bm_dou
ble_bit_i
solated_
pages_to
tal

Number of
isolated NPU
memory
pages with
HBM multi-
bit errors
Note:
If there are
more than 64
pages,
change the
NPU.

Num
ber

≥ 0 Raw
data ≥
64 for
two
consecu
tive
periods

Cri
tic
al

If
there
are
more
than
64
pages
,
submi
t a
servic
e
ticket,
and
switc
h the
NPU
server
.

AI
Vector
Core
Usage

ma_nod
e_npu_v
ector_co
re_util

AI vector
core usage of
Ascend AI
processors

% 0%
–
100
%

N/A N/
A

N/A

NPU
RoC
E
net
wor
k

NPU
RoCE
Netwo
rk
Uplink
Rate

ma_nod
e_npu_r
oce_tx_r
ate_byte
s_per_se
cond

NPU RoCE
network
uplink rate

Bytes
/s

≥ 0 N/A N/
A

N/A

NPU
RoCE
Netwo
rk
Downli
nk
Rate

ma_nod
e_npu_r
oce_rx_r
ate_byte
s_per_se
cond

NPU RoCE
network
downlink
rate

Bytes
/s

≥ 0 N/A N/
A

N/A

MAC
Uplink
Pause
Frames

ma_nod
e_npu_r
oce_mac
_tx_paus
e_packet
s_total

Total number
of pause
frame
packets sent
by NPU RoCE
network MAC

Num
ber

≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 988

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

MAC
Downli
nk
Pause
Frames

ma_nod
e_npu_r
oce_mac
_rx_paus
e_packet
s_total

Total number
of pause
frame
packets
received by
NPU RoCE
network MAC

Num
ber

≥ 0 N/A N/
A

N/A

MAC
Uplink
PFC
Frames

ma_nod
e_npu_r
oce_mac
_tx_pfc_
packets_
total

Total number
of PFC frame
packets sent
by NPU RoCE
network MAC

Num
ber

≥ 0 delta(m
a_node_
npu_roc
e_mac_t
x_pause
_packet
s_total[
1m]) >
0

M
ajo
r

Subm
it a
servic
e
ticket.

MAC
Downli
nk PFC
Frames

ma_nod
e_npu_r
oce_mac
_rx_pfc_
packets_
total

Total number
of PFC frame
packets
received by
NPU RoCE
network MAC

Num
ber

≥ 0 delta(m
a_node_
npu_roc
e_mac_r
x_pause
_packet
s_total[
1m]) >
0

M
ajo
r

Subm
it a
servic
e
ticket.

MAC
Uplink
Bad
Packet
s

ma_nod
e_npu_r
oce_mac
_tx_bad_
packets_
total

Total number
of bad
packets sent
by NPU RoCE
network MAC

Num
ber

≥ 0 delta(m
a_node_
npu_roc
e_mac_t
x_pfc_p
ackets_t
otal[1m
]) > 0

M
ajo
r

Subm
it a
servic
e
ticket.

MAC
Downli
nk Bad
Packet
s

ma_nod
e_npu_r
oce_mac
_rx_bad_
packets_
total

Total number
of bad
packets
received by
NPU RoCE
network MAC

Num
ber

≥ 0 delta(m
a_node_
npu_roc
e_mac_r
x_pfc_p
ackets_t
otal[1m
]) > 0

M
ajo
r

Subm
it a
servic
e
ticket.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 989

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

RoCE
Uplink
Bad
Packet
s

ma_nod
e_npu_r
oce_tx_e
rr_packe
ts_total

Total number
of bad
packets sent
by NPU RoCE

Num
ber

≥ 0 delta(m
a_node_
npu_roc
e_mac_t
x_bad_p
ackets_t
otal[1m
]) > 0

M
ajo
r

Subm
it a
servic
e
ticket.

RoCE
Downli
nk Bad
Packet
s

ma_nod
e_npu_r
oce_rx_e
rr_packe
ts_total

Total number
of bad
packets
received by
NPU RoCE

Num
ber

≥ 0 delta(m
a_node_
npu_roc
e_mac_r
x_bad_p
ackets_t
otal[1m
]) > 0

M
ajo
r

Subm
it a
servic
e
ticket.

RoCE
Uplink
Packet
s

ma_nod
e_npu_r
oce_tx_a
ll_packet
s_total

Total number
of packets
sent by NPU
RoCE

Num
ber

≥ 0 delta(m
a_node_
npu_roc
e_tx_err
_packet
s_total[
1m]) >
0

M
ajo
r

Subm
it a
servic
e
ticket.

RoCE
Downli
nk
Packet
s

ma_nod
e_npu_r
oce_rx_a
ll_packet
s_total

Total number
of packets
received by
NPU RoCE

Num
ber

≥ 0 delta(m
a_node_
npu_roc
e_rx_err
_packet
s_total[
1m]) >
0

M
ajo
r

Subm
it a
servic
e
ticket.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 990

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

NPU
opti
cal
mod
ule
(Thi
s
met
ric is
avail
able
for
Snt9
B/C
air-
cool
ed
net
wor
king
.)

Optical
Modul
e
Tempe
rature

ma_nod
e_npu_o
ptical_te
mperatu
re

Optical
module
temperature

°C ≥ 0 N/A N/
A

N/A

Optical
Modul
e
Power
Voltag
e

ma_nod
e_npu_o
ptical_vc
c

Power
voltage of
the optical
module

Milliv
olt
(mV)

≥ 0 N/A N/
A

N/A

Optical
Modul
e
Transm
it
Power
0

ma_nod
e_npu_o
ptical_tx
_power0

Transmit
power 0 of
the optical
module

Milli
watt
(mW)

≥ 0 N/A N/
A

N/A

Optical
Modul
e
Transm
it
Power
1

ma_nod
e_npu_o
ptical_tx
_power1

Transmit
power 1 of
the optical
module

Milli
watt
(mW)

≥ 0 N/A N/
A

N/A

Optical
Modul
e
Transm
it
Power
2

ma_nod
e_npu_o
ptical_tx
_power2

Transmit
power 2 of
the optical
module

Milli
watt
(mW)

≥ 0 N/A N/
A

N/A

Optical
Modul
e
Transm
it
Power
3

ma_nod
e_npu_o
ptical_tx
_power3

Transmit
power 3 of
the optical
module

Milli
watt
(mW)

≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 991

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

Optical
Modul
e
Receiv
e
Power
0

ma_nod
e_npu_o
ptical_rx
_power0

Receive
power 0 of
the optical
module

Milli
watt
(mW)

≥ 0 N/A N/
A

N/A

Optical
Modul
e
Receiv
e
Power
1

ma_nod
e_npu_o
ptical_rx
_power1

Receive
power 1 of
the optical
module

Milli
watt
(mW)

≥ 0 N/A N/
A

N/A

Optical
Modul
e
Receiv
e
Power
2

ma_nod
e_npu_o
ptical_rx
_power2

Receive
power 2 of
the optical
module

Milli
watt
(mW)

≥ 0 N/A N/
A

N/A

Optical
Modul
e
Receiv
e
Power
3

ma_nod
e_npu_o
ptical_rx
_power3

Receive
power 3 of
the optical
module

Milli
watt
(mW)

≥ 0 N/A N/
A

N/A

Infin
iBan
d or
RoC
E
net
wor
k

Total
Amoun
t of
Data
Receiv
ed by a
NIC

ma_nod
e_infinib
and_port
_receive
d_data_
bytes_to
tal

The total
number of
data octets,
divided by 4,
(counting in
double
words, 32
bits),
received on
all VLs from
the port.

(coun
ting
in
doubl
e
words
, 32
bits

≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 992

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

Total
Amoun
t of
Data
Sent
by a
NIC

ma_nod
e_infinib
and_port
_transmi
tted_dat
a_bytes_
total

The total
number of
data octets,
divided by 4,
(counting in
double
words, 32
bits),
transmitted
on all VLs
from the
port.

(coun
ting
in
doubl
e
words
, 32
bits

≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 993

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

NFS
mou
ntin
g
stat
us

NFS
Getattr
Conges
tion
Time

ma_nod
e_mount
stats_get
attr_bac
klog_wai
t

Getattr is an
NFS
operation
that retrieves
the attributes
of a file or
directory,
such as size,
permissions,
owner, etc.
Backlog wait
is the time
that the NFS
requests have
to wait in the
backlog
queue before
being sent to
the NFS
server. It
indicates the
congestion
on the NFS
client side. A
high backlog
wait can
cause poor
NFS
performance
and slow
system
response
times.

ms ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 994

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

NFS
Getattr
Round
Trip
Time

ma_nod
e_mount
stats_get
attr_rtt

Getattr is an
NFS
operation
that retrieves
the attributes
of a file or
directory,
such as size,
permissions,
owner, etc.
RTT stands
for Round
Trip Time
and it is the
time from
when the
kernel RPC
client sends
the RPC
request to
the time it
receives the
reply34. RTT
includes
network
transit time
and server
execution
time. RTT is a
good
measurement
for NFS
latency. A
high RTT can
indicate
network or
server issues.

ms ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 995

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

NFS
Access
Conges
tion
Time

ma_nod
e_mount
stats_acc
ess_back
log_wait

Access is an
NFS
operation
that checks
the access
permissions
of a file or
directory for
a given user.
Backlog wait
is the time
that the NFS
requests have
to wait in the
backlog
queue before
being sent to
the NFS
server. It
indicates the
congestion
on the NFS
client side. A
high backlog
wait can
cause poor
NFS
performance
and slow
system
response
times.

ms ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 996

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

NFS
Access
Round
Trip
Time

ma_nod
e_mount
stats_acc
ess_rtt

Access is an
NFS
operation
that checks
the access
permissions
of a file or
directory for
a given user.
RTT stands
for Round
Trip Time
and it is the
time from
when the
kernel RPC
client sends
the RPC
request to
the time it
receives the
reply34. RTT
includes
network
transit time
and server
execution
time. RTT is a
good
measurement
for NFS
latency. A
high RTT can
indicate
network or
server issues.

ms ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 997

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

NFS
Lookup
Conges
tion
Time

ma_nod
e_mount
stats_loo
kup_bac
klog_wai
t

Lookup is an
NFS
operation
that resolves
a file name
in a directory
to a file
handle.
Backlog wait
is the time
that the NFS
requests have
to wait in the
backlog
queue before
being sent to
the NFS
server. It
indicates the
congestion
on the NFS
client side. A
high backlog
wait can
cause poor
NFS
performance
and slow
system
response
times.

ms ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 998

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

NFS
Lookup
Round
Trip
Time

ma_nod
e_mount
stats_loo
kup_rtt

Lookup is an
NFS
operation
that resolves
a file name
in a directory
to a file
handle. RTT
stands for
Round Trip
Time and it is
the time
from when
the kernel
RPC client
sends the
RPC request
to the time it
receives the
reply34. RTT
includes
network
transit time
and server
execution
time. RTT is a
good
measurement
for NFS
latency. A
high RTT can
indicate
network or
server issues.

ms ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 999

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

NFS
Read
Conges
tion
Time

ma_nod
e_mount
stats_rea
d_backlo
g_wait

Read is an
NFS
operation
that reads
data from a
file. Backlog
wait is the
time that the
NFS requests
have to wait
in the
backlog
queue before
being sent to
the NFS
server. It
indicates the
congestion
on the NFS
client side. A
high backlog
wait can
cause poor
NFS
performance
and slow
system
response
times.

ms ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1000

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

NFS
Read
Round
Trip
Time

ma_nod
e_mount
stats_rea
d_rtt

Read is an
NFS
operation
that reads
data from a
file. RTT
stands for
Round Trip
Time and it is
the time
from when
the kernel
RPC client
sends the
RPC request
to the time it
receives the
reply34. RTT
includes
network
transit time
and server
execution
time. RTT is a
good
measurement
for NFS
latency. A
high RTT can
indicate
network or
server issues.

ms ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1001

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

NFS
Write
Conges
tion
Time

ma_nod
e_mount
stats_wri
te_backl
og_wait

Write is an
NFS
operation
that writes
data to a file.
Backlog wait
is the time
that the NFS
requests have
to wait in the
backlog
queue before
being sent to
the NFS
server. It
indicates the
congestion
on the NFS
client side. A
high backlog
wait can
cause poor
NFS
performance
and slow
system
response
times.

ms ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1002

Cat
ego
ry

Name Metric Description Unit Val
ue
Ran
ge

Alarm
Thresh
old

Al
ar
m
Se
ve
rit
y

Soluti
on

NFS
Write
Round
Trip
Time

ma_nod
e_mount
stats_wri
te_rtt

Write is an
NFS
operation
that writes
data to a file.
RTT stands
for Round
Trip Time
and it is the
time from
when the
kernel RPC
client sends
the RPC
request to
the time it
receives the
reply34. RTT
includes
network
transit time
and server
execution
time. RTT is a
good
measurement
for NFS
latency. A
high RTT can
indicate
network or
server issues.

ms ≥ 0 N/A N/
A

N/A

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1003

Networking Metrics

Table 11-3 Diagnosis (InfiniBand, collected only in dedicated resource pools)

Categ
ory

Name Metric Description Uni
t

Value
Rang
e

InfiniB
and or
RoCE
netwo
rk

PortXmitData infiniband_po
rt_xmit_data_
total

The total number of
data octets, divided by
4, (counting in double
words, 32 bits),
transmitted on all VLs
from the port.

Tota
l
cou
nt

Natur
al
numb
er

PortRcvData infiniband_po
rt_rcv_data_to
tal

The total number of
data octets, divided by
4, (counting in double
words, 32 bits),
received on all VLs
from the port.

Tota
l
cou
nt

Natur
al
numb
er

SymbolErrorC
ounter

infiniband_sy
mbol_error_c
ounter_total

Total number of minor
link errors detected on
one or more physical
lanes.

Tota
l
cou
nt

Natur
al
numb
er

LinkErrorRec
overyCounter

infiniband_lin
k_error_recov
ery_counter_t
otal

Total number of times
the Port Training state
machine has
successfully completed
the link error recovery
process.

Tota
l
cou
nt

Natur
al
numb
er

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1004

Categ
ory

Name Metric Description Uni
t

Value
Rang
e

PortRcvErrors infiniband_po
rt_rcv_errors_t
otal

Total number of
packets containing
errors that were
received on the port
including:
Local physical errors
(ICRC, VCRC, LPCRC,
and all physical errors
that cause entry into
the BAD PACKET or
BAD PACKET DISCARD
states of the packet
receiver state machine)
Malformed data packet
errors (LVer, length, VL)
Malformed link packet
errors (operand, length,
VL)
Packets discarded due
to buffer overrun
(overflow)

Tota
l
cou
nt

Natur
al
numb
er

LocalLinkInte
grityErrors

infiniband_loc
al_link_integri
ty_errors_tota
l

This counter indicates
the number of retries
initiated by a link
transfer layer receiver.

Tota
l
cou
nt

Natur
al
numb
er

PortRcvRemo
tePhysicalErr
ors

infiniband_po
rt_rcv_remote
_physical_erro
rs_total

Total number of
packets marked with
the EBP delimiter
received on the port.

Tota
l
cou
nt

Natur
al
numb
er

PortRcvSwitc
hRelayErrors

infiniband_po
rt_rcv_switch_
relay_errors_t
otal

Total number of
packets received on the
port that were
discarded when they
could not be forwarded
by the switch relay for
the following reasons:
DLID mapping
VL mapping
Looping (output port =
input port)

Tota
l
cou
nt

Natur
al
numb
er

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1005

Categ
ory

Name Metric Description Uni
t

Value
Rang
e

PortXmitWait infiniband_po
rt_transmit_w
ait_total

The number of ticks
during which the port
had data to transmit
but no data was sent
during the entire tick
(either because of
insufficient credits or
because of lack of
arbitration).

Tota
l
cou
nt

Natur
al
numb
er

PortXmitDisc
ards

infiniband_po
rt_xmit_discar
ds_total

Total number of
outbound packets
discarded by the port
because the port is
down or congested.

Tota
l
cou
nt

Natur
al
numb
er

Label Metrics

Table 11-4 Metric labels

Classification Label Description

Container
metrics

modelarts_service Service to which a container belongs,
which can be notebook, train, or infer

instance_name Name of the pod to which the container
belongs

service_id Instance or job ID displayed on the page,
for example,
cf55829e-9bd3-48fa-8071-7ae870dae9
3a for a development environment
9f322d5a-
b1d2-4370-94df-5a87de27d36e for a
training job

node_ip IP address of the node to which the
container belongs

container_id Container ID

cid Cluster ID

container_name Container name

project_id Project ID of the account to which the
user belongs

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1006

Classification Label Description

user_id User ID of the account to which the user
who submits the job belongs

pool_id ID of a resource pool corresponding to a
physical dedicated resource pool

pool_name Name of a resource pool corresponding
to a physical dedicated resource pool

logical_pool_id ID of a logical subpool

logical_pool_name Name of a logical subpool

gpu_uuid UUID of the GPU used by the container

gpu_index Index of the GPU used by the container

gpu_type Type of the GPU used by the container

account_name Account name of the creator of a
training, inference, or development
environment task

user_name Username of the creator of a training,
inference, or development environment
task

task_creation_time Time when a training, inference, or
development environment task is
created

task_name Name of a training, inference, or
development environment task

task_spec_code Specifications of a training, inference, or
development environment task

cluster_name CCE cluster name

Node metrics cid ID of the CCE cluster to which the node
belongs

node_ip IP address of the node

host_name Hostname of a node

pool_id ID of a resource pool corresponding to a
physical dedicated resource pool

project_id Project ID of the user in a physical
dedicated resource pool

gpu_uuid UUID of a node GPU

gpu_index Index of a node GPU

gpu_type Type of a node GPU

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1007

Classification Label Description

device_name Device name of an InfiniBand or RoCE
network NIC

port Port number of the InfiniBand NIC

physical_state Status of each port on the InfiniBand
NIC

firmware_version Firmware version of the IB NIC

filesystem NFS-mounted file system

mount_point NFS mount point

Diagnos cid ID of the CCE cluster to which the node
where the GPU resides belongs

node_ip IP address of the node where the GPU
resides

pool_id ID of a resource pool corresponding to a
physical dedicated resource pool

project_id Project ID of the user in a physical
dedicated resource pool

gpu_uuid GPU UUID

gpu_index Index of a node GPU

gpu_type Type of a node GPU

device_name Name of a network device or disk device

port Port number of the InfiniBand NIC

physical_state Status of each port on the InfiniBand
NIC

firmware_version Firmware version of the InfiniBand NIC

11.4 Using Grafana to View AOM Monitoring Metrics

11.4.1 Installing and Configuring Grafana

11.4.1.1 Installing and Configuring Grafana on Windows

Description
This section describes how to install and configure Grafana on a PC running
Windows.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1008

Procedure
1. Download the Grafana installation package.

Go to the download link, click Download the installer, and wait until the
download is successful.

2. Install Grafana.
Double-click the installation package and install Grafana as instructed.

3. In Windows Services Manager, enable Grafana.

4. Log in to Grafana.
Grafana runs on port 3000 by default. After you open http://localhost:3000,
the Grafana login page is displayed. The default username and password for
the first login are admin. After the login is successful, change the password as
prompted.

11.4.1.2 Installing and Configuring Grafana on Linux

Description

This section describes how to install and configure Grafana on a PC running Linux.

Prerequisites
● An Ubuntu server that is accessible to the Internet is available. If no, the

following conditions must be met:

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1009

https://grafana.com/grafana/download?platform=windows

● You have obtained an ECS. (You are advised to select 8 vCPUs or higher,
Ubuntu image of 22.04 version, and 100 GB local storage.) For details, see
Purchasing a Custom ECS.

● You have purchased an EIP and bound it to the ECS. For details, see Assigning
an EIP and Binding It to an ECS.

Procedure
1. Log in to the ECS. Select a login method. For details, see .
2. Install libfontconfig1:

sudo apt-get install -y adduser libfontconfig1

The operation is successful if the following information is displayed.

3. Download the Grafana installation package:
wget https://dl.grafana.com/oss/release/grafana_9.3.6_amd64.deb --no-check-certificate

Download completed

4. Install Grafana:
sudo dpkg -i grafana_9.3.6_amd64.deb

5. Start Grafana:
sudo /bin/systemctl start grafana-server

6. Access Grafana configurations on your local PC.
Ensure that an EIP has been bound to the ECS and the security group
configuration is correct (the inbound traffic from TCP port 3000 and all
outbound traffic are allowed). Configuration process:

a. Click the ECS name to go to the ECS details page. Then, click the Security
Groups tab, and click Manage Rule.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1010

https://support.huaweicloud.com/intl/en-us/usermanual-ecs/ecs_03_7002.html
https://support.huaweicloud.com/intl/en-us/qs-eip/eip_qs_0001.html
https://support.huaweicloud.com/intl/en-us/qs-eip/eip_qs_0001.html
https://dl.grafana.com/oss/release/grafana_9.3.6_amd64.deb
https://support.huaweicloud.com/intl/en-us/usermanual-ecs/en-us_topic_0140323157.html

b. Click Inbound Rules and allow inbound traffic from TCP port 3000. By
default, all outbound traffic is allowed.

7. Access http://{EIP}:3000 in a browser. The default username and password
for the first login are admin. After the login is successful, change the
password as prompted.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1011

11.4.1.3 Installing and Configuring Grafana on a Notebook Instance

Description
This section describes how to install and configure Grafana in ModelArts Standard
notebook instances.

Prerequisites
● A running CPU- or GPU-based notebook instance is available.
● A terminal is opened.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1012

Procedure
1. Run the following commands in sequence in your terminal to download and

install Grafana:
mkdir -p /home/ma-user/work/grf
cd /home/ma-user/work/grf
wget https://dl.grafana.com/oss/release/grafana-9.1.6.linux-amd64.tar.gz
tar -zxvf grafana-9.1.6.linux-amd64.tar.gz

2. Register Grafana with jupyter-server-proxy.

a. Run the following commands in your terminal:
mkdir -p /home/ma-user/.local/etc/jupyter
vi /home/ma-user/.local/etc/jupyter/jupyter_notebook_config.py

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1013

b. In jupyter_notebook_config.py, add the following code, press Esc to exit,
and type :wq to save the changes:
c.ServerProxy.servers = {
 'grafana': {
 'command': ['/home/ma-user/work/grf/grafana-9.1.6/bin/grafana-server', '--
homepath', '/home/ma-user/work/grf/grafana-9.1.6', 'web'],
 'timeout': 1800,
 'port': 3000
 }
}

NO TE

If jupyter_notebook_config.py (path: /home/ma-user/.local/etc/jupyter/
jupyter_notebook_config.py) contains the c.ServerProxy.servers field, add the
corresponding key-value pair.

3. Modify the URL for accessing Grafana in JupyterLab.

a. In the navigation pane on the left, open the vi /home/ma-user/
work/grf/grafana-9.1.6/conf/defaults.ini file.

b. Change the root_url and serve_from_sub_path fields in [server].

Figure 11-4 Modifying the defaults.ini file

In the file:

▪ The value of root_url is in the format of https:{JupyterLab domain
name}/{Instance ID}/grafana. You can obtain the domain name and
instance ID from the address box of the JupyterLab page.

▪ Set Serve_from_sub_path to true.

4. Save the image of the notebook instance.

a. Log in to the ModelArts console and choose Development Workspace >
Notebook. In the notebook instance list, locate the target instance, and
choose More > Save Image in the Operation column.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1014

b. In the Save Image dialog box, configure parameters. Click OK to save the
image.

c. The image will be saved as a snapshot, and it will take about 5 minutes.
During this period of time, do not perform any operations on the
instance.

d. After the image is saved, the instance status changes to Running. Then,
restart the notebook instance.

5. Open the Grafana page.
Open a browser window and type the value of root_url configured in 3 in the
address box. If the Grafana login page is displayed, Grafana is installed and
configured in the notebook instance. The default username and password for
the first login are admin. After the login is successful, change the password as
prompted.

11.4.2 Configuring a Grafana Data Source
Before viewing ModelArts monitoring data on Grafana, configure the data source.

Prerequisites

Grafana has been installed.

Procedure
1. Obtain the Grafana data source configuration code.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1015

a. Log in to the AOM console.

Figure 11-5 AOM console

b. In the navigation pane on the left, choose Prometheus Monitoring >
Instances. Then, click the Prometheus_AOM_Default instance.

Figure 11-6 Prometheus_AOM_Default

c. In the Settings tab, obtain the Grafana data source configuration code of
the instance in the Grafana Data Source Info area.

2. Add a data source to Grafana.

a. Log in to Grafana. The default username and password for the first login
are admin. After the login is successful, change the password as
prompted.

b. In the navigation pane, choose Configuration > Data Sources. Then,
click Add data source.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1016

Figure 11-7 Configuring Grafana

c. Click Prometheus to access the configuration page.

Figure 11-8 Prometheus configuration page

d. Configure parameters as shown in the following figure.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1017

Figure 11-9 Configuring a Grafana data source

NO TE

The actual Grafana version varies depending on the installation method. Figure
11-9 is only an example.

Table 11-5 Parameters

Parameter Description

Name Enter a name.

URL Set this parameter to the HTTP URL obtained
in step 1.

Basic auth Enable it.

Skip TLS Verify Enable it.

User Set this parameter to the username obtained
in step a.

Password Set this parameter to the password obtained
in step a.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1018

e. After the configuration, click Save & test. If the message Data source is
working is displayed, the data source is configured.

Figure 11-10 Data source added

11.4.3 Configuring a Dashboard to View Metric Data
In Grafana, you can customize dashboards for various views. ModelArts also
provides configuration templates for clusters. This section describes how to
configure a dashboard by using a ModelArts template or creating a dashboard. For
more usage, see Grafana tutorials.

Preparations

ModelArts provides templates for cluster view, node view, user view, task view, and
task details view. These templates can be downloaded from Grafana official
documents. You can import and use them on Dashboards.

Table 11-6 Template download URLs

Template Download URL

Cluster view https://cnnorth4-modelarts-sdk.obs.cn-
north-4.myhuaweicloud.com/metrics/grafana/
dashboards/ModelArts-Cluster-View.json

Node view https://cnnorth4-modelarts-sdk.obs.cn-
north-4.myhuaweicloud.com/metrics/grafana/
dashboards/ModelArts-Node-View.json

User view https://cnnorth4-modelarts-sdk.obs.cn-
north-4.myhuaweicloud.com/metrics/grafana/
dashboards/ModelArts-User-View.json

Task view https://cnnorth4-modelarts-sdk.obs.cn-
north-4.myhuaweicloud.com/metrics/grafana/
dashboards/ModelArts-Task-View.json

Task details view https://cnnorth4-modelarts-sdk.obs.cn-
north-4.myhuaweicloud.com/metrics/grafana/
dashboards/ModelArts-Task-Detail-View.json

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1019

https://grafana.com/tutorials

Using a ModelArts Template to View Metrics
1. Open Dashboards and choose New > Import.

2. Import the dashboard template.
Copy the template download URL provided in Preparations to a web browser
and copy the content of the JSON file. Paste the content to the dashboard
template and click Load.

Figure 11-11 Copying the content of the JSON file

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1020

Figure 11-12 Pasting the content of the JSON file to the dashboard template

3. Change the view name and click Import.

Figure 11-13 Changing the view name

Note: If a message is displayed, indicating that the UID is duplicate, click
Change uid, change the UID in the JSON file, and click Import.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1021

Figure 11-14 Changing the UID

4. After the import, view the imported views in Dashboards. Then, click a view
to open the monitoring page.

5. Use the template.
After the import is successful, you can click the template to view its details.
This section introduces some commonly-used functions.
– Changing the data source and resource pool

Figure 11-15 Changing the data source and resource pool

Click the area marked by the red box. A drop-down list will appear. From
there, you can change the data source and the resource pool.

– Refreshing data

Click the refresh button in the upper right corner to refresh all data on
the dashboard. The data on each panel is also updated.

– Changing the automatic refresh time
The default refresh interval of a template is 15 minutes. If you need to
update the interval, change the value from the drop-down list box in the
upper right corner.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1022

– Changing the time range for obtaining dashboard data

Figure 11-16 Changing the time range for obtaining data

Click the button in the upper right corner to change time range for
obtaining data. This time range affects all panels except those with a
fixed time.

– Adding a panel

Figure 11-17 Adding a panel

Click the + icon in the upper right corner to add a panel.
After a panel is added, you can obtain the data in the panel. Configure
the data source and resource pool as follows to use the current
dashboard settings.

Figure 11-18 Using the current dashboard settings

Creating a Dashboard to View Metrics
1. Open Dashboards, click New, and choose New Dashboard.
2. Click Add a new panel.
3. On the New dashboard / Edit Panel page, set the following parameters:

Data source: Configured Grafana data source
Metric: Metric name. You can obtain the metric to be queried by referring to
Table 11-1, Table 11-2, and Table 11-3.
Labels: Used for filtering the metric. For details, see and Table 11-4.

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1023

Figure 11-19 Creating a dashboard to view metrics

ModelArts
User Guide (ModelArts Standard) 11 Resource Monitoring

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1024

12 Viewing Audit Logs

12.1 ModelArts Key Operations Traced by CTS
With CTS, you can obtain operations associated with ModelArts for later query,
audit, and backtrack operations.

Prerequisites
CTS has been enabled.

Key Data Management Operations Traced by CTS

Table 12-1 Key data management operations traced by CTS

Operation Resource Type Trace

Creating a dataset Dataset createDataset

Deleting a dataset Dataset deleteDataset

Updating a dataset Dataset updateDataset

Publishing a dataset
version

Dataset publishDatasetVersion

Deleting a dataset
version

Dataset deleteDatasetVersion

Synchronizing the data
source

Dataset syncDataSource

Exporting a dataset Dataset exportDataFromDataset

Creating an auto
labeling task

Dataset createAutoLabelingTask

Creating an auto
grouping task

Dataset createAutoGroupingTask

ModelArts
User Guide (ModelArts Standard) 12 Viewing Audit Logs

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1025

Operation Resource Type Trace

Creating an auto
deployment task

Dataset createAutoDeployTask

Importing samples to a
dataset

Dataset importSamplesToDataset

Creating a dataset label Dataset createLabel

Updating a dataset label Dataset updateLabel

Deleting a dataset label Dataset deleteLabel

Deleting a dataset label
and its samples

Dataset deleteLabelWithSamples

Adding samples Dataset uploadSamples

Deleting samples Dataset deleteSamples

Stopping an auto
labeling task

Dataset stopTask

Creating a team labeling
task

Dataset createWorkforceTask

Deleting a team labeling
task

Dataset deleteWorkforceTask

Starting the acceptance
of a team labeling task

Dataset startWorkforceSampling-
Task

Approving, rejecting, or
canceling the acceptance
of a team labeling task

Dataset updateWorkforceSam-
plingTask

Submitting sample
review comments for an
acceptance task

Dataset acceptSamples

Adding a label to a
sample

Dataset updateSamples

Sending an email to
team labeling members

Dataset sendEmails

Starting a team labeling
task as the team
manager

Dataset startWorkforceTask

Updating a team
labeling task

Dataset updateWorkforceTask

Adding a label to a
team-labeled sample

Dataset updateWorkforceTask-
Samples

ModelArts
User Guide (ModelArts Standard) 12 Viewing Audit Logs

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1026

Operation Resource Type Trace

Reviewing team labeling
results

Dataset reviewSamples

Creating a labeling team
member

Workforce createWorker

Updating labeling team
members

Workforce updateWorker

Deleting a labeling team
member

Workforce deleteWorker

Deleting labeling team
members in batches

Workforce batchDeleteWorker

Creating a labeling team Workforce createWorkforce

Updating a labeling
team

Workforce updateWorkforce

Deleting a labeling team Workforce deleteWorkforce

Automatically creating
an IAM agency

IAM createAgency

Logging in to the
labeling console as a
team labeling member

labelConsoleWorker workerLoginLabelCon-
sole

Logging out of the
labeling console as a
team labeling member

labelConsoleWorker workerLogOutLabelCon-
sole

Changing the password
for logging in to the
labeling console as a
team labeling member

labelConsoleWorker workerChangePassword

Handling the issue that
the password for logging
in to the labeling console
as a team labeling
member is lost

labelConsoleWorker workerForgetPassword

Resetting the password
for logging in to the
labeling console through
the URL as a team
labeling member

labelConsoleWorker workerResetPassword

ModelArts
User Guide (ModelArts Standard) 12 Viewing Audit Logs

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1027

Key Development Environment Operations Traced by CTS

Table 12-2 Key development environment operations traced by CTS

Operation Resource Type Trace

Creating a notebook
instance

Notebook createNotebook

Deleting a notebook
instance

Notebook deleteNotebook

Opening a notebook
instance

Notebook openNotebook

Starting a notebook
instance

Notebook startNotebook

Stopping a notebook
instance

Notebook stopNotebook

Updating a notebook
instance

Notebook updateNotebook

Deleting a NotebookApp NotebookApp deleteNotebookApp

Switching CodeLab
specifications

NotebookApp updateNotebookApp

Key Training Job Operations Traced by CTS

Table 12-3 Key training job operations traced by CTS

Operation Resource Type Trace

Creating a training job ModelArtsTrainJob createModelArtsTrainJob

Creating a training job
version

ModelArtsTrainJob createModelArtsTrainVer-
sion

Stopping a training job ModelArtsTrainJob stopModelArtsTrainVer-
sion

Modifying the
description of a training
job

ModelArtsTrainJob updateModelArtsTrain-
Desc

Deleting a training job
version

ModelArtsTrainJob deleteModelArtsTrainVer-
sion

Deleting a training job ModelArtsTrainJob deleteModelArtsTrainJob

Configuring a training
job

ModelArtsTrainConfig createModelArtsTrain-
Config

ModelArts
User Guide (ModelArts Standard) 12 Viewing Audit Logs

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1028

Operation Resource Type Trace

Modifying training job
configurations

ModelArtsTrainConfig updateModelArtsTrain-
Config

Deleting training job
configurations

ModelArtsTrainConfig deleteModelArtsTrain-
Config

Creating a visualization
job

ModelArtsTensorboard-
Job

createModelArtsTensor-
boardJob

Deleting a visualization
job

ModelArtsTensorboard-
Job

deleteModelArtsTensor-
boardJob

Modifying the
description of a
visualization job

ModelArtsTensorboard-
Job

updateModelArtsTensor-
boardDesc

Stopping a visualization
job

ModelArtsTensorboard-
Job

stopModelArtsTensor-
boardJob

Restarting a visualization
job

ModelArtsTensorboard-
Job

restartModelArtsgTensor-
boardJob

Key Model Management Operations Traced by CTS

Table 12-4 Key model management operations traced by CTS

Operation Resource Type Trace

Creating a model Model addModel

Updating a model Model updateModel

Deleting a model Model deleteModel

Creating a model
conversion task

Convert addConvert

Updating a model
conversion task

Convert updateConvert

Deleting a model
conversion task

Convert deleteConvert

Key Service Management Operations Traced by CTS

Table 12-5 Key service management operations traced by CTS

Operation Resource Type Trace

Deploying a service Service addService

ModelArts
User Guide (ModelArts Standard) 12 Viewing Audit Logs

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1029

Operation Resource Type Trace

Deleting a service Service deleteService

Updating a service Service updateService

Starting or stopping a
service

Service startOrStopService

Adding an access key Service addAkSk

Deleting an access key Service deleteAkSk

Creating a dedicated
resource pool

Cluster createCluster

Deleting a dedicated
resource pool

Cluster deleteCluster

Adding a node to a
dedicated resource pool

Cluster addClusterNode

Deleting a node from a
dedicated resource pool

Cluster deleteClusterNode

Obtaining the result of
creating a dedicated
resource pool

Cluster createClusterResult

Key AI Gallery Operations Traced by CTS

Table 12-6 Key AI Gallery operations traced by CTS

Operation Resource Type Trace

Publishing an asset ModelArts_Market create_content

Modifying asset
information

ModelArts_Market modify_content

Publishing an asset
version

ModelArts_Market add_version

Subscribing to an asset ModelArts_Market subscription_content

Removing an asset from
favorites

ModelArts_Market cancel_star_content

Liking an asset ModelArts_Market like_content

Unliking an asset ModelArts_Market cancel_like_content

Publishing an activity ModelArts_Market publish_activity

Signing up an activity ModelArts_Market regist_activity

ModelArts
User Guide (ModelArts Standard) 12 Viewing Audit Logs

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1030

Operation Resource Type Trace

Modifying user
information

ModelArts_Market update_user

Key Resource Management Operations Traced by CTS

Table 12-7 Key resource management operations traced by CTS

Operation Resource Type Trace

Creating a resource pool PoolV2 CreatePoolV2

Deleting a resource pool PoolV2 DeletePoolV2

Updating a resource pool PoolV2 UpdatePoolV2

Creating a network NetworksV1 CreateNetworksV1

Deleting a network NetworksV1 DeleteNetworksV1

Updating a network NetworksV1 UpdateNetworksV1

12.2 Viewing ModelArts Audit Logs
After CTS is enabled, CTS starts recording operations on ModelArts. The CTS
console stores the operation records generated in the last seven days. This section
describes how to view operation records of the last seven days on the CTS console.

Procedure
1. Log in to the CTS console.

2. Click in the upper left corner and select a region.
3. In the navigation pane on the left, choose Trace List.
4. Specify filters as needed. You can query traces using a combination of the

following filters:
– Trace Source, Resource Type, and Search By:

Select a filter from the drop-down list.
When you select Trace Name, you need to enter a specific trace name.
When you select Resource ID, you need to enter a specific resource ID.
When you select Resource Name, you need to enter a specific resource
name.

– Operator: Select a specific operator (a user other than tenant).
– Trace Status: Select All trace statuses, Normal, Warning, or Incident.
– Operation Time: You can query traces generated during any time range

in the last seven days.

ModelArts
User Guide (ModelArts Standard) 12 Viewing Audit Logs

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1031

5. Click on the left of a trace to expand its details.
6. Locate the target trace and click View Trace in the Operation column. In the

displayed View Trace dialog box, view the trace structure details.
For details about the key fields in the CTS trace structure, see Cloud Trace
Service User Guide.

ModelArts
User Guide (ModelArts Standard) 12 Viewing Audit Logs

Issue 01 (2024-12-31) Copyright © Huawei Cloud Computing Technologies Co., Ltd. 1032

https://support.huaweicloud.com/intl/en-us/usermanual-cts/cts_03_0001.html
https://support.huaweicloud.com/intl/en-us/usermanual-cts/cts_03_0001.html

	Contents
	1 ModelArts Standard Usage
	2 ModelArts Standard Preparations
	2.1 Configuring Access Authorization for ModelArts Standard
	2.1.1 Configuring Agency Authorization for ModelArts with One Click
	2.1.2 Creating an IAM User and Granting ModelArts Permissions

	2.2 Creating and Managing a Workspace
	2.3 Creating an OBS Bucket for ModelArts to Store Data

	3 ModelArts Standard Resource Management
	3.1 About ModelArts Standard Resource Pools
	3.2 Creating a Standard Dedicated Resource Pool
	3.3 Managing Standard Dedicated Resource Pools
	3.3.1 Viewing Details About a Standard Dedicated Resource Pool
	3.3.2 Resizing a Standard Dedicated Resource Pool
	3.3.3 Upgrading the Standard Dedicated Resource Pool Driver
	3.3.4 Rectifying a Faulty Node in a Standard Dedicated Resource Pool
	3.3.5 Modifying the Job Types Supported by a Standard Dedicated Resource Pool
	3.3.6 Migrating Standard Dedicated Resource Pools and Networks to Other Workspaces
	3.3.7 Configuring the Standard Dedicated Resource Pool to Access the Internet
	3.3.8 Using TMS Tags to Manage Resources by Group
	3.3.9 Managing Free Nodes in a Standard Dedicated Resource Pool
	3.3.10 Releasing Standard Dedicated Resource Pools and Deleting the Network

	4 Using ExeML for Zero-Code AI Development
	4.1 Introduction to ExeML
	4.2 Using ExeML for Image Classification
	4.2.1 Preparing Image Classification Data
	4.2.2 Creating an Image Classification Project
	4.2.3 Labeling Image Classification Data
	4.2.4 Training an Image Classification Model
	4.2.5 Deploying an Image Classification Service

	4.3 Using ExeML for Object Detection
	4.3.1 Preparing Object Detection Data
	4.3.2 Creating an Object Detection Project
	4.3.3 Labeling Object Detection Data
	4.3.4 Training an Object Detection Model
	4.3.5 Deploying an Object Detection Service

	4.4 Using ExeML for Predictive Analytics
	4.4.1 Preparing Predictive Analysis Data
	4.4.2 Creating a Predictive Analytics Project
	4.4.3 Training a Predictive Analysis Model
	4.4.4 Deploying a Predictive Analytics Service

	4.5 Using ExeML for Sound Classification
	4.5.1 Preparing Sound Classification Data
	4.5.2 Creating a Sound Classification Project
	4.5.3 Labeling Sound Classification Data
	4.5.4 Training a Sound Classification Model
	4.5.5 Deploying a Sound Classification Service

	4.6 Using ExeML for Text Classification
	4.6.1 Preparing Text Classification Data
	4.6.2 Creating a Text Classification Project
	4.6.3 Labeling Text Classification Data
	4.6.4 Training a Text Classification Model
	4.6.5 Deploying a Text Classification Service

	4.7 Tips
	4.7.1 How Do I Quickly Create an OBS Bucket and a Folder When Creating a Project?
	4.7.2 Where Are Models Generated by ExeML Stored? What Other Operations Are Supported?

	5 Using Workflows for Low-Code AI Development
	5.1 What Is Workflow?
	5.2 Managing a Workflow
	5.2.1 Searching for a Workflow
	5.2.2 Viewing the Running Records of a Workflow
	5.2.3 Managing a Workflow
	5.2.4 Retrying, Stopping, or Running a Workflow Phase

	5.3 Workflow Development Command Reference
	5.3.1 Core Concepts of Workflow Development
	5.3.2 Configuring Workflow Parameters
	5.3.3 Configuring the Input and Output Paths of a Workflow
	5.3.4 Creating Workflow Phases
	5.3.4.1 Creating a Dataset Phase
	5.3.4.2 Creating a Dataset Labeling Phase
	5.3.4.3 Creating a Dataset Import Phase
	5.3.4.4 Creating a Dataset Release Phase
	5.3.4.5 Creating a Training Job Phase
	5.3.4.6 Creating a Model Registration Phase
	5.3.4.7 Creating a Service Deployment Phase

	5.3.5 Creating a Multi-Branch Workflow
	5.3.5.1 Multi-Branch Workflow
	5.3.5.2 Creating a Condition Phase to Control Branch Execution
	5.3.5.3 Configuring Phase Parameters to Control Branch Execution
	5.3.5.4 Configuring Multi-Branch Phase Data

	5.3.6 Creating a Workflow
	5.3.7 Publishing a Workflow
	5.3.7.1 Publishing a Workflow to ModelArts
	5.3.7.2 Publishing a Workflow to AI Gallery

	5.3.8 Advanced Workflow Capabilities
	5.3.8.1 Using Big Data Capabilities (DLI/MRS) in a Workflow
	5.3.8.2 Specifying Certain Phases to Run in a Workflow

	6 Development Environments
	6.1 Application Scenarios
	6.2 Creating a Notebook Instance
	6.3 Using a Notebook Instance for AI Development Through JupyterLab
	6.3.1 Using JupyterLab to Develop and Debug Code Online
	6.3.2 Common Functions of JupyterLab
	6.3.3 Using Git to Clone the Code Repository in JupyterLab
	6.3.4 Creating a Scheduled Job in JupyterLab
	6.3.5 Uploading Files to JupyterLab
	6.3.5.1 Uploading Files from a Local Path to JupyterLab
	6.3.5.2 Cloning GitHub Open-Source Repository Files to JupyterLab
	6.3.5.3 Uploading OBS Files to JupyterLab
	6.3.5.4 Uploading Remote Files to JupyterLab

	6.3.6 Downloading a File from JupyterLab to a Local PC
	6.3.7 Using MindInsight Visualization Jobs in JupyterLab
	6.3.8 Using TensorBoard Visualization Jobs in JupyterLab

	6.4 Using Notebook Instances Remotely Through PyCharm
	6.4.1 Connecting to a Notebook Instance Through PyCharm Toolkit
	6.4.2 Manually Connecting to a Notebook Instance Through PyCharm
	6.4.3 Uploading Data to a Notebook Instance Through PyCharm

	6.5 Using Notebook Instances Remotely Through VS Code
	6.5.1 Connecting to a Notebook Instance Through VS Code
	6.5.2 Installing VS Code
	6.5.3 Connecting to a Notebook Instance Through VS Code Toolkit
	6.5.4 Manually Connecting to a Notebook Instance Through VS Code
	6.5.5 Uploading and Downloading Files in VS Code

	6.6 Using a Notebook Instance Remotely with SSH
	6.7 Managing Notebook Instances
	6.7.1 Searching for a Notebook Instance
	6.7.2 Updating a Notebook Instance
	6.7.3 Starting, Stopping, or Deleting a Notebook Instance
	6.7.4 Saving a Notebook Instance
	6.7.5 Dynamically Expanding EVS Disk Capacity
	6.7.6 Dynamically Mounting an OBS Parallel File System
	6.7.7 Viewing Notebook Events
	6.7.8 Notebook Cache Directory Alarm Reporting

	6.8 ModelArts CLI Command Reference
	6.8.1 ModelArts CLI Commands
	6.8.2 (Optional) Installing ma-cli Locally
	6.8.3 Autocompletion for ma-cli Commands
	6.8.4 ma-cli Authentication
	6.8.5 ma-cli image Commands for Building Images
	6.8.6 ma-cli ma-job Commands for Training Jobs
	6.8.7 ma-cli dli-job Commands for Submitting DLI Spark Jobs
	6.8.8 Using ma-cli to Copy OBS Data

	6.9 Using Moxing Commands in a Notebook Instance
	6.9.1 MoXing Framework Functions
	6.9.2 Using MoXing in Notebook
	6.9.3 Mapping Between mox.file and Local APIs and Switchover
	6.9.4 Sample Code for Common Operations
	6.9.5 Sample Code for Advanced MoXing Usage

	7 Data Management
	7.1 Introduction to Data Preparation
	7.2 Getting Started
	7.3 Creating a Dataset
	7.3.1 Dataset Overview
	7.3.2 Creating a Dataset
	7.3.3 Modifying a Dataset

	7.4 Importing Data
	7.4.1 Introduction to Data Importing
	7.4.2 Importing Data from OBS
	7.4.2.1 Introduction to Importing Data from OBS
	7.4.2.2 Importing Data from an OBS Path
	7.4.2.3 Specifications for Importing Data from an OBS Directory
	7.4.2.4 Importing a Manifest File
	7.4.2.5 Specifications for Importing a Manifest File

	7.4.3 Importing Data from DLI
	7.4.4 Importing Data from MRS
	7.4.5 Importing Data from DWS
	7.4.6 Importing Data from Local Files

	7.5 Data Analysis and Preview
	7.5.1 Auto Grouping
	7.5.2 Data Filtering
	7.5.3 Data Feature Analysis

	7.6 Labeling Data
	7.7 Publishing Data
	7.7.1 Introduction to Data Publishing
	7.7.2 Publishing a Data Version
	7.7.3 Managing Data Versions

	7.8 Exporting Data
	7.8.1 Introduction to Exporting Data
	7.8.2 Exporting Data to a New Dataset
	7.8.3 Exporting Data to OBS

	7.9 Introduction to Data Labeling
	7.10 Manual Labeling
	7.10.1 Creating a Labeling Job
	7.10.2 Image Labeling
	7.10.2.1 Image Classification
	7.10.2.2 Object Detection
	7.10.2.3 Image Segmentation

	7.10.3 Text Labeling
	7.10.3.1 Text Classification
	7.10.3.2 Named Entity Recognition
	7.10.3.3 Text Triplet

	7.10.4 Audio Labeling
	7.10.4.1 Sound Classification
	7.10.4.2 Speech Labeling
	7.10.4.3 Speech Paragraph Labeling

	7.10.5 Video Labeling
	7.10.6 Viewing Labeling Jobs
	7.10.6.1 Viewing My Created Labeling Jobs
	7.10.6.2 Viewing My Participated Labeling Jobs

	7.11 Auto Labeling
	7.11.1 Creating an Auto Labeling Job
	7.11.2 Confirming Hard Examples

	7.12 Team Labeling
	7.12.1 Team Labeling Overview
	7.12.2 Creating and Managing Teams
	7.12.2.1 Managing Teams
	7.12.2.2 Managing Team Members

	7.12.3 Creating a Team Labeling Job
	7.12.4 Logging In to ModelArts
	7.12.5 Starting a Team Labeling Job
	7.12.6 Reviewing Team Labeling Results
	7.12.7 Accepting Team Labeling Results

	8 Model Training
	8.1 Model Training Process
	8.2 Preparing Model Training Code
	8.2.1 Starting a Preset Image's Boot File
	8.2.2 Developing Code for Training Using a Preset Image
	8.2.3 Developing Code for Training Using a Custom Image
	8.2.4 Configuring Password-free SSH Mutual Trust Between Nodes for a Training Job Created Using a Custom Image

	8.3 Preparing a Model Training Image
	8.4 Creating a Debug Training Job
	8.4.1 Using PyCharm Toolkit to Create and Debug a Training Job

	8.5 Creating an Algorithm
	8.6 Creating a Production Training Job
	8.7 Distributed Model Training
	8.7.1 Overview
	8.7.2 Creating a Single-Node Multi-Card Distributed Training Job (DataParallel)
	8.7.3 Creating a Multiple-Node Multi-Card Distributed Training Job (DistributedDataParallel)
	8.7.4 Example: Creating a DDP Distributed Training Job (PyTorch + GPU)
	8.7.5 Example: Creating a DDP Distributed Training Job (PyTorch + NPU)

	8.8 Incremental Model Training
	8.9 Automatic Model Tuning (AutoSearch)
	8.9.1 Overview
	8.9.2 Creating a Training Job for Automatic Model Tuning

	8.10 High Model Training Reliability
	8.10.1 Training Job Fault Tolerance Check
	8.10.2 Training Log Failure Analysis
	8.10.3 Detecting Training Job Suspension
	8.10.4 Training Job Rescheduling
	8.10.5 Resumable Training
	8.10.6 Enabling Unconditional Auto Restart

	8.11 Managing Model Training Jobs
	8.11.1 Viewing Training Job Details
	8.11.2 Viewing the Resource Usage of a Training Job
	8.11.3 Viewing the Model Evaluation Result
	8.11.4 Viewing Training Job Events
	8.11.5 Viewing Training Job Logs
	8.11.6 Priority of a Training Job
	8.11.7 Using Cloud Shell to Debug a Production Training Job
	8.11.8 Rebuilding, Stopping, or Deleting a Training Job
	8.11.9 Managing Environment Variables of a Training Container
	8.11.10 Viewing Training Job Tags

	9 Inference Deployment
	9.1 Overview
	9.2 Creating a Model
	9.2.1 Creation Methods
	9.2.2 Importing a Meta Model from a Training Job
	9.2.3 Importing a Meta Model from OBS
	9.2.4 Importing a Meta Model from a Container Image

	9.3 Model Creation Specifications
	9.3.1 Model Package Structure
	9.3.2 Specifications for Editing a Model Configuration File
	9.3.3 Specifications for Writing a Model Inference Code File
	9.3.4 Specifications for Using a Custom Engine to Create a Model
	9.3.5 Examples of Custom Scripts

	9.4 Deploying a Model as Real-Time Inference Jobs
	9.4.1 Deploying and Using Real-Time Inference
	9.4.2 Deploying a Model as a Real-Time Service
	9.4.3 Authentication Methods for Accessing Real-time Services
	9.4.3.1 Accessing a Real-Time Service Through Token-based Authentication
	9.4.3.2 Accessing a Real-Time Service Through AK/SK-based Authentication
	9.4.3.3 Accessing a Real-Time Service Through App Authentication

	9.4.4 Accessing a Real-Time Service Through Different Channels
	9.4.4.1 Accessing a Real-Time Service Through a Public Network
	9.4.4.2 Accessing a Real-Time Service Through a VPC Channel
	9.4.4.3 Accessing a Real-Time Service Through a VPC High-Speed Channel

	9.4.5 Accessing a Real-Time Service Using Different Protocols
	9.4.5.1 Accessing a Real-Time Service Using WebSocket
	9.4.5.2 Accessing a Real-Time Service Using Server-Sent Events

	9.5 Deploying a Model as a Batch Inference Service
	9.6 Managing ModelArts Models
	9.6.1 Viewing ModelArts Model Details
	9.6.2 Viewing ModelArts Model Events
	9.6.3 Managing ModelArts Model Versions

	9.7 Managing a Synchronous Real-Time Service
	9.7.1 Viewing Details About a Real-Time Service
	9.7.2 Viewing Events of a Real-Time Service
	9.7.3 Managing the Lifecycle of a Real-Time Service
	9.7.4 Modifying a Real-Time Service
	9.7.5 Viewing Performance Metrics of a Real-Time Service on Cloud Eye
	9.7.6 Integrating a Real-Time Service API into the Production Environment
	9.7.7 Configuring Auto Restart upon a Real-Time Service Fault

	9.8 Managing Batch Inference Jobs
	9.8.1 Viewing Details About a Batch Service
	9.8.2 Viewing Events of a Batch Service
	9.8.3 Managing the Lifecycle of a Batch Service
	9.8.4 Modifying a Batch Service

	10 Image Management
	10.1 Application Scenarios of Custom Images
	10.2 Preset Images Supported by ModelArts
	10.2.1 ModelArts Preset Image Updates
	10.2.2 ModelArts Unified Images
	10.2.3 Preset Dedicated Images in Notebook Instances
	10.2.4 Preset Dedicated Images for Training
	10.2.5 Preset Dedicated Images for Inference

	10.3 Creating a Custom Image for a Notebook Instance
	10.3.1 Creating a Custom Image
	10.3.2 Creating a Custom Image on ECS and Using It
	10.3.3 Creating a Custom Image Using Dockerfile
	10.3.4 Creating a Custom Image Using the Image Saving Function

	10.4 Creating a Custom Image for Model Training
	10.4.1 Creating a Custom Training Image
	10.4.2 Creating a Custom Training Image Using a Preset Image
	10.4.3 Migrating Existing Images to ModelArts
	10.4.4 Creating a Custom Training Image (PyTorch + Ascend)
	10.4.5 Creating a Custom Training Image (PyTorch + CPU/GPU)
	10.4.6 Creating a Custom Training Image (MPI + CPU/GPU)
	10.4.7 Creating a Custom Training Image (Tensorflow + GPU)
	10.4.8 Creating a Custom Training Image (MindSpore + Ascend)

	10.5 Creating a Custom Image for Inference
	10.5.1 Creating a Custom Image for a Model
	10.5.2 Creating a Custom Image in a Notebook Instance Using the Image Saving Function
	10.5.3 Creating a Custom Image in a Notebook Instance Using Dockerfile
	10.5.4 Creating a Custom Image on ECS

	11 Resource Monitoring
	11.1 Overview
	11.2 Viewing Monitoring Metrics on the ModelArts Console
	11.3 Viewing All ModelArts Monitoring Metrics on the AOM Console
	11.4 Using Grafana to View AOM Monitoring Metrics
	11.4.1 Installing and Configuring Grafana
	11.4.1.1 Installing and Configuring Grafana on Windows
	11.4.1.2 Installing and Configuring Grafana on Linux
	11.4.1.3 Installing and Configuring Grafana on a Notebook Instance

	11.4.2 Configuring a Grafana Data Source
	11.4.3 Configuring a Dashboard to View Metric Data

	12 Viewing Audit Logs
	12.1 ModelArts Key Operations Traced by CTS
	12.2 Viewing ModelArts Audit Logs

